八年级数学下册 一次函数的图象与性质教案
- 格式:doc
- 大小:1.09 MB
- 文档页数:3
八年级下册数学教案《一次函数的图象与性质》学情分析1、本节课包括两个重点:一次函数的图象画法和一次函数图象性质。
2、一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面学习二次函数、反比例函数都打下了基础。
同时,在整个初中阶段,一元一次方程,一元一次不等式都存在于相应的一次函数中,三者相互依存,紧密联系,也为方程、不等式、函数的解法的互相转化补充提供了新的途径。
而二元一次方程与直线,二元一次方程组的解与相应两直线交点坐标的等价关系也使学生更为深刻地理解数形结合的数学思想,所以整节课在教材中有着承上启下的重要地位。
教学目的1、理解直线y = kx+b 与直线y = kx之间的位置关系。
2、会选择两个合适的点,画出一次函数的图象。
3、根据图象和表达式y = kx+b,探索并理解k>0和k<0的图象的变化情况,掌握一次函数的性质。
教学重点一次函数的图象和性质。
教学难点一次函数的性质。
教学方法讲授法,演示法,谈话法,练习法教学过程一、复习回顾复习正比例函数的图象与性质。
y = kx(k≠0)过(0,0)(1,k)的直线。
k>0时,x,y同号,函数图象在一、三象限,y随x的增大而增大。
k<0时,x,y异号,函数图象在二、四象限,y随x的增大而减小。
二、探究一次函数图象的平移规律1、学生在同一坐标中画出下列函数图象。
(1)y = x-1y = xy = x+1(2)y = 2x-1y = -2xy = -2x+12、学生从以下3个角度观察上述函数。
①解析式②表格③图象思考:一次函数y = kx+b(k≠0)的图象是什么形状?它与直线y = kx (k≠0)有什么关系?归纳:一次函数y = kx+b(k≠0)的图象可以由直线y = kx平移|b|个单位长度得到(当b>0时,向上平移,当b<0时,向下平移)。
一次函数y = kx+b(k≠0)的图象也是一条直线,我们称它为直线kx+b。
3、师:由于一次函数的图象是直线,因此只要确定两个点,便可画出图象。
人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。
本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。
但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。
三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。
2.理解一次函数的性质,能够解释一次函数图象的变换。
3.能够运用一次函数解决实际问题,提高学生的数学应用能力。
四. 教学重难点1.一次函数的图象特征和性质的理解。
2.一次函数图象的实际应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。
六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。
2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。
3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。
七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。
3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。
4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。
5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。
19.1.2 一次函数的图象与性质一、教材分析《人教版八年级数学下册》第19章是关于一次函数的内容,本节课主要介绍了一次函数的图象与性质。
通过本节课的学习,学生将会掌握一次函数的图象特点以及对应的性质,培养学生对一次函数图象的观察和描述能力,同时提高学生解决实际问题的能力。
二、教学目标1.知识目标:–了解一次函数的定义和特点。
–掌握一次函数的图象特征。
–理解一次函数图象的斜率与函数的性质之间的关系。
2.能力目标:–能够绘制一次函数的图象。
–能够根据一次函数的图象确定相应函数的性质。
3.情感目标:–培养学生对数学的兴趣和学习的主动性。
–培养学生观察和分析问题的能力。
三、教学重点1.理解一次函数的图象特征。
2.掌握一次函数图象的斜率与函数性质的关系。
四、教学内容与步骤1. 一次函数的定义与特点(10分钟)•引入:通过一个例子引出一次函数的定义和特点。
小明去超市买东西,他购买的商品数量与总价之间存在一定的关系,我们用函数来表示这个关系。
假设每个商品的价格是5元,小明购买的商品数量用x表示,总价用y表示。
那么,这个关系可以表示为:y = 5x。
这就是一个一次函数。
•定义:一次函数(线性函数)是指函数的自变量和因变量之间存在一个一次关系的函数。
•特点:–一次函数的图象是一条直线。
–一次函数的定义域是所有实数。
–一次函数的值域也是所有实数。
2. 一次函数图象的斜率与函数性质的关系(15分钟)•引入:通过一个例子引出斜率与函数性质的关系。
小明用自行车从学校骑到家里,中间有一段上坡路和一段下坡路。
我们可以用一次函数来描述小明的行驶过程。
假设小明骑车的时间用x表示,距离用y表示。
上坡路的一次函数表示为y = 5x,下坡路的一次函数表示为y = -5x。
这两个一次函数的斜率分别为5和-5,你能猜出这两条路的特点吗?•斜率与函数性质的关系:–斜率为正数的一次函数,图象上的点由左下方向右上方倾斜,对应的函数表示一个增长函数。
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
一次函数的图象和性质数学教案
标题:一次函数的图象和性质
一、教学目标
1. 学生能够理解并掌握一次函数的基本概念。
2. 学生能够通过解析式画出一次函数的图像,并了解其性质。
3. 学生能够运用一次函数解决实际问题。
二、教学内容
1. 一次函数的定义
2. 一次函数的解析式与图像
3. 一次函数的性质
4. 一次函数的应用
三、教学过程
1. 引入新课:通过生活中的实例引入一次函数的概念,如商品的价格与销售量的关系等。
2. 新课讲解:
a) 一次函数的定义:形如y=kx+b(k≠0)的函数称为一次函数,其中k是斜率,b是截距。
b) 一次函数的解析式与图像:学生在教师的指导下,通过坐标系绘制一次函数的图像,并通过观察图像总结一次函数的性质。
c) 一次函数的性质:一次函数的图像是一条直线,直线的斜率决定了一次函数的增长速度,截距决定了函数图像与y轴的交点位置。
d) 一次函数的应用:结合具体例子,让学生学会用一次函数解决实际问题。
3. 练习巩固:设计一些题目,让学生进行练习,以检验他们对一次函数的理解程度。
4. 总结回顾:回顾本节课的主要内容,强调一次函数的定义、图像和性质。
四、作业布置
为学生布置一些一次函数的题目,让他们在课后继续深化理解和掌握一次函数的相关知识。
五、教学反思
对本次教学进行反思,包括教学方法是否有效,学生的学习效果如何等,以便于改进今后的教学。
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
第2课时 一次函数的图象与性质
1.会用两点法画出正比例函数和一次函数的图象,并能结合图象说出正比例函数和一次函数的性质;(重点)
2.能运用性质、图象及数形结合思想解决相关函数问题.(难点)
一、情境导入 做一做:在同一个平面直角坐标系中画出下列函数的图象.
(1)y =12x ; (2)y =1
2x +2;
(3)y =3x; (4)y =3x +2. 观察函数图象有什么形式? 二、合作探究
探究点一:一次函数的图象
【类型一】 一次函数图象的画法
在同一平面直角坐标中,作出下
列函数的图象.
(1)y =2x -1; (2)y =x +3; (3)y =-2x; (4)y =5x . 解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线即可.(1)一次函数y =2x -1图象过(1,1),(0,-1);(2)一次函数y =x +3的图象过(0,3),(-3,0);(3)正比例函数y =-2x 的图象过(1,-2),(0,0);(4)正比例函数y =5x 的图象过(0,0),(1,5).
解:如图所示.
方法总结:此题考查了一次函数的作
图,解题关键是找出两个满足条件的点,连
线即可.
【类型二】 判定一次函数图象的位置
已知正比例函数y =kx (k ≠0)的函
数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )
解析:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,∴k <0.∵一次函数y =x +k 的一次项系数大于0,常数项小于0,∴一次函数y =x +k 的图象经过第一、三、四象限,且与y 轴的负半轴相交.故选B.
方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)是一条直线.当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小.图象与y 轴的交点坐标为(0,b ).
探究点二:一次函数的性质
【类型一】 判断增减性和图象经过的象限等
对于函数y =-5x +1,下列结论:
①它的图象必经过点(-1,5);②它的图象经过第一、二、三象限;③当x >1时,y <
0;④y 的值随x 值的增大而增大.其中正确的个数是( )
A .0个
B .1个
C .2个
D .3个
解析:∵当x =-1时,y =-5×(-1)+1=6≠5,∴点(1,-5)不在一次函数的图象上,故①错误;∵k =-5<0,b =1>0,∴此函数的图象经过第一、二、四象限,故②错误;∵x =1时,y =-5×1+1=-4.又∵k =-5<0,∴y 随x 的增大而减小,∴当x >1时,y <-4,则y <0,故③正确,④错误.综上所述,正确的只有③.故选B.
方法总结:一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.
【类型二】 一次函数的图象与系数的关系
已知函数y =(2m -2)x +m +1, (1)当m 为何值时,图象过原点? (2)已知y 随x 增大而增大,求m 的取值范围;
(3)函数图象与y 轴交点在x 轴上方,求m 的取值范围;
(4)图象过第一、二、四象限,求m 的取值范围.
解析:(1)根据函数图象过原点可知,m +1=0,求出m 的值即可;(2)根据y 随x 增大而增大可知2m -2>0,求出m 的取值范围即可;(3)由于函数图象与y 轴交点在x 轴上方,故m +1>0,进而可得出m 的取值范围;(4)根据图象过第一、二、四象限列出关于m 的不等式组,求出m 的取值范围.
解:(1)∵函数图象过原点,∴m +1=0,即m =-1;
(2)∵y 随x 增大而增大,∴2m -2>0,解得m >1;
(3)∵函数图象与y 轴交点在x 轴上方,∴m +1>0,解得m >-1;
(4)∵图象过第一、二、四象限,
∴⎩⎪⎨⎪⎧2m -2<0,m +1>0,解得-1<m <1. 方法总结:一次函数y =kx +b (k ≠0)中,当k <0,b >0时,函数图象过第一、二、四象限.
探究点三:一次函数图象的平移
在平面直角坐标系中,将直线l 1:
y =-2x -2平移后,得到直线l 2:y =-2x +4,则下列平移作法正确的是( )
A .将l 1向右平移3个单位长度
B .将l 1向右平移6个单位长度
C .将l 1向上平移2个单位长度
D .将l 1向上平移4个单位长度 解析:∵将直线l 1:y =-2x -2平移后,得到直线l 2:y =-2x +4,∴-2(x +a )-2=-2x +4,解得a =-3,故将l 1向右平移3个单位长度.故选A.
方法总结:求直线平移后的解析式时要注意平移时k 的值不变,只有b 发生变化.解析式变化的规律是:左加右减,上加下减.
探究点四:一次函数的图象与性质的综合运用
一次函数y =-2x +4的图象如
图,图象与x 轴交于点A ,与y 轴交于点B .
(1)求A 、B 两点坐标;
(2)求图象与坐标轴所围成的三角形的面积.
解析:(1)x 轴上所有的点的纵坐标均为0,y 轴上所有的点的横坐标均为0;(2)利用(1)中所求的点A 、B 的坐标可以求得OA 、OB 的长度.然后根据三角形的面积公式可以求得△OAB 的面积.
解:(1)对于y =-2x +4,令y =0,得-2x +4=0,∴x =2.∴一次函数y =-2x +4的图象与x 轴的交点A 的坐标为(2,0);令x =0,得y =4.∴一次函数y =-2x +4的图象与y 轴的交点B 的坐标为(0,4);
(2)由(1)中知OA =2,OB =4.∴S △AOB =12·OA ·OB =12
×2×4=4.∴图象与坐标轴所
围成的三角形的面积是4.
方法总结:求一次函数与坐标轴围成的三角形的面积,一般地应先求出一次函数图象与x轴、y轴的交点坐标,进而求出三角形的底和高,即可求面积.
三、板书设计
1.一次函数的图象
2.一次函数的性质
3.一次函数图象的平移规律
本节课,学生活动设计了三个方面:一是通过画
函数图象理解一次函数图象的形状.二是两点法画一次函数的图象.三是探究一次函数的图象与k、b符号的关系.在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性值得深入探讨.为了达到上述目的,应结合每个活动,给学生明确的目的和要求,而且提供操作性很强的程序和题目.学生目标明确,操作性强,受到了较好的效果.。