2004年江西省真题及答案解析
- 格式:doc
- 大小:614.00 KB
- 文档页数:7
2004年普通高等学校招生全国统一考试数学(江苏卷)第I 卷(选择题共60分)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( )A .{1,2}B . {3,4}C . {1}D . {-2,-1,0,1,2} 2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( ) A .140种 B .120种 C .35种 D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( ) A .33π100cm B . 33π208cmC .33π500cmD .33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) A .0.6小时 B .0.9小时 C .1.0小时 D .1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )A .6B .12C .24D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )A .1,-1B .1,-17C .3,-17D .9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个第II 卷(非选择题 共90分)二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量a ,b 中,已知a =(4,-3),b =1,且a ·b =5,则向量b =__________. 三、解答题(12分×5+14分=74分) 17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S =的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S =成立.21.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;· B 1P A C D A 1C 1D 1 B O H·(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有 )]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数. 设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -= (Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ; (Ⅱ)证明20220))(λ1()(a a a b --≤-; (Ⅲ)证明222)]()[λ1()]([a f b f -≤.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分. 1.A 2.B 3.D 4.C 5.A 6.B 7.C 8.A 9.D 10.C 11.B 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.),3()2,(+∞--∞ 14.25)2()1(22=-+-y x 15.216.)53,54(-三、解答题17.本小题主要考查三角函数的基本公式和三角函数的恒等变换等基本知识,以及推理能力和运算能力.满分12分.解:由已知54sin ,25sin 22cot2tan===+αααα得..53s i n 1c o s ,202=-=∴<<ααπα从而 3s i n c o s 3c o s s i n )3s i n (παπαπα⋅-⋅=-)334(10123532154-=⨯-⨯=. 18.本小题主要考查线面关系和正方体性质等基本知识,考查空间想象能力和推理论证能力.满分12分. 解法一:(I )连结BP.∵AB ⊥平面BCC 1B 1, ∴AP 与平面BCC 1B 1所成的角就是∠APB, ∵CC 1=4CP,CC 1=4,∴CP=I.在Rt △PBC 中,∠PCB 为直角,BC=4,CP=1,故BP=17.在Rt △APB 中,∠ABP 为直角,tan ∠APB=,17174=BP AB∴∠APB=.17174arctan19.本小题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力.满分12分.解:设投资人分别用x 万元、y 万元投资甲、乙两个项目.由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域. 作直线05.0:0=+y x l ,并作平行于直线0l 的一组直线,,5.0R z z y x ∈=+ 与可行域相交,其中有一条直线经过可行域上的M 点,且 与直线05.0=+y x 的距离最大,这里M 点是直线10=+y x和8.11.03.0=+y x 的交点.解方程组⎩⎨⎧=+=+,8.11.03.0,10y x y x 得x =4,y=6此时765.041=⨯+⨯=z (万元).07> ∴当x =4,y=6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.20.本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.满分12分. 解:(I )当1,231==d a 时, n n n n n d n n na S n +=-+=-+=21212)1(232)1(由22242)21(21,)(2k k k k S S k k +=+=得,即 0)141(3=-k k 又4,0=≠k k 所以.(II )设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k=1,2,得⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或 当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a ,)(239S s ≠故所得数列不符合题意. 当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列:①{a n } : a n =0,即0,0,0,…; ②{a n } : a n =1,即1,1,1,…; ③{a n } : a n =2n -1,即1,3,5,…,21.本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.满分12分.(1) (2)解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点km kmy m m x Q Q -=-=-=--⨯-+=-=21,221)()2(0,2时当.于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 22.本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分. 证明:(I )任取则由,,,2121x x R x x ≠⊂ )]()()[()(2121221x f x f x x x x --≤-λ 和|||)()(|2121x x x f x f -≤- ②可知 22121212121221|||)()(|||)]()()[()(x x x f x f x x x f x f x x x x -≤-⋅-≤--≤-λ, 从而1≤λ. 假设有则由使得,0)(,000=≠b f a b ①式知.0)]()()[()(00000200矛盾=--≤-<b f a f b a b a λ∴不存在.0)(,000=≠b f a b 使得(II )由)(a f a b λ-= ③可知 220202020)]([)()(2)()]([)(a f a f a a a a a f a a a b λλλ+---=--=- ④ 由和0)(0=a f ①式,得20000)()]()()[()()(a a a f a f a a a f a a -≥--=-λ ⑤ 由0)(0=a f 和②式知,20202)()]()([)]([a a a f a f a f -≤-= ⑥ 由⑤、⑥代入④式,得 2022022020)()(2)()(a a a a a a a b -+---≤-λλ202))(1(a a --=λ(III )由③式可知22)]()()([)]([a f a f b f b f +-=22)]([)]()()[(2)]()([a f a f b f a f a f b f +-+-=22)]([)]()([2)(a f a f b f ab a b +--⋅--≤λ(用②式)222)]([)]()()[(2)]([a f a f b f a b a f +---=λλ2222)]([)(2)([a f a b a f +-⋅⋅-≤λλλ (用①式)2222222)]()[1()]([)]([2)]([a f a f a f a f λλλ-=+-=。
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( I A)∪B=IB .( I A)∪( I B)=IC .A ∩( I B)=φD .( I A)∪( I B)= I B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式|x+2|≥|x|的解集是 .14.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P 的轨迹方程为.15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项a n=112nn=⎧⎨≥⎩16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是.①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且 a 2k =a 2k -1+(-1)K ,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x aa x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2004年普通高等学校招生全国统一考试数学(江苏卷)第I 卷(选择题共60分)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( ) A .{1,2} B . {3,4}C . {1}D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为( ) A .2 B .22 C . 4D .24 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A .5216 B .25216 C .31216 D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于( ) A .3 B .32 C .43 D .6512.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个第II 卷(非选择题 共90分)二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量a ,b 中,已知a =(4,-3),b =1,且a ·b =5,则向量b =__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线· B 1 P A C D A 1 C 1D 1 B O H ·l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤- 和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.A 2.B 3.D 4.C 5.A 6.B 7.C 8.A 9.D 10.C11.B 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.),3()2,(+∞--∞14.25)2()1(22=-+-y x 15.2 16.)53,54(- 三、解答题17.本小题主要考查三角函数的基本公式和三角函数的恒等变换等基本知识,以及推理能力和运算能力.满分12分.解:由已知54sin ,25sin 22cot 2tan===+αααα得. .53s i n 1c o s ,202=-=∴<<ααπα 从而 3s i n c o s 3c o s s i n )3s i n (παπαπα⋅-⋅=- )334(10123532154-=⨯-⨯=. 18.本小题主要考查线面关系和正方体性质等基本知识,考查空间想象能力和推理论证能力.满分12分.解法一:(I )连结BP. ∵AB ⊥平面BCC 1B 1, ∴AP 与平面BCC 1B 1所成的角就是∠APB,∵CC 1=4CP,CC 1=4,∴CP=I.在Rt △PBC 中,∠PCB 为直角,BC=4,CP=1,故BP=17.在Rt △APB 中,∠ABP 为直角,tan ∠APB=,17174=BP AB ∴∠APB=.17174arctan 19.本小题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力.满分12分.解:设投资人分别用x 万元、y 万元投资甲、乙两个项目.由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域. 作直线05.0:0=+y x l ,并作平行于直线0l 的一组直线,,5.0R z z y x ∈=+与可行域相交,其中有一条直线经过可行域上的M 点,且 与直线05.0=+y x 的距离最大,这里M 点是直线10=+y x和8.11.03.0=+y x 的交点.解方程组⎩⎨⎧=+=+,8.11.03.0,10y x y x 得x =4,y=6 此时765.041=⨯+⨯=z (万元).07> ∴当x =4,y=6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.20.本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.满分12分.解:(I )当1,231==d a 时,n n n n n d n n na S n +=-+=-+=21212)1(232)1( 由22242)21(21,)(2k k k k S S k k +=+=得, 即 0)141(3=-k k 又4,0=≠k k 所以.(II )设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k=1,2,得 ⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或 当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立 若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a,)(239S s ≠故所得数列不符合题意. 当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时 若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列:①{a n } : a n =0,即0,0,0,…;②{a n } : a n =1,即1,1,1,…;③{a n } : a n =2n -1,即1,3,5,…,21.本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.满分12分.解:(I )设所求椭圆方程是).0(12222>>=+b a by a x 由已知,得 ,21,==a c m c 所以m b m a 3,2==. (1) (2)故所求的椭圆方程是1342222=+m y m x(II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+= 当),,0(),0,(,2km M m F -=由于由定比分点坐标公式,得 ,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m km m Q km km y m m x Q Q 解得所以在椭圆上又点 km km y m m x Q Q -=-=-=--⨯-+=-=21,221)()2(0,2时当. 于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 22.本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分.证明:(I )任取则由,,,2121x x R x x ≠⊂ )]()()[()(2121221x f x f x x x x --≤-λ和|||)()(|2121x x x f x f -≤- ② 可知 22121212121221|||)()(|||)]()()[()(x x x f x f x x x f x f x x x x -≤-⋅-≤--≤-λ,从而 1≤λ. 假设有则由使得,0)(,000=≠b f a b ①式知 .0)]()()[()(00000200矛盾=--≤-<b f a f b a b a λ∴不存在.0)(,000=≠b f a b 使得 (II )由)(a f a b λ-= ③可知 220202020)]([)()(2)()]([)(a f a f a a a a a f a a a b λλλ+---=--=- ④ 由和0)(0=a f ①式,得20000)()]()()[()()(a a a f a f a a a f a a -≥--=-λ ⑤由0)(0=a f 和②式知,20202)()]()([)]([a a a f a f a f -≤-= ⑥ 由⑤、⑥代入④式,得 2022022020)()(2)()(a a a a a a a b -+---≤-λλ202))(1(a a --=λ (III )由③式可知22)]()()([)]([a f a f b f b f +-= 22)]([)]()()[(2)]()([a f a f b f a f a f b f +-+-= 22)]([)]()([2)(a f a f b f ab a b +--⋅--≤λ (用②式)222)]([)]()()[(2)]([a f a f b f a b a f +---=λλ 2222)]([)(2)([a f a b a f +-⋅⋅-≤λλλ (用①式)2222222)]()[1()]([)]([2)]([a f a f a f a f λλλ-=+-=。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2004年江西公务员申论考试真题及答案一、注意事项1.申论考试是对分析驾驭材料的能力、解决问题能力、语言表达能力的测试。
2.作答参考时限:阅读材料40分钟,作答110分钟。
3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。
二、给定材料1.今年2月,南昌市一名15岁的初中生因迷恋电脑游戏而离家出走,竟然连续24小时不到学校上课,也你回家,整天泡在游戏机室。
这些电脑游戏室24小时经营。
提供“吃住玩一条龙”服务。
2.山东德州一位16岁的少年玩遍当地游戏机室仍觉不过瘾,竟从家中偷了4000元,先后赴津入沪“上档次”,周游了两个月。
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( I A)∪B=IB .( I A)∪( I B)=IC .A ∩( I B)=φD .( I A)∪( I B)= I B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式|x+2|≥|x|的解集是 .14.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P 的轨迹方程为.15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项a n=112nn=⎧⎨≥⎩16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是.①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且 a 2k =a 2k -1+(-1)K ,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x aa x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年江西公务员行测考试真题及答案第一部分言语理解与表达(共30题,参考时限30分钟)每道题包含一段话或一个句子,后面是一个不完整的陈述,要求你从四个选项中选出一个来完成陈述。
注意:答案可能是完成对所给文字主要意思的提要,也可能是满足陈述中其他方面的要求,你的选择应与所提要求最相符合。
请开始答题:(1-30题)1、影响明年中国市场价格波动的因素依然较多,其中包括粮食价格下行压力增大;原油价格上涨将带动其他产品价格上扬,进而增加企业生产成本;贸易摩擦增多,出口难度加大,对国内市场价格造成一定压力等。
明年将在石油价格、电价、水价、天然气价格、煤炭价格及土地价格等六大方面积极稳妥地推进价格改革.这段文字的中心意思是:A.影响明年中国市场价格波动的因素较多B.明年中国贸易摩擦将增多C.明年中国将积极稳妥地推进价格改革D.原油价格上涨将增加企业生产成本2、2006年房地产开发的收益分配格局将发生重大变化,开发商所拥有的超额利润将向政府,农民,拆迁户转移;出于防范金融风险考虑,银行对房地产贷款会更加谨慎;加之土地获得成本提高、难度加大以及市场销售下降,开发企业的收入增长速度和资金周转率将快速下降.这段文字主要想说明的是:A.房地产开发面临毛利率下降B.房地产开发收入增长将下降C.房地产开发商的资金周转率下降D.房地产开发的收益整体看谈3、每年约有4000至4500只雌性藏羚羊从西藏阿里地区北迁至西昆仑山地区产仔,主要集中在总面积为350平方公里的区域内。
藏羚羊聚集到如此偏远而贫瘠的地区生育后代,可能是因为这里天敌很少,其他大型有蹄类动物不多,而且直至几年前都没有人类活动,这样藏羚羊便能在一个比较安全且安睁的地区产仔。
这段文字意在说明:A.藏羚羊保护仍面临着重重困难B.藏羚羊产仔要北迁至西昆仑山地区C.藏羚羊的活动范围很大D.西昆仑山地区是藏羚羊的主要聚集地4、个人养老保险产品可以不提供净死亡风险保障。
如果提供,净死亡风险保额不超过保单现金价值的百分之十。
江西省南昌市2004年初中毕业暨中等学校招生考试物理试卷说明:1.本卷共有五大题、33小题,全卷满分90分,考试时间为110分钟。
2.考试中书写单位时,均要求用字母标注。
整卷达三次以上未用字母标准注的,最多可扣1分。
一、选择题(共20分,每小题2分,每题只有一个正确答案,把你认为正确答案的序号填在题后的括号内,不选或错选得零分)1.在物理学中,牛顿第一运动定律是用什么方法获得的()A.单纯的实验方法B.单纯的推测方法C.数学推导的方法D.实验加推测的方法2.如图1所示的各事例中,为了增大压强的是()3.2003年10月16日,“神舟五号”载人飞船成功返航,实现了中国人几千年的“飞天”梦。
当飞船减速着陆时,“航天英雄”杨利伟的()A.动能增加,重力势能减少B.动能减少,重力势能减少C.动能减少,重力势能不变D.动能不变,重力势能减少4.19世纪末叶,汤姆逊发现了电子,将人们的视线引入到原子的内部。
由此,科学家们提出了多种关于原子结构模型。
通过学习,你认为原子结构与下列事物结构最接近的是()A.西红柿B.西瓜C.面包D.太阳系5.下列电器中,利用磁场对电流作用原理来工作的是()A.电风扇B.电热毯C.白炽灯D.电饭煲6.在晴朗的冬日,用塑料梳子梳干燥的头发,头发会越梳越蓬松,其主要原因是()A.梳头时,空气进入头发B.头发和梳子摩擦后,头发带同种电荷相互排斥C.梳子对头发有力的作用D.梳头时,头发的毛囊会收缩7.如图2所示,重为3N的赣南脐橙,从树上落下的过程中,受到重力和空气阻力的作用。
关于脐橙所受合力的大小和方向,以下说法中正确的是()A.大于3N,方向向上B.小于3N,方向向上C.大于3N,方向向下D.小于3N,方向向下8.电灯通过电线挂在天花板上,与电灯受到的重力相平衡的力是()A .电灯对电线的拉力B .电线对天花板的拉力C .电线对电灯的拉力D .天花板时电线的拉力9.如图3所示的电路,电源电压不变,闭合开关S 1、S 2,两灯都发光。
2004年江西省高校“专升本”英语统一考试(试题解析)Part I Listening Comprehension(20 points) Section A1.M: Would you like a copy of professor Smith's article?W: Thanks, if it's not too much trouble.Q: What does the woman imply?2.W: Did you visit the Television Tower when you had your vacation in Shanghai last summer? M: I couldn't make it last June. But I finally visited it two months later. I plan to visit it again sometime next year.Q: What do we learn about the man?3.M: Prof. Kennedy has been very busy this semester. As far as I know, he works until midnight every day.W: I wouldn't have troubled him so much if I had know he was so busy.Q: What do we learn from the conversation?4.W: If I were you, I would have accepted the job.M: I turned down the offer because it would mean frequent business trips away from my family. Q: Why didn't the man accept the job?5.M: How are you getting on with your essay, Mary? I'm having a real hard time with mine. W: After two sleepless nights, I'm finally through with it.Q: What do we learn from this conversation?6.W: Where did you say you found this bag?M: It was lying under a big tree between the park and the apartment building.Q: Where did the man find the bag?7.M: Wouldn't you get bored with the same routine year teaching the same things to children? W: I don't think it would be as boring as working in an office. Teaching is most stimulating. Q: What does the woman imply about office work?8.M: I was terribly embarrassed when some of the audience got up and left in the middle of the performance.W: Well, some people just can't seem to appreciate real-life drama.Q: What are they talking about?9.W: Oh, it's so cold. We haven't had such a severe winter for so long, have we?M: Yes, the forecast says it's going to get worse before it warms up.Q: What do we learn from the conversation?10.M: You were seen hanging about the store on the night when it was robbed, weren't you? W: Me? You must have made a mistake. I was at home that night.Q: What are they talking about?Section BPassage OneThere are three groups of English learners: beginners, intermediate learners, and learners of special English. Beginners need to learn the basics of English. Students who have reached anintermediate level benefit from learning general English skills. But what about student who want to learn specialist English for their work or professional life? Most students, who fit into this third group have a clear idea about what they want to learn. A bank clerk, for example, wants to use this specialist vocabulary and technical terms of finance. But for teachers, deciding how to teach specialist English is not always so easy. For a start, the variety is enormous. Every field from airline pilots to secretaries has its own vocabulary and technical terms. Teachers also need to have an up-to-date knowledge of that specialist language, and not many teachers are exposed to working environments outside the classroom. These issues have influenced the way specialist English is taught in schools. This type of course is usually known as English for Specific Purposes, or ESP and there isn't ESP courses for almost every area of professional and working life. In Britain, for example, there are courses which teach English for doctors, lawyers, reporters travel agents and people working in the hotel industry. By far, the most popular ESP courses are for business English.Questions 11 to 14 are based on the passage you have just heard.11. What is the characteristic of learners of special English?12. Who needs ESP courses most?13. What are the most popular ESP courses in Britain?14. What is the speaker mainly talking about?Passage TwoThe first step to stop drug abuse is knowing why people start to use drugs. The reasons people abuse drugs are as different as people are from one to another. But there seems to be one common thread: people seem to take drugs to change the way they feel. They want to feel better or feel happy or to feel nothing. Sometimes, they want to forget or to remember. People often feel better about themselves when they are under the influence of drugs. But the effects don't last long. Drugs don't solve problems. They just postpone them. No matter how far drugs may take you, it's always around trip. After a while, people who miss drugs may feel worse about themselves, and then they may use more drugs. If someone you know is using or abusing drugs, you can help. The most important part you can play is to be there. You can let your friends know that you care. You can listen and try to solve the problem behind your friend's need to use drugs. Two people together can often solve a problem that seems too big for one person alone. Studies of heavy abusers in the United States show that they felt unloved and unwanted. They didn't have close friends to talk to. When you or your friends take the time to care for each other, you're all helping to stop drugs abuse. After all, what is a friend for?Questions 15 to 17 are based on the passage you have just heard.15. Why do some people abuse drugs?16. According to the passage, what is the best way to stop friends from abusing drugs?17. What are the findings of the studies about heavy drug users?Passage ThreeBows and arrows, are one of man's oldest weapons. They gave early man an effective weapon to kill his enemies. The ordinary bow or short bow was used by early all early people. This bow bad limited power and short range. However, man overcame these faults by learning to track his targets at a close range. The long bow was most likely discovered when someone found out that a five-foot piece of wood made a better bow than a three-foot piece. Hundreds of thousands of these bows were made and used for three hundred years. However, not one is known to survive today.We believe that a force of about one hundred pounds was needs to pull the string all the way back on a long bow. For a long time the bow was just a bent stick and string. In fact, more changes have taken place in a bow in the past 25 years than in the last 7 centuries. Today, bow is forceful. It is as exact as a gun. In addition, it requires little strength to draw the string. Modern bows also have precise aiming devices. In indoor contests, perfect scores from 40 yard are common. The invention of the bows itself ranks with discovery of fire and the wheel. It was a great-step-forward for man.Questions 18 to 20 are based on the passage you have just heard.18. Why did man have to track his target at a close range when using a short bow?19. What does the passage tell us about the long bow?20. What do we know about modern bows?Part ⅡVocabulary and Structure(20 minutes)16. He used a lot of examples to make himself clearly ________.A) Known知道B) Accepted 接受C) understood 理解 D) acknowledged承认17. If women remain unequal to men, it is hardly possible for them to have ______ to natural.A) access 取得。
参考答案及详细解析1.A 【解析】奇数项+10,偶数项+20。
2.D 【解析】前项后项的差为公比为2 的等比数列:1,2,4,8,16…。
3.C 【解析】前后两项差为公比为3 的等比数列3,6,9,12,15…。
4.C 【解析】前后两项差为奇数数列5,7,9,11,13…。
5.A 【解析】组合数列。
奇数项为公差为4 的递增等差数列,偶数项为公差3的递减等差数列。
6.A 【解析】175×195+175×5-175×100=175×(195+5-100)=175×100=17500.7.C 【解析】0.0495×2500+49.5×2.4+51×4.95=49.5×2.5+49.5×2.4+49.5×5.1=49.5×(2.5+2.4+5.1)=49.5×10=495。
8.A 【解析】根据题意得:1一个二角五分可换5元,则四个二角五分可换4×5=20元。
9.B 【解析】非封闭线的两端都有“点”时,“点数”=“段数”+1。
第1棵树与第4棵树之间有三段,共长60米,故每段20米,第1棵树到最后一棵树之间有5段,得:5×20=100米。
10.B 【解析】这24个数最小是2457,最大是7542,不到4倍,所以这个倍数只能是2或3。
应试方法:用所给的4个答案分别除以2或3,看哪个符合题意就是哪个。
只有7425÷3=2475符合题意,所以选B。
11.A 【解析】设他们完成时间为T,得:3×4+3×T+5×T=44,解得:T=4,则马海削了4×5=20个马铃薯。
12.B 【解析】根据正方形的性质可得:阴影部分的面积占总面积的14。
13.B 【解析】设总人数为Y,车数为X,得方程:25X+5=Y,30×(X-1)=Y,解得:X=7,Y=180。