(完整版)2017成都市中考数学真题及答案解析,推荐文档
- 格式:pdf
- 大小:623.86 KB
- 文档页数:15
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.总投资647亿元的西域高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<15.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a67.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:9.已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1B.0C.1D.210.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(﹣1)0=.12.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 y2.(填“>”或“<”).14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.化简求值:÷(1﹣),其中x=﹣1.17.随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.如图,数轴上点A表示的实数是.22.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【考点】11:正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为正,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.3.总投资647亿元的西域高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:647亿=64700000000=6.47×1010,故选:C.4.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<1【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.7.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【考点】W5:众数;W4:中位数.【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:【考点】SC:位似变换.【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1B.0C.1D.2【考点】B2:分式方程的解.【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)10.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0D.abc>0,b2﹣4ac<0【考点】H4:二次函数图象与系数的关系.【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分)11.(﹣1)0=1.【考点】6E:零指数幂.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.12.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【考点】FF:两条直线相交或平行问题.【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由腾讯知,当x<2时,y2的图象在y1上右,∴y1>y2.故答案为:<.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【考点】CB:解一元一次不等式组;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.化简求值:÷(1﹣),其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.18.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【考点】MR:圆的综合题.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.四、填空题(本大题共5小题,每小题4分,共20分)21.如图,数轴上点A表示的实数是.【考点】29:实数与数轴.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:AO==,则数轴上点A表示的实数是:.故答案为:.22.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【考点】AB:根与系数的关系.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=10,∴(x1﹣x2)2=(x1+x2)2﹣2x1•x2=25﹣2a=100,∴a=,故答案为:.23.已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【考点】X5:几何概率.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.24.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.25.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;LE:正方形的性质.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1.5cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1.5cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.五、解答题(本大题共3小题,共30分)26.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【考点】HE:二次函数的应用.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BHF=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠ADE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BHF=30°,∴=cos30°,∴BF==3.28.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P (2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【解答】解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃个大小相同的小立方体组成,其俯视图43分)如图所示的几何体是由2.()是(.CD.A .B.(36473月竣工,届时成都到西安年11分)总投资647亿元的西成高铁预计20173.小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示只需)亿元为(11910810×D.C.6.47×10647A.×106.47 B.6.47×10)x的取值范围是(4.(3中,分)二次根式1<D.1xC.x≤1 1 B.x>A.x≥)3分)下列图标中,既是轴对称图形,又是中心对称图形的是(5.(..CAD.B.)分)下列计算正确的是(6.(3632632655107a)=a﹣D.=aB .a(﹣÷a=aC .aa?aaA.=+a的比”分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等7.(3则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分. . . .8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为():.2:3 D::9 B.25 C.A.4=2的解,那么实数k的值为(9.(3分)已知x=3﹣)是分式方程2.D0C.1A.﹣1 B.2+bx+y=axc的图象如图所示,10.(3分)在平面直角坐标系xOy中,二次函数下列说法正确的是()22﹣4acb>00 B.abc>0A.abc<0,b,﹣4ac>22﹣4ac<0abc>0,babc<0,b﹣4ac<0 D.C.二、填空题(本大题共4小题,每小题4分,共16分)0=..(4分)﹣(1)1112.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y=kx和一次函数y=kx+b的图象相交于点A(2,21121),当x<2时,y y.(填“>”或“<”).2114.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大 . . . .,若Q射线,交边CD于点于MN的长为半径作弧,两弧相交于点P;③作AP.,BC=3,则平行四边形ABCD周长为DQ=2QC分)54三、解答题(本大题共6小题,共2﹣;2sin45°+)1)计算:﹣|1|(﹣+(15.(12分).)解不等式组:(21,其中.x=÷(16.(6分)化简求值:1﹣﹣)分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生(817.调查结果垃圾分类知识的普及情况,随机调查了部分学生,会为了解节能减排、四类,并将调查结果绘制成下面两个”了解较少”“不了解了解分为“非常了解”“”“统计图.的人数”“不了解人,估计该校1200名学生中(1)本次调查的学生共有人;是两名女生,若从中随机抽取B两名男生,B,A非常了解“”的4人有A,(2)2211求恰好抽到一男一女的请利用画树状图或列表的方法,两人向全校做环保交流,概率.分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家(.818千米460°A地后,导航显示车辆应沿北偏西方向行驶C自驾到古镇游玩,到达恰好在,小明发现古镇C方向行驶一段距离到达古镇至B地,再沿北偏东45°C . . . .A地的正北方向,求B,C两地的距离.y=x的图象与10分)如图,在平面直角坐标系xOy中,已知正比例函数19.(y=的图象交于A(a,﹣2反比例函数),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.于点BCO,分别交AB=AC,以AB为直径作圆1220.(分)如图,在△ABC中,D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;的中点,求的值;A)若为EH(2(3)若EA=EF=1,求圆O的半径.分)分,共20小题,每小题四、填空题(本大题共54.表示的实数是(.4分)如图,数轴上点A21. . . .2的两个实数根,且a=05x的一元二次方程x+﹣.(4分)已知x,x是关于x222122.,则a=x﹣x =1021为,DA,BC,CD分)已知⊙O的两条直径AC,BD互相垂直,分别以AB23.(4记针尖直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,.,针尖落在⊙PO内的概率为P ,则=落在阴影区域内的概率为21,),yxOy中,对于不在坐标轴上的任意一点P(x24.(4分)在平面直角坐标系,它们,B+1上有两点A,直线P的“倒影点”y=﹣我们把点P′x(,)称为点.均在反比例函数y=的图象上.若AB=2,则k=的倒影点A′,B′的平ADC,把一张正方形纸片对折得到长方形ABCD,再沿∠.25(4分)如图1落A3所示方式折叠,使点落在点2,点CC′处,最后按图分线DE折叠,如图.cm 6cmA′处,折痕是FG,若原正方形纸片的边长为,则FG=DE在的中点分)303五、解答题(本大题共小题,共已成为很多市民出行的选”+单车8.(分)随着地铁和共享单车的发展,“地铁26中E,C,D,择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B(单x的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为的一次函数,其关系如(单位:分钟)是关于xy位:千米),乘坐地铁的时间1 . . . .(1)求y关于x的函数表达式;12﹣=xx的影响,其关系可以用y(2)李华骑单车的时间(单位:分钟)也受211x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.2+bx+c:Cy=ax与x轴相中,抛物线,在平面直角坐标系分)如图(28.101xOy . . . . AB=4,设点F(m,0)是x轴的正半轴B交于A,两点,顶点为D(0,4),上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是(). . . ..CDAB...【解答】解:从上边看一层三个小正方形,故选:C.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()891011106.47×DC.6.47×10A.647×106.47 B.×10.10,10亿=647 0000 0000=6.47×【解答】解:647故选:C.分)二次根式中,x的取值范围是(.(3)4B.x>1 C.x≤1 D.x<.Ax≥11【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是().CDA.B..【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.(3分)下列计算正确的是()551076326326a﹣= D.(﹣a+a=aB .a÷a=aC .a?a)=aaA.555,所以此选项错误;=2a+aa【解答】解:A.76,所以此选项正确;÷a=aB.a. . . .325,所以此选项错误;?aC.a=a326,所以此选项错误;).(﹣a=aD故选B.7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,2=),的面积比为:ABCD与四边形A′B′C′D′(∴四边形故选:A.9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()2C1 A.﹣B.0.1D.【解答】解:将x=3=2﹣,代入∴,解得:k=2. . . .故选(D)2+bx+中,二次函数y=axc的图象如图所示,10.(3分)在平面直角坐标系xOy下列说法正确的是()22﹣4ac>,b04ac>0 B.abc><A.abc0,b0﹣22﹣4acb<00 D<.abc>0C.abc<0,b,﹣4ac【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;﹣>0,即b轴右侧,则x=<0;抛物线的对称轴在y;0<抛物线交y轴于负半轴,则c,0∴abc>轴有两个不同的交点,x∵抛物线与2,∴△=b﹣4ac>0.故选B分)二、填空题(本大题共4小题,每小题4分,共160=11﹣)11.(4分)(.0=1【解答】解:)(﹣1..故答案为:1.(12.4分)在△ABC的度数为,则∠::34A40°:∠:∠中,∠ABC=2,4:::∠解:∵∠【解答】A:∠BC=23,∴设∠A=2x,∠B=3xC=4x,∠,∠+C=180°B+∵∠A∠,∴2x4x=180°++3x,x=20°解得:.的度数为:∴∠A40°. . . .故答案为:40°.13.(4分)如图,正比例函数y=kx和一次函数y=kx+b的图象相交于点A(2,21121),当x<2时,y<y.(填“>”或“<”).21【解答】解:由图象知,当x<2时,y的图象在y上右,12∴yy.21<故答案为:<.14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,DQ=QC=∴,=+,∴CD=DQ+CQ=3. . . . ×(+3)=15.=2(DC+AD)=2∴平行四边形ABCD周长故答案为:15.三、解答题(本大题共6小题,共54分)2﹣;(﹣+2sin45°+﹣15.(12分)(1)计算:1||).(2)解不等式组:×﹣(【解答】解:1)原式1=﹣+224+4+2+﹣=﹣1=3;)2,(①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.x=﹣,其中)11÷(16.(6.分)化简求值:﹣,?【解答】解:=﹣)=1÷(,∵x=1﹣==.∴原式17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.. . . .的人数是不了解”人,估计该校1200名学生中“(1)本次调查的学生共有50人;360两名女生,若从中随机抽取,BBA,A两名男生,2()“非常了解”的4人有2121求恰好抽到一男一女的两人向全校做环保交流,请利用画树状图或列表的方法,概率.,8%=50(人)1)4÷【解答】解:(;=360(人)﹣8%)1200×(1﹣40%﹣22%;360故答案为:50,个,8)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有(2.=∴P(恰好抽到一男一女的)=分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家8.(18千米方向行驶4游玩,到达A地后,导航显示车辆应沿北偏西60°自驾到古镇C 恰好在,小明发现古镇C45°方向行驶一段距离到达古镇C至B地,再沿北偏东两地的距离.C地的正北方向,求B,A.于点D⊥B作BDAC解:过【解答】,=2(千米)∠ABD中,AD=AB?cosBAD=4cos60°=4×△在Rt. . . .=2(千米)×,BD=AB?sin∠BAD=4∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,CD=BD=2(千米)∴,(千米)BC=.BD=2∴2C两地的距离是答:千米.B,y=x的图象与10分)如图,在平面直角坐标系xOy中,已知正比例函数19.(y=的图象交于A(a,﹣反比例函数2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.y=x,可得a=﹣4a)把A(,﹣2)代入,1【解答】解:(∴A(﹣4,﹣2),y=,可得k=8,﹣2)代入,(﹣把A4y=,∴反比例函数的表达式为∵点B与点A关于原点对称,. . . .∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,,m),),,则C(设P(mm∵△POC的面积为3,﹣|=3×,|m∴mm=2或2,解得)或(2P(,24,).∴20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;的中点,求EH的值;2)若A为((3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,. . . .∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,3x=,AC=∥∴ODAC,×OD=,OD∥AC∵,∠ODF∴∠E=中,和△ODF在△AEF,AFE,∠∠ODFOFD=∠∵∠E=,ODF∴△AEF∽△,∴,==∴=;∴(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,. . . . ∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,,∴==r解得:=(舍),,r12的半径为综上所述,⊙O.. . . .分)205小题,每小题4分,共四、填空题(本大题共.﹣421.(分)如图,数轴上点A1表示的实数是,=到A的距离为【解答】解:由图形可得:﹣1.﹣则数轴上点A表示的实数是:1.故答案为:﹣12的两个实数根,且5x+x的一元二次方程xa=0﹣是关于22.(4分)已知x,x2122.x=10,则xa=﹣21,?x=ax=5,x+【解答】解:由两根关系,得根x211222,=10x﹣x)=10得(x+x)(由x﹣x211221,﹣xx=2若x+x=5,即212122,﹣4a=4﹣4x?x=25x∴(﹣x)(=x+x)211212,a=∴故答案为:.为,DABC互相垂直,分别以AB,,CDBDO.23(4分)已知⊙的两条直径AC,记针尖直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,.=落在阴影区域内的概率为,针尖落在⊙PO内的概率为,则P21. . . .,的半径为1,则AD=【解答】解:设⊙O,=π故S O圆,π×2﹣+×阴影部分面积为:π=2,P=,P则=21.=故故答案为:.,,y)分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x24.(4,它们,Bx+1上有两点A“,)称为点P的倒影点”,直线y=P′我们把点﹣(.,则k=,的倒影点A′B′均在反比例函数y=的图象上.若﹣AB=2,A′(,则)(a<b)+1解:设点A(a,﹣a+),B(b,﹣b1【解答】),B′,(),,a)∵=AB==2=(b﹣.b=a+2a=2∴b﹣,即的图象上,A′∵点,B′均在反比例函数y=,∴.﹣解得:k=.故答案为:﹣的平,再沿∠ADC分)如图1,把一张正方形纸片对折得到长方形ABCD425.(落所示方式折叠,使点A处,最后按图,点2C落在点C′3折叠,如图分线DE . . . .FG=cm若原正方形纸片的边长为6cm,则.处,在DE的中点A′折痕是FG,【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,,∴=∴C′K=1cm,Rt△AC′K中,AK==cm,在,cm∴FG=AK=.故答案为五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y(单位:分钟)是关于x的一次函数,其关系如1 . . . .(1)求y关于x的函数表达式;12﹣=xx的影响,其关系可以用y(2)李华骑单车的时间(单位:分钟)也受211x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y=kx+b,将(8,18),(9,20),代入得:1,解得:,故y关于x的函数表达式为:y=2x+2;11(2)设李华从文化宫回到家所需的时间为y,则22﹣9x+80+78=x,y=y+y=2x+2+x﹣11x21∴当x=9时,y有最小值,y==39.5,min答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;. . . .②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,CD=AD+BD.②解:结论:理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,. . . . DH=AD?cos30°=ADADH中,,在Rt△,DE∵AD=AE,AH⊥,DH=HE∴.BDBD=AD+CD=DE∵+EC=2DH+拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,BF=.∴=32+bx+c:Cy=ax与x轴相中,抛物线,在平面直角坐标系分)如图(28.101xOy . . . . AB=4,设点F(m,4),0)是x轴的正半轴交于A,B两点,顶点为D(0,上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2,0A(﹣),设抛物线的,1)由题意抛物线的顶点C(04),【解答】解:(2,4+解析式为y=ax,(﹣﹣2,0)代入可得a=A把2+4﹣x∴抛物线C的函数表达式为y=.y=(的解析式为x4),设抛物线C′C′(2)由题意抛物线的顶点坐标为(2m,﹣2﹣4,﹣2m)22﹣8=02m,由,消去y得到x+﹣2mx由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,2<,,解得2<m则有2<.mm∴满足条件的的取值范围为2<. . . .(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),2+4y=上,﹣x∵点M在2或﹣﹣3(舍弃)4+,解得,m=﹣∴m﹣2=﹣(m+2)3﹣3∴时,四边形m=PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),22+4,解得﹣2)m=62﹣x+4中,﹣m=﹣(my=m22mM把(﹣,﹣)代入或0(舍弃),∴m=6时,四边形PMP′N是正方形.. . . . m=﹣3或能成为正方形,综上,四边形PMP′N6.. . . .。
2017年四川省成都市中考数学试卷 满分:150分 版本:湘教版A 卷 共100分一、选择题(每小题3分,共10小题,合计30分)1.(2017四川成都,3分)《九章算术》中注有“今 两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为 A . 零上3℃ B .零下 3℃ C .零上7℃ D .零下7℃ 答案:B ,解析:若气温为零上10℃记作+10℃,由相反意义的量的意义,则-3℃表示气温为零下 3℃ .2.(2017四川成都,3分)如图所示的几何体是由4个大小相同的小立方块搭成,其俯视图是A .B .C .D .答案:C ,解析:俯视图是对几何体从上向下看的正投影,故选C .3.(2017四川成都,3分)总预算647亿元的西成高速预计2017年11月竣工,届时成都到西安只需3小时.用科学计数法表示647亿为 A .664710⨯B .86.4710⨯C .106.4710⨯D .116.4710⨯答案:C ,解析:647亿=8821064710 6.471010 6.4710⨯=⨯⨯=⨯.4.(2017四川成都,3分)二次根式1x -中,x 的取值范围是 A .x ≥1 B .x >1 C .x ≤1 D .x <1 答案:A ,解析:由x -1≥0得.x ≥1.5.(2017四川成都,3分)下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D . 答案:D ,解析:A 是轴对称图形.故A 不合题意;B 是中心对称图形,故B 不合题意;C 是轴对称图形.故C 不合题意;D 既是轴对称图形又是中心对称图形,故D 符合题意.6.(2017四川成都,3分)下列计算正确的是 A .5510a a a += B .76a a a ÷=C .326a a a ⋅=D .326()a a -=-答案:B ,解析:A .5552a a a +=,故A 错误;B .76a a a ÷=正确;C .325a a a ⋅=,故C错误;D .326()a a -=,故D 错误.7.(2017四川成都,3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,得分(分)60 70 80 90 100 人数(人)7 12 10 8 3 A .70分,70分 B .80分,80分 C .70分,80分 D .80分,70分 答案:C ,解析:全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小排列后知,中间的数为第20个与第21个,这两个得分都是80分,故中位数是80分.8.(2017四川成都,3分)如图四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′=2∶3,则四边形ABCD 和A ′B ′C ′D ′的面积比为A .4∶9B .2∶5C .2∶3D .2:3 答案:A ,解析:由位似的性质得,ABCD 和A ′B ′C ′D ′的位似比为2∶3,所以四边形ABCD 和A ′B ′C ′D ′的面积比为4∶9 .9.(2017四川成都,3分)已知x =3是分式方程2121kx k x x--=-的解,那么实数K 的值为 A .-1B . 0C .1D .2答案:D ,解析:把x =3代入分式方程2121kx k x x --=-,得321223k k --=,解此一元一次方程,得k =2.10. (2017四川成都,3分)在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A .20,40abc b ac <-> B .20,40abc b ac >->C. 20,40abc b ac <-<D .20,40abc b ac >-<答案:B ,解析:由二次函数2y ax bx c =++的图象开口向上,则a >0,与y 轴交点在y 轴的负半轴上,由c <0,对称轴在y 轴的左侧,则2ba->0,所以b <0,所以0abc >;图象与x 轴有两点交点,则240b ac ->,综上,故选B .二、填空题:(每小题3分,共8小题,合计24分)11.(2017四川成都,3分)020171)= .答案:1,解析:020171)1=.12.(2017四川成都,3分)在△ABC 中,∠A :∠B :∠C =2∶3∶4,则∠A 的度数为 . 答案:40°,解析:设∠A ,∠B ,∠C 的度数分别是2x ,3x ,4x ,则有2x +3x +4x =180°,解得x =20°,所以∠A =2x =40°.13.(2017四川成都,3分)如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点A(2,1),当x <2时,1y2y .(填“>”或“<”)答案:<,解析:由图象得,点A 的横坐标为2,所以当x <2时,1y <2y .14.(2017四川成都,3分)如图,在□ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线AP 交边CD 于点Q .若DQ =2QC ,BC =3,则□ABCD 的周长为 .答案:10,解析:由作图知,AQ 是∠BAD 的角平分线.又∵□ABCD ,∴∠DQA =∠BAD ,∴DA =QD .∵DQ =2QC ,BC =3,∴DQ =3,QC =1,∴□ABCD 的周长为2(BC +CD )=2×5=10.三、解答题:本大题共6个小题,满分60分. 15.(本小题满分12分,每题6分) (1)(2017四川成都,6212182sin 45()2--+o221222432-⨯+=. (2)(2017四川成都,6分)解不等式组:273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩解:整理不等式组,得422x x -<⎧⎨-⎩≤,即41x x >-⎧⎨≤-⎩,所以-4<x ≤-1.16.(2017四川成都,6分)化简求值:212(1)211x x x x -÷-+++,其中31x =解:原式=2211111(1)1(1)11x x x x x x x x x ---+÷=⋅=+++-+, 将31x =33113==-+17.(2017四川成都,8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.解析:(1)由饼图可知“非常了解”为8%,由条形图可知“非常了解”为4人,故本次调查的学生有4508%=(人); 由扇形图可知:“不了解”的概率为18%22%40%30%---=,故1200名学生中“不了解”的人数为120030%360⨯=(人).(2)树状图: 由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==.18.(2017四川成都,8分)科技改变生活,手机导航极大地方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离.思路分析:由小明发现古镇C 恰好在A 地的正北方向,确定AC ∥BD ,通过已知∠CAB =60°,∠CBD =45°可得∠C =45°.通过作BE ⊥AC ,因为已知AB =4,所以先在Rt △AEB 中求得BE 的长,然后再在Rt △CEB 中求得BC 的长.解:由题意知:AB =4,∠CAB =60°,∠CBD =45°,AC ∥BD , 作BE ⊥AC ,∴∠CEB =90°,∠EBA =90°-∠CAB =30°,∠CBE =90°-∠CBD =45°,∴△CEB是等腰直角三角形.∴BE=cos304AB⋅︒==∴BC==千米),即,B,C两地的距离为千米.19.(2017四川成都,10分)如图,在平面直角坐标系xOy中,已知正比例函数12y x=与反比例函数kyx=的图象交于A(a,-2),B两点.(1)求反比例函数表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.思路分析:(1)由点A(a,-2)在正比例函数12y x=图象上可求得a的值,进而得出点A(-4,-2),再由点A(-4,-2)在在反比例函数kyx=的图象上,求得k值,进而求得反比例函数的表达式为8yx=;由A,B两点关于原点O中心对称,求得点B的坐标为(4,2).(2)设第一象限内反比例函数8yx=点P8(,)aa,根据PC∥y轴,点C在直线12y x=上,表示出PC的长度,利用已知的△POC的面积为3,求出点P的坐标.解:(1)∵点A(a,-2)在正比例函数12y x=图象上,∴122a-=,∴4a=-,∴点A(-4,-2).又∵点A(-4,-2)在反比例函数kyx=的图象上,∴4(2)8k xy==-⨯-=,∴反比例函数kyx=的表达式为8yx=.∵A,B既在正比例函数图象上,又在反比例函数图象上,∴A,B两点关于原点O中心对称,∴点B的坐标为(4,2).(2)如图,设第一象限内反比例函数8yx=点P8(,)aa,∵PC∥y轴,点C在直线12y x=上,∴点C的坐标为1(,)2a a,∴2181622aPC aa a-=-=,∴2211161632224POCa aS PC a aa∆--=⋅=⋅==,当21634a-=时,解得a==P为7;当21634a -=-时,解得2a =,∴点P 为(2,4). 综上,符合条件的点P 的坐标为47(27,)7,(2,4). 20.(2017四川成都,10分) 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EFFD的值;(3)若1EA EF ==,求e O 的半径.思路分析:(1)连接OD ,因为DH AC ⊥于点H ,只需证明//OD AC ,即可得到DH OD ⊥,得证,或者再连接AD ,利用直径所对的圆周角为直角,证明∠ODA +∠ADH =90°也可; (2)通过证明AEF ODF ∆∆∽,可得到,EF AEFD OD=再利用OD 是△ABC 的中位线,等腰△DEC 的性质,求出AE AC 的比值,进而求得EFFD的值; (3)由EA =EF ,OD ∥EC ,可得△ODF 和△BDF 都是等腰三角形,设O e 半径为r ,则DF =OD =r ,所以BF =BD =DC =DE =DF +EF =r +1,AF =AB -BF =2r -(r +1)=r -1.通过BFD EFA ∆∆∽,即可求出r .解:(1)连接OD ,∵OB OD =,∴OBD ∆是等腰三角形,OBD ODB ∠=∠ ①, 又 ∵AB AC =,∴ABC ACB ∠=∠ ②, ∴ODB OBD ACB ∠=∠=∠, ∴//OD AC ,∵DH AC ⊥,∴DH OD ⊥, ∴DH 是O e 的切线;(2)∵E B ∠=∠,E B C ∠=∠=∠,∴EDC ∆是等腰三角形,又∵DH AC ⊥,点A 是EH 中点,设,4AE x EC x ==,则3AC x =, 连接AD ,由090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点,∴OD 是ABC ∆中位线,∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE∠=∠⎧⎨∠=∠⎩, ∴AEF ODF ∆∆∽,∴2,332EF AE AE x FD OD OD x ===,∴23EF FD =. (3)设O e 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴DF OD r ==, ∴1DE DF EF r =+=+,∴1BD CD DE r ===+,∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形,∴1BF BD r ==+, ∴()2211AF AB BF OB BF r r r =-=-=-+=-,在BFD ∆与EFA ∆中BFD EFAB E∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆∽,∴11,1EF BF r FA DF r r+==-,解得121515,22r r +-==(舍) ∴综上,O e 的半径为15+.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分,答案写在答题卡上) 21. (2017四川成都,4分)如图,数轴上点A 表示的实数是________.512221=55-1OA +,.22.(2017四川成都,4分)已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________.答案:214a =,解析:由题意得,1212+=5=x x x x a ⋅,.∵2212121212()()10,2x x x x x x x x -=+-=∴-=.由22121212()()44x x x x x x -=+-=,即,221544,4a a -=∴=. 23.(2017四川成都,4分)已知O e 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O e 内的概率为2P ,则12P P =______________.答案:2π,解析:设O e 的半径为1,则O S π=e ,AO =1,AD 2. ∴21211=4[()()]22242S ππ⋅--=阴影,∴该图形的总面积为2π+. ∴112222,,22P P P P ππππ==∴=++. 24.(2017四川成都,4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫' ⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若22AB =k =____________.答案:43-,解析:∵A ,B 两点在直线1y x =-+上,设A (a ,-a +1),B (b ,-b +1),∴22222()(11)2()(22)AB a b a b a b =-+-++-=-=,∴2()4,2a b a b -=∴-=±.∴A ,B 两点的“倒影点”1111(,),(,)11A B a a b b''--.∵点,A B ''均在反比例函数k y x =的图像上,∴111111k a a b b⋅==⋅--,∴(1)(1)a a b b -=-,变形因式分解得()(1)0a b a b ---=,∵2a b -=±,∴10a b --=.由210a b a b -=⎧⎨--=⎩解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴1124(2)133k a a =⋅=⨯-=--;由210a b a b -=-⎧⎨--=⎩解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴1124(2)133k a a =⋅=-⨯=--.综上,43k =-.25.(2017四川成都,4分)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =______cm .答案:210,解析:∵原正方形纸片的边长为6,∴AD =6,AB =3,DC ′=CD =AB =3,∴DE =32在图3中,A ′是DE 的中点,折痕是FG ,∴FG 垂直平分AA ′垂足为P ,AF =A ′F .作A ′M ⊥AD ,垂足为M ,由A ′M =12AB =32,AM =3+32=92, ∴AA ′222239310()()222AM A M '+=+=,∴AP =131024AA '=.设AF =x ,则FC ′=3-x ,由222,FA MA MA ''=+即22233()(3)22x x =+-+,解得52x =.作GN ⊥AD ,垂足为N ,∴GF =AB =3, ∵1122AGF S AF GN GF AP ∆=⋅=⋅,即,151********⨯⨯=⨯,∴210GF =二、解答题(共3个小题 ,共30分)26.(2017四川成都,8分) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数, 地铁站 ABCDEx (千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 解:(1)设乘坐地铁的时间1y 关于x 的一次函数是1y kx b =+, 把x =8,118y =;x =10,122y =代入,得1882210k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩,∴1y 关于x 的函数表达式是122y x =+; (2)设骑单车的时间为y ,12y y y =+,即,22211179221178980(9)2222y x x x x x x =++-+=-+=-+, ∴当9x =时,79=2y 最小(分钟).∴李华选择从B 地铁口出站,骑单车回家的最短时间为792分钟.27.(2017四川成都,10分)问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC⊥于点D ,则D 为BC 的中点,01602BAD BAC ∠=∠=,于是23BC BD AB AB==;迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC DAE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆; ② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠BAC =120°,在∠BAC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .① 证明:CEF ∆是等边三角形; ②若5,2AE CE ==,求BF 的长.解:迁移应用:①证明:∵ABC ∆和ADE ∆都是等腰三角形,0120BAC DAE ∠=∠=, ∴AD =AE ,AB =AC ,∵∠DAB =∠DAE -∠BAE ,∠CAE =∠BAC -∠BAE ,∴∠DAB =∠CAE ,∴△ADB ≌△AEC ; ②BD 3=CD .拓展延伸:①证明:如答图所示,连接BE ,作BG ⊥AE ,∵点C 关于BM 的对称点E ,∴BM 垂直平分CE ,∴FE =FC ,BE =BC ,∴△CEF 和△BEC 都是等腰三角形,∴∠ABG =∠EBG ,∠EBF =∠CBF ,∴∠GBF =∠EBG +∠EBF =12∠ABC =60°, ∴∠GFB =30°,∴∠EFC =60°,∴△CEF 是等边三角形;②∵AE =5,,在等腰三角形ABE 中,GF =GA =52. ∵EF =2,∴GF =GE +EF =9,2在直角三角形GBF 中,∵∠GFB =30°,∴FG =3BG =,∴BF =2333⨯=. 28.(2017四川成都,12分)如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点为P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.解:(1)∵抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB = ∴抛物线C 的对称轴是y 轴,A (2,0),(22,0),B -设抛物线C 的解析式为(2)(22)y a x x =+-,即,28y ax a =-,∴84a -=,∴12a =-,抛物线C 的解析式为2142y x =-+; (2)如图,∵点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ',∴(2,4)D m '-,∴设抛物线C '的解析式为21(2)42y x m =--. 令抛物线C '过点D (0,4),有214442m =⋅-,∴24m =,∴2m =(舍去负值); 由221(2)42142y x m y x ⎧=--⎪⎪⎨⎪=-+⎪⎩,有22114(2)422x x m -+=--,即222280x mx m -+-=, 当抛物线C '与抛物线C 有唯一交点时,有2222444(28)4320b ac m m m ∆=-=--=-+=,∴m =(舍去负值).∴m 的取值范围是2<m<(3)∵P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,∴点P 在y =x 上,由2142x x =-+,解得122,4x x ==-(不合题意,舍去), ∴点P 的坐标为(2,2).∵抛物线C '的解析式为21(2)42y x m =--,F (m ,0),由对称性可知,四边形PMP ′N 能成为正方形,即△PMF 为以F 为顶点的等腰直角三角形.①若0<m ≤2时,如图2①,过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM ,∴KF =LM =2,KP =FL =2-m ,∴M (m +2,m -2), 代入2142y x =-+中,得2680m m +-=,解得,1233m m =-=-(不合题意,舍去).②若m >2,如图2②过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM , ∴KP =FL =2-m ,∴M (m -2,2-m ), 代入2142y x =-+中,得260m m -=,解得,126,0m m ==(不合题意,舍去).综上,m 的值为3- 6.。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西域高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x <2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM 的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)【考点】11:正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)【考点】W5:众数;W4:中位数.【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)【考点】SC:位似变换.【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)【考点】B2:分式方程的解.【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)【考点】H4:二次函数图象与系数的关系.【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)【考点】6E:零指数幂.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)【考点】FF:两条直线相交或平行问题.【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1>y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)【考点】CB:解一元一次不等式组;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)【考点】MR:圆的综合题.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD 是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)【考点】29:实数与数轴.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)【考点】AB:根与系数的关系.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)【考点】X5:几何概率.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S圆O=π,阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)【考点】PB:翻折变换(折叠问题);LB:矩形的性质;LE:正方形的性质.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)【考点】HE:二次函数的应用.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.28.(10分)【考点】HF:二次函数综合题.【分析】(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P (2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【解答】解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.【点评】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【解答】解:从上边看一层三个小正方形,故选:C.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.4.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=1.【解答】解:(﹣1)0=1.故答案为:1.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:÷(1﹣),其中x=﹣1.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是﹣1.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x ﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.。
Fpg成都市2017年中考數學試題一、選擇題(本大題共10小題,每小題3分,共30分)1.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如圖所示の幾何體是由4個大小相同の小立方體組成,其俯視圖是()A.B.C.D.3.總投資647億元の西域高鐵預計2017年11月竣工,屆時成都到西安只需3小時,上午遊武侯區,晚上看大雁塔將成為現實,用科學記數法表示647億元為()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.二次根式中,xの取值範圍是()A.x≥1 B.x>1 C.x≤1 D.x<15.下列圖示中,既是軸對稱圖形,又是中心對稱圖形の是()A.B.C.D.6.下列計算正確の是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.學習全等三角形時,數學興趣小組設計並組織了“生活中の全等”の比賽,全班同學の比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分の眾數和中位數分別為()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.如圖,四邊形ABCD和A′B′C′D′是以點O為位似中心の位似圖形,若OA:OA′=2:3,則四邊形ABCD與四邊形A′B′C′D′の面積比為()A.4:9 B.2:5 C.2:3 D.:9.已知x=3是分式方程﹣=2の解,那麼實數kの值為()A.﹣1 B.0 C.1 D.210.在平面直角坐標系xOy中,二次函數y=ax2+bx+cの圖象如圖所示,下列說法正確の是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空題(本大題共4小題,每小題4分,共16分)11.(﹣1)0=.12.在△ABC中,∠A:∠B:∠C=2:3:4,則∠Aの度數為.13.如圖,正比例函數y1=k1x和一次函數y2=k2x+bの圖象相交於點A(2,1),當x<2時,y1y2.(填“>”或“<”).14.如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD於點M,N;②分別以M,N為圓心,以大於MNの長為半徑作弧,兩弧相交於點P;③作AP 射線,交邊CD於點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為.三、解答題(本大題共6小題,共54分)15.(12分)(1)計算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式組:.Fpg 16.(6分)化簡求值:÷(1﹣),其中x=﹣1.17.(8分)隨著經濟の快速發展,環境問題越來越受到人們の關注,某校學生會為了解節能減排、垃圾分類知識の普及情況,隨機調查了部分學生,調查結果分為“非常瞭解”“瞭解”“瞭解較少”“不了解”四類,並將檢查結果繪製成下麵兩個統計圖.(1)本次調查の學生共有人,估計該校1200名學生中“不了解”の人數是人;(2)“非常瞭解”の4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表の方法,求恰好抽到一男一女の概率.18.(8分)科技改變生活,手機導航極大方便了人們の出行,如圖,小明一家自駕到古鎮C遊玩,到達A地後,導航顯示車輛應沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C,小明發現古鎮C恰好在A地の正北方向,求B,C兩地の距離.19.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數y=xの圖象與反比例函數y=の圖象交於A(a,﹣2),B兩點.(1)求反比例函數の運算式和點Bの座標;(2)P是第一象限內反比例函數圖象上一點,過點P作y軸の平行線,交直線AB於點C,連接PO,若△POCの面積為3,求點Pの座標.Fpg20.(12分)如圖,在△ABC 中,AB=AC ,以AB 為直徑作圓O ,分別交BC 於點D ,交CA の延長線於點E ,過點D 作DH ⊥AC 於點H ,連接DE 交線段OA 於點F .(1)求證:DH 是圓O の切線;(2)若A 為EH の中點,求の值;(3)若EA=EF=1,求圓O の半徑.四、填空題(本大題共5小題,每小題4分,共20分)21.如圖,數軸上點A表示の實數是.22.已知x 1,x 2是關於x の一元二次方程x 2﹣5x +a=0の兩個實數根,且x 12﹣x 22=10,則a= . 23.已知⊙O の兩條直徑AC ,BD 互相垂直,分別以AB ,BC ,CD ,DA 為直徑向外作半圓得到如圖所示の圖形,現隨機地向該圖形內擲一枚小針,記針尖落在陰影區域內の概率為P 1,針尖落在⊙O 內の概率為P 2,則= .24.在平面直角坐標系xOy 中,對於不在坐標軸上の任意一點P (x ,y ),我們把點P′(,)稱為點P の“倒影點”,直線y=﹣x +1上有兩點A ,B ,它們の倒影點A′,B′均在反比例函數y=の圖象上.若AB=2,則k= .25.如圖1,把一張正方形紙片對折得到長方形ABCD ,再沿∠ADC の平分線DE 折疊,如圖2,點C 落在點C′處,最後按圖3所示方式折疊,使點A 落在DE の中點A′處,折痕是FG ,若原正方形紙片の邊長為6cm ,則FG= cm .五、解答題(本大題共3小題,共30分)26.(8分)隨著地鐵和共用單車の發展,“地鐵+單車”已成為很多市民出行の選擇,李華從文化宮站出發,先乘坐地鐵,準備在離家較近のA ,B ,C ,D ,E 中の某一站出地鐵,再騎共用單車回家,設他出地鐵の站點與文化宮距離為x (單位:千米),乘坐地鐵の時間y 1(單位:分鐘)是關於x の一次函數,其關係如下表: 地鐵站A B C D E x (千米) 8 9 10 11.5 13 y 1(分鐘)1820222528(1)求y 1關於x の函數運算式;(2)李華騎單車の時間(單位:分鐘)也受x の影響,其關係可以用y 2=x 2﹣11x +78來描述,請問:李華應選擇在那一站出地鐵,才能使他從文化宮回到家所需の時間最短?並求出最短時間.Fpg27.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC於點D,則D為BCの中點,∠BAD=∠BAC=60°,於是==;遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.①求證:△ADB≌△AEC;②請直接寫出線段AD,BD,CD之間の等量關係式;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關於BMの對稱點E,連接AE並延長交BM於點F,連接CE,CF.①證明△CEF是等邊三角形;②若AE=5,CE=2,求BFの長.28.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交於A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸の正半軸上一點,將拋物線C繞點F旋轉180°,得到新の拋物線C′.(1)求拋物線Cの函數運算式;(2)若拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,求mの取值範圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸の距離相等,點P在拋物線C′上の對應點P′,設M是C上の動點,N是C′上の動點,試探究四邊形PMP′N能否成為正方形?若能,求出m の值;若不能,請說明理由.Fpg2017年成都中考數學參考答案與試題解析1.B.2.C.3.C.4.A5.D.6.B.7.C.8.A.9.D10.B.二、11.1.12.40°.13.<.14.15.三、15.解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化簡為2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化簡為2x≤1﹣3,則x≤﹣1.不等式の解集是﹣4<x≤﹣1.16.解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案為:50,360;(2)畫樹狀圖,共有12根可能の結果,恰好抽到一男一女の結果有8個,∴P(恰好抽到一男一女の)==.18.解:過B作BD⊥AC於點D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C兩地の距離是2千米.19.解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函數の運算式為y=,∵點B與點A關於原點對稱,∴B(4,2);(2)如圖所示,過P作PE⊥x軸於E,交AB於C,設P(m,),則C(m,m),∵△POCの面積為3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.證明:(1)連接OD,如圖1,∵OB=OD,∴△ODB是等腰三角形,Fpg∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圓Oの切線;(2)如圖2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且點A是EH中點,設AE=x,EC=4x,則AC=3x,連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BCの中點,∴OD是△ABCの中位線,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如圖2,設⊙Oの半徑為r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,則∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),綜上所述,⊙Oの半徑為.Fpg四、21..22..23..24.解:設點A(a,﹣a+1),B(b,﹣b+1)(a<b),則A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵點A′,B′均在反比例函數y=の圖象上,∴,解得:k=﹣.故答案為:﹣.25.解:作GM⊥AC′於M,A′N⊥AD於N,AA′交EC′於K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1.5cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案為.五、26.解:(1)設y1=kx+b,將(8,18),(9,20),代入得:,解得:,故y1關於xの函數運算式為:y1=2x+2;(2)設李華從文化宮回到家所需の時間為y,則y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴當x=9時,y有最小值,y min==39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需の時間最短,最短時間為39.5分鐘.27.遷移應用:①證明:如圖②∵∠BAC=∠ADE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:結論:CD=AD+BD.理由:如圖2﹣1中,作AH⊥CD於H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,Fpg∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①證明:如圖3中,作BH⊥AE於H,連接BE.∵四邊形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等邊三角形,∴BA=BD=BC,∵E、C關於BM對稱,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四點共圓,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等邊三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BHF=30°,∴=cos30°,∴BF==3.28.解:(1)由題意拋物線の頂點C(0,4),A(2,0),設拋物線の解析式為y=ax2+4,把A(2,0)代入可得a=﹣,∴拋物線Cの函數運算式為y=﹣x2+4.(2)由題意拋物線C′の頂點座標為(2m,﹣4),設拋物線C′の解析式為y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由題意,拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,則有,解得2<m<2,∴滿足條件のmの取值範圍為2<m<2.(3)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸於E,MH⊥x軸於H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(捨棄),∴m=﹣3時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),Fpg把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(捨棄),∴m=6時,四邊形PMP′N是正方形.。
2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
Fpg成都市2017年中考數學試題一、選擇題(本大題共10小題,每小題3分,共30分)1.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如圖所示の幾何體是由4個大小相同の小立方體組成,其俯視圖是()A.B.C.D.3.總投資647億元の西域高鐵預計2017年11月竣工,屆時成都到西安只需3小時,上午遊武侯區,晚上看大雁塔將成為現實,用科學記數法表示647億元為()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.二次根式中,xの取值範圍是()A.x≥1 B.x>1 C.x≤1 D.x<15.下列圖示中,既是軸對稱圖形,又是中心對稱圖形の是()A.B.C.D.6.下列計算正確の是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.學習全等三角形時,數學興趣小組設計並組織了“生活中の全等”の比賽,全班同學の比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分の眾數和中位數分別為()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.如圖,四邊形ABCD和A′B′C′D′是以點O為位似中心の位似圖形,若OA:OA′=2:3,則四邊形ABCD與四邊形A′B′C′D′の面積比為()A.4:9 B.2:5 C.2:3 D.:9.已知x=3是分式方程﹣=2の解,那麼實數kの值為()A.﹣1 B.0 C.1 D.210.在平面直角坐標系xOy中,二次函數y=ax2+bx+cの圖象如圖所示,下列說法正確の是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空題(本大題共4小題,每小題4分,共16分)11.(﹣1)0=.12.在△ABC中,∠A:∠B:∠C=2:3:4,則∠Aの度數為.13.如圖,正比例函數y1=k1x和一次函數y2=k2x+bの圖象相交於點A(2,1),當x<2時,y1y2.(填“>”或“<”).14.如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD於點M,N;②分別以M,N為圓心,以大於MNの長為半徑作弧,兩弧相交於點P;③作AP 射線,交邊CD於點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為.三、解答題(本大題共6小題,共54分)15.(12分)(1)計算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式組:.Fpg 16.(6分)化簡求值:÷(1﹣),其中x=﹣1.17.(8分)隨著經濟の快速發展,環境問題越來越受到人們の關注,某校學生會為了解節能減排、垃圾分類知識の普及情況,隨機調查了部分學生,調查結果分為“非常瞭解”“瞭解”“瞭解較少”“不了解”四類,並將檢查結果繪製成下麵兩個統計圖.(1)本次調查の學生共有人,估計該校1200名學生中“不了解”の人數是人;(2)“非常瞭解”の4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表の方法,求恰好抽到一男一女の概率.18.(8分)科技改變生活,手機導航極大方便了人們の出行,如圖,小明一家自駕到古鎮C遊玩,到達A地後,導航顯示車輛應沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C,小明發現古鎮C恰好在A地の正北方向,求B,C兩地の距離.19.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數y=xの圖象與反比例函數y=の圖象交於A(a,﹣2),B兩點.(1)求反比例函數の運算式和點Bの座標;(2)P是第一象限內反比例函數圖象上一點,過點P作y軸の平行線,交直線AB於點C,連接PO,若△POCの面積為3,求點Pの座標.Fpg20.(12分)如圖,在△ABC 中,AB=AC ,以AB 為直徑作圓O ,分別交BC 於點D ,交CA の延長線於點E ,過點D 作DH ⊥AC 於點H ,連接DE 交線段OA 於點F .(1)求證:DH 是圓O の切線;(2)若A 為EH の中點,求の值;(3)若EA=EF=1,求圓O の半徑.四、填空題(本大題共5小題,每小題4分,共20分)21.如圖,數軸上點A表示の實數是.22.已知x 1,x 2是關於x の一元二次方程x 2﹣5x +a=0の兩個實數根,且x 12﹣x 22=10,則a= . 23.已知⊙O の兩條直徑AC ,BD 互相垂直,分別以AB ,BC ,CD ,DA 為直徑向外作半圓得到如圖所示の圖形,現隨機地向該圖形內擲一枚小針,記針尖落在陰影區域內の概率為P 1,針尖落在⊙O 內の概率為P 2,則= .24.在平面直角坐標系xOy 中,對於不在坐標軸上の任意一點P (x ,y ),我們把點P′(,)稱為點P の“倒影點”,直線y=﹣x +1上有兩點A ,B ,它們の倒影點A′,B′均在反比例函數y=の圖象上.若AB=2,則k= .25.如圖1,把一張正方形紙片對折得到長方形ABCD ,再沿∠ADC の平分線DE 折疊,如圖2,點C 落在點C′處,最後按圖3所示方式折疊,使點A 落在DE の中點A′處,折痕是FG ,若原正方形紙片の邊長為6cm ,則FG= cm .五、解答題(本大題共3小題,共30分)26.(8分)隨著地鐵和共用單車の發展,“地鐵+單車”已成為很多市民出行の選擇,李華從文化宮站出發,先乘坐地鐵,準備在離家較近のA ,B ,C ,D ,E 中の某一站出地鐵,再騎共用單車回家,設他出地鐵の站點與文化宮距離為x (單位:千米),乘坐地鐵の時間y 1(單位:分鐘)是關於x の一次函數,其關係如下表: 地鐵站A B C D E x (千米) 8 9 10 11.5 13 y 1(分鐘)1820222528(1)求y 1關於x の函數運算式;(2)李華騎單車の時間(單位:分鐘)也受x の影響,其關係可以用y 2=x 2﹣11x +78來描述,請問:李華應選擇在那一站出地鐵,才能使他從文化宮回到家所需の時間最短?並求出最短時間.Fpg27.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC於點D,則D為BCの中點,∠BAD=∠BAC=60°,於是==;遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.①求證:△ADB≌△AEC;②請直接寫出線段AD,BD,CD之間の等量關係式;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關於BMの對稱點E,連接AE並延長交BM於點F,連接CE,CF.①證明△CEF是等邊三角形;②若AE=5,CE=2,求BFの長.28.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交於A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸の正半軸上一點,將拋物線C繞點F旋轉180°,得到新の拋物線C′.(1)求拋物線Cの函數運算式;(2)若拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,求mの取值範圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸の距離相等,點P在拋物線C′上の對應點P′,設M是C上の動點,N是C′上の動點,試探究四邊形PMP′N能否成為正方形?若能,求出m の值;若不能,請說明理由.Fpg2017年成都中考數學參考答案與試題解析1.B.2.C.3.C.4.A5.D.6.B.7.C.8.A.9.D10.B.二、11.1.12.40°.13.<.14.15.三、15.解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化簡為2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化簡為2x≤1﹣3,則x≤﹣1.不等式の解集是﹣4<x≤﹣1.16.解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案為:50,360;(2)畫樹狀圖,共有12根可能の結果,恰好抽到一男一女の結果有8個,∴P(恰好抽到一男一女の)==.18.解:過B作BD⊥AC於點D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C兩地の距離是2千米.19.解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函數の運算式為y=,∵點B與點A關於原點對稱,∴B(4,2);(2)如圖所示,過P作PE⊥x軸於E,交AB於C,設P(m,),則C(m,m),∵△POCの面積為3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.證明:(1)連接OD,如圖1,∵OB=OD,∴△ODB是等腰三角形,Fpg∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圓Oの切線;(2)如圖2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且點A是EH中點,設AE=x,EC=4x,則AC=3x,連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BCの中點,∴OD是△ABCの中位線,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如圖2,設⊙Oの半徑為r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,則∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),綜上所述,⊙Oの半徑為.Fpg四、21..22..23..24.解:設點A(a,﹣a+1),B(b,﹣b+1)(a<b),則A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵點A′,B′均在反比例函數y=の圖象上,∴,解得:k=﹣.故答案為:﹣.25.解:作GM⊥AC′於M,A′N⊥AD於N,AA′交EC′於K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1.5cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案為.五、26.解:(1)設y1=kx+b,將(8,18),(9,20),代入得:,解得:,故y1關於xの函數運算式為:y1=2x+2;(2)設李華從文化宮回到家所需の時間為y,則y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴當x=9時,y有最小值,y min==39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需の時間最短,最短時間為39.5分鐘.27.遷移應用:①證明:如圖②∵∠BAC=∠ADE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:結論:CD=AD+BD.理由:如圖2﹣1中,作AH⊥CD於H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,Fpg∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①證明:如圖3中,作BH⊥AE於H,連接BE.∵四邊形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等邊三角形,∴BA=BD=BC,∵E、C關於BM對稱,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四點共圓,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等邊三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BHF=30°,∴=cos30°,∴BF==3.28.解:(1)由題意拋物線の頂點C(0,4),A(2,0),設拋物線の解析式為y=ax2+4,把A(2,0)代入可得a=﹣,∴拋物線Cの函數運算式為y=﹣x2+4.(2)由題意拋物線C′の頂點座標為(2m,﹣4),設拋物線C′の解析式為y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由題意,拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,則有,解得2<m<2,∴滿足條件のmの取值範圍為2<m<2.(3)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸於E,MH⊥x軸於H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(捨棄),∴m=﹣3時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),Fpg把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(捨棄),∴m=6時,四邊形PMP′N是正方形.。
保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上) 1、计算2(1)⨯-的结果是( ) A 、12-B 、2-C 、1D 、22、若∠α的余角是30°,则cos α的值是( )A 、12B 、 32C 、22D 、33 3、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限 7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃A B C D9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( ) A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1B 、2C 、4D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A 、1011升 B 、19升C 、110升 D 、111升 二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上) 13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论:16题图 17题图 18题图①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2AC AD = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据2≈1.413 1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 33π,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34. (1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100%⨯利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,2,求EB 的长.25、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A CCBDBACBCD二、填空题 13. 201114. 315. (3)(3)a a a +- 16. 144°17. 23- 18. ①③④三、解答题19. 解:原式=2-1-3+2, =0.故答案为:0.20. 解:∵一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2, ∴x 1+x 2=4,x 1•x 2=1, ∴(x 1+x 2)2÷( )=42÷=42÷4 =4.21. 解:在Rt △CEB 中, sin60°=,∴CE=BC•sin60°=10×≈8.65m ,∴CD=CE+ED=8.65+1.55=10.2≈10m , 答:风筝离地面的高度为10m .22. (1)证明:连OC ,如图, ∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r , ∴∠A=30°,∠AOC=60°,AC= r , ∴∠AOB=120°,AB=2 r , ∴S 阴影部分=S △OAB -S 扇形ODE = •OC•AB - =- ,∴ •r•2r- r 2=- ,∴r=1,即⊙O 的半径r 为1. 23. 解:(1)3÷ -3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM= -m,EF= = ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+ = +(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).。