最全的TLC经验__薄层层析
- 格式:doc
- 大小:63.50 KB
- 文档页数:8
薄层层析法原理薄层层析法(Thin Layer Chromatography,TLC)是一种常用的色谱分析技术,它是在薄而均匀的固定相上进行的。
这种技术广泛应用于化学、生物化学、药学等领域,用于分离、鉴定和定量分析化合物。
薄层层析法的原理基于溶质在液相和固相之间的分配和吸附行为。
在薄层层析中,通常将液相作为移动相,使用涂敷在薄层板上的固定相作为静相。
当样品溶液在薄层板上进行分离时,溶质会在液相和固相之间进行分配。
溶质分子与固定相之间的相互作用力决定了其在薄层板上的迁移速率。
为了实现有效的分离,薄层层析需要使用适当的固定相和移动相。
常见的固定相包括硅胶和氧化铝,它们具有较大的比表面积和吸附能力。
而移动相则通常是有机溶剂和极性溶剂的混合物,以便在不同程度上与溶质发生相互作用。
薄层层析的操作步骤相对简单。
首先,我们需要准备好薄层板和固定相。
薄层板通常是由玻璃或铝板制成,上面涂有一层均匀的固定相。
接下来,我们将样品溶液点在薄层板上,通常使用微量注射器或毛细管进行。
然后,将薄层板放入一个密封的容器中,使其处于饱和湿度的条件下,以保证液相在板上均匀分布。
最后,将容器置于恒温槽中,让溶质在薄层板上进行分离。
分离完成后,我们可以使用各种方法检测和定量分离出的化合物。
常见的检测方法包括紫外可见光谱检测、荧光检测和显色反应等。
通过比较样品中化合物的迁移距离和标准品的迁移距离,我们可以鉴定样品中的化合物。
同时,还可以通过测量斑点的面积或颜色的密度来定量分析样品中化合物的含量。
薄层层析法具有许多优点。
首先,它是一种简单、快速、经济的分析方法,不需要复杂的仪器设备。
其次,薄层层析可以同时进行多个样品的分离和分析,提高工作效率。
此外,薄层层析的分离效果较好,对于溶质的分离度和分辨率要求高的情况下,可以选择更适合的固定相和移动相。
然而,薄层层析法也存在一些局限性。
例如,对于具有极性相似的化合物,薄层层析的分离效果可能不理想。
薄层色谱分析步骤及注意事项薄层色谱法(thin layer chromatography简写TLC)是物理化学的分离技术,常用于药物的分离与分析现对此方法的分析步骤及注意事项提点建议。
薄层色谱分析步骤完成TLC分析通常需经制板、点样、展开、检出4步操作。
⑴制板在一平面支持物(通常玻璃)上,均匀地涂制硅胶、氧化铝或其他吸附剂薄层、样品的分离、检测就在此薄层色谱板上进行。
一般选用适当规格的表面光滑平整的玻璃板。
常用的薄层板规格有:10cm×20cm、5c m×20cm、20cm×20cm等。
称取适量硅胶,加入0.2%~0.5%羧甲基纤维素钠溶液(CMC -Na),充分搅拌均匀,进行制板。
一般来说10cm×20cm的玻璃板,3~5g硅胶/块;硅胶与羧甲基纤维素钠的比例一般为1:2~1:4。
制好的玻璃板放于水平台上,注意防尘。
在空气中自然干燥后,置1l0℃烘箱中烘0.5~lh,取出,放凉,并将其放于紫外光灯(254nm)下检视,薄层板应无花斑、水印,方可备用。
⑵点样用微量进样器进行点样。
点样,先用铅笔在层析上距末端lcm 处轻轻画一横线,然后用毛细管吸取样液在横线上轻轻点样,如果要重新点样,一定要等前一次点样残余的溶剂挥发后再点样,以免点样斑点过。
一般斑点直径大于2mm,不宜超过5mm.底线距基线1~2.5cm,点间距离为lcm左右,样点与玻璃边缘距离至少lcm,为防止边缘效应,可将薄层板两边刮去1~2cm,再进行点样。
⑶展开将点了样的薄层板放在盛在有展开剂的展开槽中,由于毛细管作用,展开溶剂在薄层板上缓慢前进,前进至一定距离后,取出薄层板,样品组分固移动速度不同而彼此分离。
①展开室应预饱和。
为达到饱和效果,可在室中加入足够量的展开剂;或者在壁上贴两条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖。
②展开剂一般为两种以上互溶的有机溶剂,并且临用时新配为宜。
TLC〔薄层层析色谱〕技术原理与应用一、薄层层析〔TLC〕简介薄层层析是将吸附剂或者支持剂〔有时参加固化剂〕均匀地铺在一块玻璃上,形成薄层。
把欲别离的样品点在薄层上,然后用适宜的溶剂展开,使混合物得以别离的方法。
由于层析在薄层上进展故而得名。
薄层层析是一种微量、快速的层析方法。
它不仅可以用于纯物质的鉴定,也可用于混合物的别离、提纯及含量的测定。
还可以通过薄层层析来探究和确定柱层析时的洗脱条件。
根据别离的原理不同,薄层层析可以分为两类:用吸附剂铺成的薄层所进展的层析为吸附薄层层析,吸附薄层中常用的吸附剂为氧化铝和硅胶;用纤维素粉、硅胶、硅藻土为支持剂铺成的薄层,属于分配薄层层析。
吸附TLC→固定相为吸附剂→氧化铝、硅胶。
〔较多用〕TLC→分配TLC→固定相为液态〔通常为水〕→固定相吸附在支持剂上。
〔一〕吸附薄层的根本原理:吸附薄层主要是利用吸附剂对样品中各成分吸附才能不同,及展开剂对它们的解吸附才能的不同,使各成分到达别离。
吸附作用主要由于物体外表作用力、氢键、络合、静电引力、范德华力等产生。
吸附强度决定于吸附剂的吸附才能,还受被吸附成分的性质影响,更与展开剂的性质有关。
1.吸附薄层层析:在硅胶薄层板上,样品中的两成分是两种构造近似的染料,在展开剂四氯化碳的作用下。
在展开剂和薄层板之间不断地产生吸附、解吸,再吸附,再解吸,……。
由于对氨基偶氮苯的极性比偶氮苯的极性稍强一些,层析的结果,对氨基偶氮苯受到的吸附作用稍强于偶氮苯,从而将两者别离。
展开完毕以后,会在薄层板上形成两个斑点,混合物中的成分得以别离。
中药中的有效成分复杂多样,构造近似者不少。
特别是对未知构造的成分分析,设计并探究出合理的层析条件是首要任务。
只有先设计出可用的层析条件,再经探究改良,才可能对未知或者成分进展成功地别离。
然后才能谈得上进一步的分析研究。
要设计出合理有效的层析条件,必须熟悉薄层层析条件的选择的根本要领。
下面对薄层层析条件的选择做一初步介绍。
薄层层析操作要点铺板铺板用的匀浆不宜过稠或过稀:过稠,板容易出现拖动或停顿造成的层纹;过稀,水蒸发后,板表面较粗糙。
匀浆配比一般是硅胶G:水=1:2~3,硅胶G:羧甲基纤维素钠水溶液=1:2。
研磨匀浆的时间,根据经验来定,与空气湿度有关,一般通过拿起研棒时匀浆下滴的情况来判断,越稠越难下滴。
匀浆的稀稠除影响板的平滑外,也影响板涂层的厚度,进一步影响上样量。
涂层薄,点样易过载;涂层厚,显色不那么明显。
通常,板的质量对薄层鉴别的影响不是很大,影响最大的是展开剂的配制和展开系统的饱和。
铺层时防止起泡,可加几滴乙醇.尝试刮边点样尽量用小的点样管。
如果有足够的耐性,最好只用1微升的点样管。
这样,点的斑点较小,展开的色谱图分离度好,颜色分明。
样品溶液的含水量越小越好,样品溶液含水量大,点样斑点扩散大。
样品溶液的溶剂一般是无水乙醇、甲醇、氯仿、乙酸乙酯。
点好样的薄层板用电吹风的热风吹干或放入干燥器里晾干。
点样是造成TLC定量误差的主要来源。
实验证明:定量毛细管更适合较小体积的点样;微量注射器更适合较大体积的点样。
这主要是因为微量注射器受小气泡、溶液回爬现象的影响较大。
为避免不同定量毛细管间的点样误差、建议一块薄层板上最好用同一只定量毛细管。
但应注意更换样品时,应将毛细管用超声波或不同极性溶剂清洗干净。
在制备样品时,溶样溶剂黏度不能过高,以便于点样;溶剂沸点过低则进样体积易变,过高则会改变展开剂组成;对样品溶解度过高会使样点发生空心现象;常用的溶剂为甲醇、乙醇、丙酮。
经典TLC样点原点一般为直径3mm点间距1-2cm 底边距1.5cm;HPLC样点原点一般为直径1mm点间距5mm 底边距1cm。
展开剂配制选择合适的量器把各组成溶剂移入分液漏斗,强烈振摇使混合液充分混匀,放置,如果分层,取用体积大的一层作为展开剂。
绝对不应该把各组成溶液倒入展开缸,振摇展开缸来配制展开剂。
混合不均匀和没有分液的展开剂,会造成层析的完全失败。
TLC铺板经验大全!!!薄层色谱(TLC)的使用指南综述:薄层色谱(TLC)是一种非常有用的跟踪反应的手段,还可以用于柱色谱分离中合适溶剂的选择。
薄层色谱常用的固定相有氧化铝或硅胶,它们是极性很大(标准)或者是非极性的(反相)。
流动相则是一种极性待选的溶剂。
在大多数实验室实验中,都将使用标准硅胶板。
将溶液中的反应混合物点在薄板上,然后利用毛细作用使溶剂(或混合溶剂)沿板向上移动进行展开。
根据混合物中组分的极性,不同化合物将会在薄板上移动不同的距离。
极性强的化合物会“粘”在极性的硅胶上,在薄板上移动的距离比较短。
而非极性的物质将会在流动的溶剂相中保留较长的时间从而在板上移动较大的距离。
化合物移动的距离大小用Rf值来表达。
这是一个位于0~1之间的数值,它的定义为:化合物距离基线(最先点样时已经确定)的距离除以溶剂的前锋距离基线的距离。
薄层色谱(TLC)实验步骤:1) 切割薄板。
通常,买来的硅胶板都是方形的玻璃板,必需用钻石头玻璃刀按照模板的形状进行切割。
在切割玻璃之前,用尺子和铅笔在薄板的硅胶面上轻轻地标出基线的位置(注意不要损坏硅胶面)。
借助锋利的玻璃切割刀和一把引导尺,你便可方便地进行玻璃切割。
当整块玻璃被切割后,你就可以进一步将其分成若干独立的小块了。
(开始的时候,也许你会感到有一些难度,但经过一些训练以后,你便会熟练地掌握该项技术。
)2) 选取合适的溶剂体系。
化合物在薄板上移动距离的多少取决于所选取的溶剂不同。
在戊烷和己烷等非极性溶剂中,大多数极性物质不会移动,但是非极性化合物会在薄板上移动一定距离。
相反,极性溶剂通常会将非极性的化合物推到溶剂的前段而将极性化合物推离基线。
一个好的溶剂体系应该使混合物中所有的化合物都离开基线,但并不使所有化合物都到达溶剂前端,Rf值最好在0.15~0.85之间。
虽然这个条件不一定都能满足,但这应该作为薄层色谱分析的目标(在柱色谱中,合适的溶剂应该满足Rf在0.2~0.3之间)。
薄层层析操作要点铺板铺板用的匀浆不宜过稠或过稀:过稠,板容易出现拖动或停顿造成的层纹;过稀,水蒸发后,板表面较粗糙。
匀浆配比一般是硅胶G:水=1:2~3,硅胶G:羧甲基纤维素钠水溶液=1:2。
研磨匀浆的时间,根据经验来定,与空气湿度有关,一般通过拿起研棒时匀浆下滴的情况来判断,越稠越难下滴。
匀浆的稀稠除影响板的平滑外,也影响板涂层的厚度,进一步影响上样量。
涂层薄,点样易过载;涂层厚,显色不那么明显。
通常,板的质量对薄层鉴别的影响不是很大,影响最大的是展开剂的配制和展开系统的饱和。
铺层时防止起泡,可加几滴乙醇.尝试刮边点样尽量用小的点样管。
如果有足够的耐性,最好只用1微升的点样管。
这样,点的斑点较小,展开的色谱图分离度好,颜色分明。
样品溶液的含水量越小越好,样品溶液含水量大,点样斑点扩散大。
样品溶液的溶剂一般是无水乙醇、甲醇、氯仿、乙酸乙酯。
点好样的薄层板用电吹风的热风吹干或放入干燥器里晾干。
点样是造成TLC定量误差的主要来源。
实验证明:定量毛细管更适合较小体积的点样;微量注射器更适合较大体积的点样。
这主要是因为微量注射器受小气泡、溶液回爬现象的影响较大。
为避免不同定量毛细管间的点样误差、建议一块薄层板上最好用同一只定量毛细管。
但应注意更换样品时,应将毛细管用超声波或不同极性溶剂清洗干净。
在制备样品时,溶样溶剂黏度不能过高,以便于点样;溶剂沸点过低则进样体积易变,过高则会改变展开剂组成;对样品溶解度过高会使样点发生空心现象;常用的溶剂为甲醇、乙醇、丙酮。
经典TLC样点原点一般为直径3mm点间距1-2cm 底边距1.5cm;HPLC样点原点一般为直径1mm点间距5mm 底边距1cm。
展开剂配制选择合适的量器把各组成溶剂移入分液漏斗,强烈振摇使混合液充分混匀,放置,如果分层,取用体积大的一层作为展开剂。
绝对不应该把各组成溶液倒入展开缸,振摇展开缸来配制展开剂。
混合不均匀和没有分液的展开剂,会造成层析的完全失败。
薄层层析的原理和应用1. 薄层层析的基本原理薄层层析(Thin Layer Chromatography,简称TLC)是一种用于分离、检测和定量分析化合物的常用技术。
它基于物质在固定相(固定在薄层板上)和流动相(液态或气态)之间的不同分配行为,利用物质在两相中的相互作用,实现了化合物的分离。
2. 薄层层析的应用薄层层析在许多领域中得到广泛应用,下面列举了几个主要的应用领域:2.1 药学•薄层层析可用于药物的质量控制和分析,如药物纯度、含量等。
•它还可用于药物相互作用的研究,如药物与蛋白质、细胞的相互作用。
2.2 食品科学•薄层层析在食品科学中被广泛应用于食品成分的分析。
•它可用于检测食品中的添加剂、农药、重金属等有害物质。
2.3 环境科学•薄层层析可用于环境科学的高效、快速分析。
•它可用于监测水和土壤中的污染物,以及空气中的有害物质。
2.4 法医学•薄层层析在法医学中可用于毒物学分析。
•它可用于分析尸体组织中的药物、毒物等。
3. 薄层层析的实验操作步骤薄层层析的实验操作步骤如下:1.准备薄层板:选择合适的薄层板,并在板上涂敷均匀的固定相。
2.样品处理:将待测样品进行适当的前处理,如提取、稀释等。
3.样品施加:在薄层板上均匀施加待测样品。
4.等待固定:等待样品在薄层板上固定。
5.流动相选择:选择适当的流动相,并将薄层板放入层析槽中。
6.层析槽中流动相:添加流动相至适当高度,使其浸泡薄层板底部,但不要超过固定相线。
7.封槽:用盖子或纸封住层析槽。
8.等待迁移:等待迁移过程完成。
9.干燥:将薄层板取出,用吹风机或加热干燥。
10.显色:将薄层板暴露在合适的显色试剂中,使化合物呈现可见的斑点。
11.分析和测量:使用工具(如扫描仪或相对比色计)对薄层板上的斑点进行定量或定性分析。
4. 薄层层析的优点和局限性4.1 优点•简单易行、操作方便。
•分离效果好、分离时间短。
•可用于分析多种类型的样品。
•成本低廉、设备要求较低。
实验六_薄层色谱层析1.引言薄层色谱(TLC)是一种常用的色谱分离技术,它可以对混合物中的化合物进行快速的分离和分析。
TLC通常使用薄层涂料作为固定相,涂料上的化合物会在移动相的作用下沿着涂料表面移动,不同的化合物会因为其与涂层和移动相的互作用方式不同而以不同的速度移动,从而实现分离。
2.实验目的1.掌握TLC的原理和操作方法。
2.学会使用TLC对混合物进行分离和分析。
3.实验器材-TLC板- Teflon盖板-色谱槽-滤纸-量筒-注射器-加热板-小试管-移液管-显色剂4.实验步骤1.准备TLC板,并在上面画线标记。
2. 准备好移动相,浸泡TLC板底部约1cm高,在TLC槽中加入足够的移动相。
3. 将TLC板放入槽中,盖上Teflon盖板,让TLC板与移动相接触。
4.等待移动相上升到合适的高度后,取出TLC板。
5.快速在TLC板上划线,并迅速将TLC板放入移动相槽中。
6.等待移动相上升到顶端后,取出TLC板,让其晾干。
7.在TLC板上使用显色剂进行显色,观察分离结果。
5.结果与讨论根据实验步骤进行实验后,我们可以得到TLC板上的色带。
每个色带代表一个化合物。
以下是对实验结果的分析和讨论的例子:-标准品的运动距离可以用来确定未知样品中的化合物的含量。
-标准品运动距离的变化可能是因为升华、溶解度、复杂的形状或共沉淀的化合物。
6.结论通过本次实验,我们成功掌握了TLC的原理和操作方法,学会了使用TLC对混合物进行分离和分析。
通过观察TLC板上的色带,我们可以确定混合物中的不同化合物,并对其进行定量分析。
[1] Skoog, D. A.; West, D. M.; Holler, F. J. (1996). Instrumental Analysis. Harcourt Brace College Publishers.[2] Snyder, L. R.; Kirkland, J. J.; Glajch, J. L. (1997). Practical HPLC Method Development. Wiley-Interscience.附录:TLC显色剂常用对照表- Ninhydrin:用于氨基酸的检测,显色后紫色。
薄层色谱,或称薄层层析(thin-layer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。
这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。
一、基本原理薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。
薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。
一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。
吸附是表面的一个重要性质。
任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。
在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。
物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。
在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。
而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。
吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。
在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。
吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。
例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。
当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。
由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。
薄层层析原理薄层层析(TLC)是一种常用的色谱分析技术,它通过将混合物在薄层上分离,然后用吸附剂吸附和移动来实现成分的分离和检测。
薄层层析原理主要包括样品的施加、薄层板的制备、色谱条件的选择和色谱结果的解释。
下面将详细介绍薄层层析原理及其应用。
首先,样品的施加是薄层层析的第一步。
通常情况下,样品会通过吸管或者微量注射器施加在薄层板上。
在施加样品时,需要注意样品的施加量要适中,以免影响分离效果。
此外,样品的施加位置也需要注意,要保证样品施加均匀,避免出现斑点不清晰的情况。
其次,薄层板的制备是薄层层析的关键步骤。
薄层板通常由玻璃、铝箔或者塑料材料制成,表面涂覆有吸附剂。
在制备薄层板时,需要注意薄层的厚度和均匀性,以及吸附剂的选择和涂布均匀度。
这些因素都会影响薄层层析的分离效果。
色谱条件的选择是薄层层析的另一个重要方面。
色谱条件包括移动相的选择、薄层板的浸渍和干燥条件等。
移动相的选择要根据样品的性质和分离效果来确定,通常使用的移动相有乙醚、甲醇、氯仿等。
薄层板的浸渍和干燥条件也需要根据具体情况来确定,以保证斑点清晰、分离效果好。
最后,色谱结果的解释是薄层层析的关键环节。
通过观察薄层板上斑点的位置、颜色和形状,可以初步判断样品中成分的分离情况。
此外,还可以通过比色剂或者紫外灯等方法来进一步确认分离的成分。
色谱结果的解释需要结合实验经验和相关文献来进行,以确保结果的准确性和可靠性。
薄层层析在化学分析、药物检测、食品安全等领域有着广泛的应用。
通过对薄层层析原理的深入理解和实践操作,可以更好地开展相关工作,提高分析检测的准确性和效率。
总之,薄层层析原理涉及样品的施加、薄层板的制备、色谱条件的选择和色谱结果的解释。
通过对这些方面的认真研究和实践操作,可以更好地掌握薄层层析技术,为相关领域的研究和应用提供有力支持。
最全的TLC经验薄层色谱(TLC)是一种非常有用的跟踪反应的手段,还可以用于柱色谱分离中合适溶剂的选择。
薄层色谱常用的固定相有氧化铝或硅胶,它们是极性很大(标准)或者是非极性的(反相)。
流动相则是一种极性待选的溶剂。
在5.301中以及大多数实验室实验中,都将使用标准硅胶板。
将溶液中的反应混合物点在薄板上,然后利用毛细作用使溶剂(或混合溶剂)沿板向上移动进行展开。
根据混合物中组分的极性,不同化合物将会在薄板上移动不同的距离。
极性强的化合物会“粘”在极性的硅胶上,在薄板上移动的距离比较短。
而非极性的物质将会在流动的溶剂相中保留较长的时间从而在板上移动较大的距离。
化合物移动的距离大小用Rf值来表达。
这是一个位于0~1之间的数值,它的定义为:化合物距离基线(最先点样时已经确定)的距离除以溶剂的前锋距离基线的距离。
薄层色谱(TLC)实验步骤:1) 切割薄板。
通常,买来的硅胶板都是方形的玻璃板,必需用钻石头玻璃刀按照模板的形状进行切割。
在切割玻璃之前,用尺子和铅笔在薄板的硅胶面上轻轻地标出基线的位置(注意不要损坏硅胶面)。
借助锋利的玻璃切割刀和一把引导尺,你便可方便地进行玻璃切割。
当整块玻璃被切割后,你就可以进一步将其分成若干独立的小块了。
(开始的时候,也许你会感到有一些难度,但经过一些训练以后,你便会熟练地掌握该项技术。
)2) 选取合适的溶剂体系。
化合物在薄板上移动距离的多少取决于所选取的溶剂不同。
在戊烷和己烷等非极性溶剂中,大多数极性物质不会移动,但是非极性化合物会在薄板上移动一定距离。
相反,极性溶剂通常会将非极性的化合物推到溶剂的前段而将极性化合物推离基线。
一个好的溶剂体系应该使混合物中所有的化合物都离开基线,但并不使所有化合物都到达溶剂前端,Rf值最好在0.15~0.85之间。
虽然这个条件不一定都能满足,但这应该作为薄层色谱分析的目标(在柱色谱中,合适的溶剂应该满足Rf在0.2~0.3之间)。
那么,应该选取哪些溶剂呢?一些标准溶剂和他们的相对极性(从LLP中摘录)列于如下:强极性溶剂:甲醇〉乙醇〉异丙醇中等极性溶剂:乙氰〉乙酸乙酯〉氯仿〉二氯甲烷〉乙醚〉甲苯非极性溶剂:环己烷,石油醚,己烷,戊烷常用混合溶剂:乙酸乙酯/己烷:常用浓度0~30%。
但有时较难在旋转蒸发仪上完全除去溶剂。
乙醚/戊烷体系:浓度为0~40%的比较常用。
在旋转蒸发器上非常容易除去。
乙醇/己烷或戊烷:对强极性化合物5~30%比较合适。
二氯甲烷/己烷或戊烷:5~30%,当其他混合溶剂失败时可以考虑使用。
3) 将1~2mL选定的溶剂体系倒入展开池中,在展开池中放置一大块滤纸。
4) 将化合物在标记过的基线处进行点样。
我们用的点样器是买来的,此外,点样器也可从加热过的Pasteur吸管上拔下(你可以参照UROP)。
在跟踪反应进行时,一定要点上起始反应物、反应混合物以及两者的混合物。
5) 展开:让溶剂向上展开约90%的薄板长度。
6) 从展开池中取出薄板并且马上用铅笔标注出溶剂到达的前沿位置。
根据这个算Rf数值。
7) 让薄板上的溶剂挥发掉。
8) 用非破坏性技术观察薄板。
最好的非破坏性方法就是用紫外灯进行观察。
将薄板放在紫外灯下,用铅笔标出所有有紫外活性的点。
尽管在5.301中不用这种方法,但我们将采用另一常用的无损方法--用碘染色法。
(你可以参看UROP)。
9) 用破坏性方式观测薄板。
当化合物没有紫外活性的时候,只能采用这种方法。
在5.301中,提供了很多非常有用的染色剂。
使用染色剂时,将干燥的薄板用镊子夹起并放入染色剂中,确保从基线到溶剂前沿都被浸没。
用纸巾擦干薄板的背面。
将薄板放在加热板上观察斑点的变化。
在斑点变得可见而且背景颜色未能遮盖住斑点之前,将薄板从加热板上取下。
10) 根据初始薄层色谱结果修改溶剂体系的选择。
如果想让Rf变得更大一些,可使溶剂体系极性更强些;如果想让Rf变小,就应该使溶剂体系的极性减小些。
如果在薄板上点样变成了条纹状而不是一个圆圈状,那么你的样品浓度可能太高了。
稀释样品后再进行一次薄板层析,如果还是不能奏效,就应该考虑换一种溶剂体系。
11) 做好TLC标记,计算每个斑点的Rf值,并且在笔记本中画出图样。
TLC显色试剂的选择显色试剂显色剂可以分成两大类:一类是检查一般有机化合物的通用显色剂;另一类是根据化合物分类或特殊官能团设计的专属性显色剂。
显色剂种类繁多,列举一些常用的显色剂。
l.通用显色剂硫酸常用的有四种溶液:硫酸-水(1:1)溶液;硫酸-甲醇或乙醇(1:1)溶液;1.5mol/L硫酸溶液与0.5-1.5mol/L硫酸铵溶液,喷后110o C烤15min,不同有机化合物显不同颜色。
0.5%碘的氯仿溶液对很多化合物显黄棕色。
中性0.05%高锰酸钾溶液易还原性化合物在淡红背景上显黄色。
碱性高锰酸钾试剂还原性化合物在淡红色背景上显黄色。
溶液I:1%高锰酸钾溶液;溶液Ⅱ:5%碳酸钠溶液;溶液I和溶液Ⅱ等量混合应用。
酸性高锰酸钾试剂喷1.6%高锰酸钾浓硫酸溶液(溶解时注意防止爆炸),喷后薄层于180o C 加热15~20min。
酸性重铬酸钾试剂喷5%重铬酸钾浓硫酸溶液,必要时150o C烤薄层。
5%磷钼酸乙醇溶液喷后120℃烘烤,还原性化合物显蓝色,再用氨气薰,则背景变为无色。
⑧铁氰化钾-三氯化铁试剂还原性物质显蓝色,再喷2mol/L盐酸溶液,则蓝色加深。
溶液I:1%铁氰化钾溶液;溶液Ⅱ:2%三氯化铁溶液;临用前将溶液I和溶液Ⅱ等量混合。
2.专属性显色剂由于化合物种类繁多,因此专属性显色剂也是很多的,现将在各类化合物中最常用的显色剂列举如下:(1) 烃类①硝酸银/过氧化氢检出物:卤代烃类。
溶液:硝酸银O.1g溶于水lml,加2-苯氧基乙醇lOOml,用丙酮稀释至200ml,再加30%过氧化氢1滴。
方法:喷后置未过滤的紫外光下照射;结果:斑点呈暗黑色。
②荧光素/溴检出物:不饱和烃。
溶液:I.荧光素0.1g溶于乙醇lOOml;Ⅱ.5%溴的四氯化碳溶液。
方法:先喷(I),然后置含溴蒸气容器内,荧光素转变为四溴荧光素(曙红),荧光消失,不饱和烃斑点由于溴的加成,阻止生成曙红而保留荧光,多数不饱和烃在粉红色背景上呈黄色。
③四氯邻苯二甲酸酐检出物:芳香烃。
溶液:2%四氯邻苯二甲酸酐的丙酮与氯代苯(10:1)的溶液。
方法:喷后置紫外光下观察。
④甲醛/硫酸检出物:多环芳烃。
溶液:37%甲醛溶液O.2ml溶于浓硫酸l0ml。
(2)醇类3,5一二硝基苯酰氯检出物:醇类。
溶液:I.2%本品甲苯溶液;Ⅱ.0.5%氢氧化钠溶液;Ⅲ.O.002%罗丹明溶液。
方法:先喷(I),在空气中干燥过夜,用蒸气薰2min,将纸或薄层通过试液(Ⅱ)30s,喷水洗,趁湿通过(Ⅲ)15s,空气干燥,紫外灯下观察。
硝酸铈铵检出物:醇类。
溶液:I.1%硝酸铈铵的0.2mol/L硝酸溶液;Ⅱ.N,N-二甲基-对苯二胺盐酸盐1.5g溶于甲醇、水与乙酸(128m1+25m1+1.5m1)混合液中,用前将(I)与(Ⅱ)等量混合。
喷板后于105oC加热5min。
③香草醛/硫酸检出物:高级醇、酚、甾类及精油。
溶液:香草醛1g溶于硫酸lOOml。
方法:喷后于120oC加热至呈色最深。
④二苯基苦基偕肼’检出物:醇类、萜烯、羰基、酯与醚类。
溶液:本品15mg溶于氯仿25ml中。
方法:喷后于110oC加热5~lOmin。
结果:紫色背景呈黄色斑点。
(3)醛酮类品红/亚硫酸检出物:醛基化合物。
溶液:I.0.01%品红溶液,通入二氧化硫直至无色;Ⅱ.0.05mol/L氯化汞溶液;Ⅲ.O.05mol/L硫酸溶液。
方法:将I、Ⅱ、Ⅲ以1:1:10混合,用水稀释至l00ml。
邻联茴香胺检出物:醛类、酮类。
溶液:本品乙酸饱和溶液。
2,4-二硝基苯肼检出物:醛基、酮基及酮糖。
溶液:I.0.4%本品的2mol/L盐酸溶液;Ⅱ.本品O.1g溶于乙醇l00ml中,加浓盐酸lml。
方法:喷溶液I或Ⅱ后,立即喷铁氰化钾的2mol/L盐酸溶液。
结果:饱和酮立即呈蓝色;饱和醛反应慢,呈橄榄绿色;不饱和羰基化合物不显色。
绕丹宁检出物:类胡萝卜素醛类。
溶液:I.1%~5%绕丹宁乙醇溶液;Ⅱ.25%氢氧化铵或27%氢氧化钠溶液。
方法:先喷溶液I,再喷溶液Ⅱ,干燥。
(4)有机酸类1 溴甲酚绿检出物:有机酸类。
溶液:溴甲酚绿0.1g溶于乙醇500ml和0.1mol/L氢氧化钠溶液5ml。
方法:浸板。
结果:蓝色背景产生黄色斑点。
2 高锰酸钾/硫酸检出物:脂肪酸衍生物。
溶液:见通用显色剂酸性高锰酸钾。
3 过氧化氢检出物:芳香酸。
溶液:0.3%过氧化氢溶液。
方法:喷后置紫外光(365nm)下观察。
结果:呈强蓝色荧光。
4 2,5 6-二氯苯酚-靛酚钠检出物:有机酸与酮酸。
溶液:0.1%本品的乙醇溶液。
方法:喷后微温。
结果:蓝色背景呈红色。
(5)酚类1 Emerson 试剂(4-氨基安替比林/铁氰化钾(Ⅲ)) 检出物:酚类、芳香胺类及挥发油。
溶液:I.4-氨基安替比林1g溶于乙醇100ml;Ⅱ.铁氰化钾(Ⅲ)4g溶于水50ml,2 用乙醇稀释至100ml。
方法:先喷溶液I,3 在热空气中干燥5min,4 再喷溶液Ⅱ,5 再于热空气中干燥5min,6 然后将板置含有氨蒸气(25%氨溶液)的密闭容器中。
结果:斑点呈橙-淡红色。
挥发油在亮黄色背景下呈红色斑点。
7 Boute 反应检出物:酚类、氯、溴、烷基代酚。
方法:将薄层置有NO2蒸气(含浓硝酸)的容器中3~10min,8 再用NH2蒸气(浓氨液)处理。
9 氯醌(四氯代对苯醌) 检出物:酚类。
溶液:1%本品的甲苯溶液。
10 DDQ(二氯二氰基苯醌)试剂检出物:酚类。
溶液:2%本品的甲苯溶液。
11 TCNE (四氰基乙烯)试剂检出物:酚类、芳香碳氢化物、杂环类、芳香胺类。
溶液:0.5%~1%本品的甲苯溶液。
12 Gibb’s(2,13 6-二溴苯醌氯亚胺)试剂检出物:酚类。
溶液:2%本品的甲醇溶液。
⑦氯化铁检出物:酚类、羟酰胺酸。
溶液:1%~5%氯化铁的0.5mol/L盐酸溶液。
结果:酚类呈蓝色、羟酰胺酸呈红色。
(6)含氮化合物①FCNP(硝普钠/铁氰化物)试剂检出物:脂肪族含氮化物,如氨基氰、胍、脲与硫脲及其衍生物,肌酸及肌酐。
溶液:10%氢氧化钠溶液、10%硝普钠溶液、10%铁氰化钾溶液与水按1:1:1:3混合,在室温至少放置20min,冰箱保存数周,用前将混合液与丙酮等体积混合。
②Dragendorff(碘化铋钾试剂)试剂检出物:芳香族含氮化合物,如生物碱类、抗心律不齐药物。
溶液:I.碱式硝酸铋0.85g溶于10ml冰醋酸及40ml水中;Ⅱ.碘化钾8g溶于水20ml中。
将上述溶液I及Ⅱ等量混合,置棕色瓶中作为储备液,用前取储备液lml、冰醋酸2ml与水l0ml混合。