期八年级数学上册 专题提高讲义 第3讲 勾股定理与实数 北师大版
- 格式:doc
- 大小:462.50 KB
- 文档页数:5
北师大版初二上勾股定理讲义(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章:勾股定理◆探索勾股定理1.勾股定理的探索如图,在单位长度为1的方格纸中画一等腰直角三角形,然后向外作三个外正方形:观察图形可知:(1)各正方形的面积:正方形①的面积S1为1,正方形②的面积S2为1,正方形③的面积S3为2;(2)各正方形面积之间的关系:S1+S2=S3;(3)由此得到等腰直角三角形两直角边与斜边之间的关系是:两直角边的平方和等于斜边的平方.【例1】如图,Rt△ABC在单位长度为1的正方形网格中,它的外围是以它的三条边为边长的正方形.回答下列问题:(1)a2=__________,b2=__________,c2=__________;(2)a,b,c之间有什么关系(用关系式表示)2.勾股定理(1)勾股定理的有关概念:如图所示,我们用勾(a)和股(b)分别表示直角三角形的两条直角边,用弦(c)来表示斜边.(2)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.即:勾2+股2=弦2.(3)勾股定理的表示方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则a2+b2=c2.辨误区应用勾股定理的几个误区(1)勾股定理的前提是直角三角形,对于非直角三角形的三边之间则不存在此种关系.(2)利用勾股定理时,必须分清谁是直角边,谁是斜边.尤其在记忆a2+b2=c2时,此关系式只有当c是斜边时才成立.若b是斜边,则关系式是a2+c2=b2;若a是斜边,则关系式是b2+c2=a2.(3)勾股定理有许多变形,如c是斜边时,由a2+b2=c2,得a2=c2-b2,b2=c2-a2等.熟练掌握这些变形对我们解决问题有很大的帮助.【例2-1】在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =5,则a =__________,b =__________.【例2-2】有一飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 000 m 处,过了20 s ,飞机距离这个男孩头顶5 000 m ,那么飞机每时飞行多少千米?3.勾股定理的验证方法1:用四个相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的正方形.由“大正方形的面积=小正方形的面积+4个直角三角形的面积”,得(a +b )2=c 2+4×12ab .化简可得:a 2+b 2=c 2.方法2:用四个相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的正方形.由“大正方形的面积=小正方形的面积+4个直角三角形的面积”,得c 2=(b -a )2+4×12ab .化简可得:a 2+b 2=c 2.方法3:用两个完全相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的梯形.由“梯形面积等于三个直角三角形面积之和”可得: 12(a +b )(a +b )=2×12ab +12c 2.化简可得:a 2+b 2=c 2.说明:勾股定理的验证还有很多方法.在一些几何问题中,利用图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变.利用拼图来验证勾股定理,就是根据同一种图形(或两个全等的图形)面积的不同表示方法列出等式,从而推导出勾股定理.【例3】在北京召开的第24届国际数学家大会的会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a +b )2的值为( ).A .169B .144C .100D .254.利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直角三角形问题. 常见的方法有:(1)利用高(作垂线)构造直角三角形;(2)利用已知直角构造直角三角形;(3)利用勾股定理构造直角三角形.已知直角三角形的两边,求第三边,关键是弄清已知什么边,求什么边,用平方和还是用平方差.【例4】如图,校园内有两棵树,相距12 m,一棵树高13 m,另一棵树高8 m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞多少米?5.利用勾股定理求面积(1)利用勾股定理求面积,关键是注意转化思想的应用.把所求的面积转化到已知的数量关系中去.如求图中阴影部分的面积,可转化为中间正方形的面积,而中间正方形的面积等于右侧直角三角形短直角边的平方,借助于右侧的直角三角形,利用勾股定理解答即可.(2)利用勾股定理求面积,还要注意整体思想的应用.【例5】如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.6.勾股定理与方程相结合的应用(1)在进行直角三角形的有关计算时,一般要运用勾股定理,在运用过程中,有时直接运用,有时是通过勾股定理来列方程求解.具体问题如下:①已知直角三角形的两边,求第三边的长;②说明线段的平方关系;③判断三角形的形状或求角的大小;④解决实际问题.(2)利用勾股定理解决生活中的实际问题时,关键是利用转化的思想把实际问题转化为数学模型(直角三角形),利用列方程或方程组来解决.(3)勾股定理与代数中的平方差公式相结合,解决此类问题可以先根据勾股定理列出关于两直角边的数量关系式,再通过恒等变形巧妙求解.【例6】如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长m,顶端A在AC上运动,量得滑杆下端B距C点的距离为m,当端点B向右移动m时,求滑杆顶端A下滑了多少米?◆中考实战演练1、(山东聊城中考)河坝横断面如右上图所示,堤高6,:1:3BC m BC AC ==,则AB = m 。
北师大版初中数学八年级上(初二数学上)课件PPT 配套教案第1章 勾股定理(提高阶段)第1部分 勾股定理【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】【高清课堂 勾股定理 知识要点】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()222c a b ab =+-.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以. 要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、与勾股定理有关的证明1、在△ABC 中,AB=AC ,D 是BC 延长线上的点,求证:【答案与解析】证明:作等腰三角形底边上的高AE∵AB=AC ,AE ⊥BC∴BE=EC,∠AEB=∠AEC=90°∴222222()()AD AB AE DE AE BE -=+-+2222AE DE AE BE =+-- 22DE BE =-()()DE BE DE BE =+-BD CD =【总结升华】解决带有平方关系的问题,关键是找出直角三角形,利用勾股定理进行转化,若没有直角三角形,常常通过作垂线构造直角三角形,再利用勾股定理解题.类型二、与勾股定理有关的线段长2、如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE 丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.【答案与解析】解:连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE丄DF,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB与△FDC中,∵,∴△EDB≌△FDC(ASA),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF中,EF2=BE2+BF2=32+42,∴EF=5.【总结升华】此题考查的知识点是勾股定理及全等三角形的判定,关键是由已知先证三角形全等,求得BE和BF,再由勾股定理求出EF的长.举一反三:【变式】(2015春•天津校级期中)如图,∠C=30°,PA⊥OA于A,PB⊥OB于B,PA=2,PB=11,求OP的长.【答案】解:∵PA⊥OA,∠C=30°,∴PC=2PA=4,∴BC=BP+PC=11+4=15,∵PB⊥OB,∠C=30°,设OB=x,则OC=2x,在Rt△BOC中,由勾股定理得:x2+152=(2x)2,解得,x=53,即OB=53,∴OP===14.类型三、与勾股定理有关的面积计算3、(2015•丰台区二模)问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.【思路点拨】(1)根据图形得出S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC,根据面积公式求出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.【答案与解析】解:(1)△ABC的面积是4.5,理由是:S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC=4×3﹣×4×1﹣×2×1﹣×3×3=4.5,故答案为:4.5;(2)如图2的△MNP,S△MNP=S矩形MOAB﹣S△MON﹣S△PAN﹣S△MBP=5×3﹣×5×1﹣×2×4﹣×3×1=7,即△MNP的面积是7.【总结升华】本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.举一反三:【变式】如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、6、3、4,则最大正方形E的面积是()A.17B.36C.77D.94【答案】C类型四、利用勾股定理解决实际问题4、(2016•贵阳模拟)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【思路点拨】(1)利用勾股定理直接得出AB的长即可;(2)利用勾股定理直接得出BC′的长,进而得出答案.【答案与解析】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA ′=20米,BC ′==15(米),则:CC ′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.【总结升华】此题主要考查了勾股定理的应用,熟练利用勾股定理是解题关键. 举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:12AA '=,12392A B π'=⨯⨯= 在Rt △AA ′B 中,根据勾股定理得:22222129225AB AA A B ''=+=+=则AB =15cm .所以需要爬行的最短路程是15cm .第2部分 勾股定理的逆定理【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】【高清课堂 勾股定理逆定理 知识要点】要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、(2016春•咸丰县月考)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少cm2.【思路点拨】本题先设适当的参数求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的BP,BQ的长,利用三角形的面积公式计算求解.【答案与解析】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.【总结升华】本题是道综合性较强的题,需要学生把勾股定理的逆定理、三角形的面积公式结合求解.由勾股定理的逆定理得出三角形为直角三角形,是解题的关键.隐含了整体的数学思想和正确运算的能力.2、如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.(1)判断△DEC的形状,并说明理由;(2)求∠ADB的度数.【思路点拨】把△ABD绕点B顺时针方向旋转60°,注意旋转只是三角形的位置变了,三角形的边长和角度并没有变,并且旋转的角度60°,因此出现等边△BDE,从而才能更有利的判断三角形的形状和求∠ADB的度数.【答案与解析】解:(1)根据图形的旋转不变性,AD=EC,BD=BE,又∵∠DBE=∠ABC=60°,∴△ABC和△DBE均为等边三角形,于是DE=BD=3,EC=AD=4,又∵CD=5,∴DE2+EC2=32+42=52=CD2;故△DEC为直角三角形.(2)∵△DEC为直角三角形,∴∠DEC=90°,又∵△BDE为等边三角形,∴∠BED=60°,∴∠BEC=90°+60°=150°,即∠ADB=150°.【总结升华】此题考查了旋转后图形的不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.举一反三:【变式】如图所示,在△ABC 中,已知∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,PC =CD =2,CD ⊥CP ,求∠BPC 的度数.【答案】解:连接BD .∵ CD ⊥CP ,且CD =CP =2,∴ △CPD 为等腰直角三角形,即∠CPD =45°.∵ ∠ACP+∠BCP =∠BCP+∠BCD =90°,∴ ∠ACP =∠BCD .∵ CA =CB ,∴ △CAP ≌△CBD(SAS),∴ DB =PA =3.在Rt △CPD 中,22222228DP CP CD =+=+=.又∵ PB =1,则21PB =.∵ 29DB =,∴ 22819DB DP PB =+=+=,∴ △DPB 为直角三角形,且∠DPB =90°,∴ ∠CPB =∠CPD+∠DPB =45°+90°=135°.类型二、勾股定理逆定理的应用 3、已知a 、b 、c 是△ABC 的三边,且满足438324a b c +++==,且a +b +c =12,请你探索△ABC 的形状.【答案与解析】解:令438324a b c +++===k .∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【总结升华】此题借用设比例系数k的方法,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.举一反三:【变式】(2015春•渝中区校级月考)△ABC的三边a、b、c满足|a+b﹣50|++(c ﹣40)2=0.试判断△ABC的形状是.【答案】直角三角形.解:∵|a+b﹣50|++(c﹣40)2=0,∴,解得,∵92+402=412,∴△ABC是直角三角形.故答案为直角三角形.4、如图所示,MN以左为我国领海,以右为公海,上午9时50分我国缉私艇A发现在其正东方向有一走私艇C并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN线上巡逻的缉私艇B密切注意,并告知A和C两艇的距离是13海里,缉私艇B测得C与其距离为12海里,若走私艇C的速度不变,最早在什么时间进入我国海域?【答案与解析】解:∵ 22222251216913AB BC AC +=+===,∴ △ABC 为直角三角形.∴ ∠ABC =90°.又BD ⊥AC ,可设CD =x ,∴ 22222212,(13)5,x BD x BD ⎧+=⎪⎨-+=⎪⎩①②①-②得2216926119x x x -+-=, 解得14413x =.∴ 1441441313169÷=≈0.85(h)=51(分). 所以走私艇最早在10时41分进入我国领海.【总结升华】(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.第3部分 《勾股定理》全章复习与巩固【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:222AE BF EF +=.【思路点拨】由于∠ACB =90°,∠ECF =45°,所以∠ACE +∠BCF =45°,若将∠ACE 和∠BCF 合在一起则为一特殊角45°,于是想到将△ACE 旋转到△BCF 的右外侧合并,或将△BCF 绕C 点旋转到△ACE 的左外侧合并,旋转后的BF 边与AE 边组成一个直角,联想勾股定理即可证明.【答案与解析】解:(1)222AE BF EF +=,理由如下:将△BCF 绕点C 旋转得△ACF′,使△BCF 的BC 与AC 边重合,即△ACF′≌△BCF ,∵ 在△ABC 中,∠ACB =90°,AC =BC ,∴ ∠CAF′=∠B =45°,∴ ∠EAF′=90°.∵ ∠ECF =45°,∴ ∠ACE +∠BCF =45°.∵ ∠ACF′=∠BCF ,∴ ∠ECF′=45°.在△ECF 和△ECF′中45CE CE ECF ECF CF CF =⎧⎪'∠=∠=⎨⎪'=⎩°∴ △ECF ≌△ECF′(SAS),∴ EF =EF′.在Rt △AEF′中,222AE F A F E ''+=,∴ 222AE BF EF +=.【总结升华】若一个角的内部含有同顶点的半角,(如平角内含直角,90°角内含45°角,120°角内含60°角),则常常利用旋转法将剩下的部分拼接在一起组成又一个半角,然后利用角平分线、全等三角形等知识解决问题.举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:222BD AB BC =+.【答案】解:将△ABD 绕点D 顺时针旋转60°.由于DC =AD ,故点A 转至点C .点B 转至点E ,连结BE .∵ BD =DE ,∠BDE =60°∴ △BDE 为等边三角形,BE =BD易证△DAB ≌△DCE ,∠A =∠2,CE =AB∵ 四边形ADCB 中∠ADC =60°,∠ABC =30°∴ ∠A +∠1=360°-60°-30°=270°∴ ∠1+∠2=∠1+∠A =270°∴ ∠3=360°-(∠1+∠2)=90°∴222BC CE BE +=∴ 222BC AB BD +=2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.【答案与解析】解:如图,做∠ECB=∠PCA ,且使CE=CP ,连结EP ,EB在△APC 和△BEC 中 PCA ECB AC BC PC EC =⎧⎪∠=∠⎨⎪=⎩∴△APC ≌△BEC∴△PCE 为等腰直角三角形∴∠CPE=45°,PE 2=PC 2+CE 2=8又∵PB 2=1,BE 2=9∴PE 2+ PB 2= BE 2则∠BPE=90°∴∠BPC=135°【总结升华】本题考查了勾股定理的逆定理,通过观察所要求的角度,作出辅助线,把PA 、PB、PC的长度转化为一个三角形三条边,构造出直角三角形是解题的关键,当然此题也可以利用旋转的思想来解,即将△APC绕点C旋转,使CA与CB重合即△APC≌△BEC.类型二、勾股定理及逆定理的综合应用3、(2016春•丰城市期末)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【思路点拨】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC 的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【答案与解析】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC2=25,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.【总结升华】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.4、如图:正方形ABCD 中,E 是DC 中点,F 是EC 中点.求证:∠BAF=2∠EAD.【答案与解析】 证明:取BC 中点G ,连结AG 并延长交DC 延长线于H∵ ∠ABG=∠HCG ,BG=CG ,∠AGB=∠HGC∴ △GAB ≌△HCG∴ ∠GAB=∠H ,AB=CH又∵ AB=AD ,∠B=∠D ,BG=DE∴ △ABG ≌△ADE∴ ∠GAB=∠DAE在Rt ADF △中,设AD a =,由勾股定理得:222222325()41654AF AD DF a a a AF a =+=+==∴ 又544a HF CH CF a a =+=+= ∴ AF=HF∴ ∠FAH=∠H∴ ∠FAH=∠DAE∴ ∠BAF=2∠DAE【总结升华】要证∠BAF=2∠EAD ,一般方法是在∠BAF 中取一个角使之等于∠EAD ,再证明另一个角也等于∠EAD ,另一种方法是把小角扩大一倍,看它是否等于较大的角. 举一反三:【变式】(2014春•防城区期末)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?【答案】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A 关于直线CD 的对称点G ,连接GB ,交CD 于点E ,利用“两点之间线段最短”可知应在E 处饮水,再根据对称性知GB 的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决.【答案与解析】解:作点A 关于直线CD 的对称点G ,连接GB 交CD 于点E ,由“两点之间线段最短”可以知道在E 点处饮水,所走路程最短.说明如下:在直线CD 上任意取一异于点E 的点I ,连接AI 、AE 、BE 、BI 、GI 、GE .∵ 点G 、A 关于直线CD 对称,∴ AI =GI ,AE =GE .由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI +BI >GB =AE +BE ,于是得证.最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中,∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,∴ 由勾股定理得222228006001000000GB GH BH =+=+=.∴ GB =1000,即最短路程为1000米.【总结升华】这是一道有关极值的典型题目.解决这类题目,一方面要考虑“两点之间线段最短”;另一方面,证明最值,常常另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,如本题中的I 点.本题体现了勾股定理在实际生活中的应用.举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.【答案】解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP , 即最短距离EP +BP 也就是ED .∵ AE =3,EB =1,∴ AB =AE +EB =4,∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+= .∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【答案与解析】 解:(1)该城市会受到台风影响. 理由:如图,过点A 作AD ⊥BC 于D 点,则AD 即为该城市距离台风中心的最短距离.在Rt △ABD 中,因为∠B=30°,AB=240.∴AD =12AB =12×240=120(千米). 由题可知,距台风中心在(12-4)×25=200(千米)以内时,则会受到台风影响. 因为120<200,因此该城市将会受到影响.(2)依题(1)可知,当点A 距台风中心不超过200千米时,会受台风影响,故在BC 上作AE=AF=200;台风中心从点E 移动到点F 处时,该城市会处在台风影响范围之内.(如图)由勾股定理得,2222220012025600DE AE AD =-=-=DE =160(千米).所以EF=2×160=320(千米).又知台风中心以20千米/时的速度移动.所以台风影响该城市320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12-(120÷25)=7.2(级).答:该城市受台风影响最大风力7.2级.【总结升华】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,运用勾股定理使问题解决.。
ABD AC B1C1第三讲:勾股定理与实数的综合运用◆ 【知识考点梳理】1、求线段的长主要考虑用勾股定理建立方程求解;2、运用勾股定理解决实际问题关键在于建立直角三角形模型,常用的方法有: (1)直接作高法;(2)补形法;(3)整体结构法;(4)图形变换法; ◆◆ 【考点聚焦、方法导航】◆【考点题型1】---勾股定理、实数的有关计算【例1】1.如图:大正方形的面积为6,小正方形的面积为2,则图中阴影部分的面积是 ;2.(南通)如图,在ABC ∆中,90ACB ∠=︒,30B ∠=︒,1AC =,AC 在直线上.将ABC ∆绕点A 顺时针旋转到位置①,可得到点1P ,此时12AP =;将位置①的三角形绕点1P 顺时针旋转到位置②,可得到点2P ,此时223AP =2P 顺时针旋转到位置③,可得到点3P ,此时333AP =;…,按此规律继续旋转,直到得到点2012P 为止,则2012AP =( )A 、20116713+B 、20126713+C 、20136713+D 、20116713+3题图 4题图3.(淮安)如图,在Rt ABC ∆中,90ABC ∠=︒,30ACB ∠=︒,将ABC ∆绕点A 按逆时针方向旋转15︒后得到11AB C ∆,11B C 交AC 于点D ,如果22AD =ABC ∆的周长等于 ;◆【考点题型2】---最短距离问题的应用举例【例2】一线圈缠绕在底面周长为4cm ,高为5cm 的圆柱体上,如图示: (1)若缠绕3圈,则线圈的长度至少为 ;(2)若缠绕n 圈需要的线的长度至少为 ;(用含n 的代数式表示)ABba 【例3】(鄂州)如图,已知直线//a b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,230AB=.试在直线a上找一点M,在直线b上找一点N,满足MN a⊥且AM MN NB++的长度和最短,则此时AM NB+=()A、6B、8C、10D、12◆方法归纳:◆【考点题型3】---勾股定理与实数的综合运用【例4】(山东威海)一副直角三角板如图放置,点C在FD的延长线上,//AB CF,90F ACB∠=∠=︒,45E∠=︒,60A∠=︒,10AC=,求CD的长。
《勾股定理》全章复习【知识网络】【要点梳理】要点一、勾股定理 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题; (3)解决与勾股定理有关的面积计算; (4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理 1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为; (2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形; 若时,△ABC 是锐角三角形; 若时,△ABC 是钝角三角形. 2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.a b 、c 222a b c +=a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:.举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729222AE BF EF +=222BD AB BC =+2、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数.类型二、勾股定理及逆定理的综合应用3、如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.举一反三:【变式】如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【巩固练习】一.选择题1.在△中,若,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形2.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°3.下列满足条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:54.如图,一牧童在A处牧马,牧童家在B处,A、B处距河岸的距离AC、BD的长分别为500m和700m,且C、D两地的距离为500m,天黑前牧童从A点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走()A.2900m B.1200m C.1300m D.1700m ABC1,2,122+==-=ncnbna5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( ) A .ab =h 2 B .a 2+b 2=h 2 C .D . 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A .25B .325C .2197D .4057. 已知三角形的三边长为,由下列条件能构成直角三角形的是( ) A . B . C . D .8.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .48 二.填空题9.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.111a b h +=222111a b h+=a b c 、、()()2222221,4,1a m b m c m =-==+()()222221,4,1a m b m c m =-==+()()222221,2,1a m b m c m =-==+()()2222221,2,1a m b m c m =-==+11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm .14.小明把一根70cm 长的木棒放到一个长宽高分别为30cm ,40cm ,50cm 的木箱中,他能放进去吗?答: (选填“能”或“不能”).15.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于 .16. 如图所示,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,∠BAD =________.三.解答题1417.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a ,b ,c ,a <b <c .(1)试找出它们的共同点,并证明你的结论; (2)写出当a=17时,b ,c 的值. 3,4,5 32+42=52 5,12,13, 52+122=132 7,24,25 72+242=252 9,40,41 92+402=412 … … 17,b ,c 172+b 2=c 2 18.如图等腰△ABC 的底边长为8cm ,腰长为5cm ,一个动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究,当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直.19.如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A .当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若一直重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6,CD =15,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置. 位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2); 位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为,请用的代数式表示AD 的长; (2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.cm cm x x。
A
B
D A
C B1C1
第三讲:勾股定理与实数的综合运用
◆ 【知识考点梳理】
1、求线段的长主要考虑用勾股定理建立方程求解;
2、运用勾股定理解决实际问题关键在于建立直角三角形模型,常用的方法有: (1)直接作高法;(2)补形法;(3)整体结构法;(4)图形变换法; ◆◆ 【考点聚焦、方法导航】
◆【考点题型1】---勾股定理、实数的有关计算
【例1】1.如图:大正方形的面积为6,小正方形的面积为2,则图中阴影部分的面积是 ;
2.(南通)如图,在ABC ∆中,90ACB ∠=︒,30B ∠=︒,1AC =,AC 在直线上.将ABC ∆绕点A 顺时针旋转到位置①,可得到点1P ,此时12AP =;
将位置①的三角形绕点1P 顺时针旋转到位置②,可得到点2P ,此时223AP =2P 顺时针
旋转到位置③,可得到点3P ,此时333AP =;…,按此规律继续旋转,直到得到点2012P 为止,则2012AP =( )
A 、20116713+
B 、20126713+
C 、20136713+
D 、20116713+
3题图 4题图
3.(淮安)如图,在Rt ABC ∆中,90ABC ∠=︒,30ACB ∠=︒,将ABC ∆绕点A 按逆时
针方向旋转15︒后得到11AB C ∆,11B C 交AC 于点D ,如果22AD =ABC ∆的周长等于 ;
◆【考点题型2】---最短距离问题的应用举例
【例2】一线圈缠绕在底面周长为4cm ,高为5cm 的圆柱体上,如图示: (1)若缠绕3圈,则线圈的长度至少为 ;
(2)若缠绕n 圈需要的线的长度至少为 ;(用含n 的代数式表示)
A
B
b
a 【例3】(鄂州)如图,已知直线//
a b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,230
AB=.试在直线a上找一点M,在直线b上找一点N,满足MN a
⊥且AM MN NB
++的长度和最短,
则此时AM NB
+=()
A、6
B、8
C、10
D、12
◆方法归纳:
◆【考点题型3】---勾股定理与实数的综合运用
【例4】(山东威海)一副直角三角板如图放置,点C在FD的延长线上,//
AB CF,90
F ACB
∠=∠=︒,45
E
∠=︒,60
A
∠=︒,10
AC=,求CD的长。
【例5】图①是一面长方形彩旗完全展平时的尺寸图(单位:cm)。
其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面。
(1)用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到1cm,π取3.14);(2)将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220cm,在无风的天气里,彩旗自然下垂,如图②. 求彩旗下垂时最低处离地面的最小高度h。
P
A
【例6】(13北京一模)已知:如图,四边形ABCD 中,90A ∠=︒,120D ∠=︒,E 是AD 上一点,∠BED=135°,22BE =,32=DC ,23DE =. 求:(1)点C 到直线AD 的距离; (2)线段BC 的长.
◆【考点题型3】---创新思维与能力拓展
【例7】(12绍兴)三角形三边垂直平分线的交点到三角形三个顶点的 距离相等,这个交点叫三角形的外心。
如图:PA PB PC ==,点P 称为ABC ∆的外心。
联想三角形外心的概念,我们引入如下概念。
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。
举例:如图1,若PA PB =,则点P 为ABC ∆的准外心。
应用:如图2,CD 为等边ABC ∆的高,准外心P 在高CD 上,且1
2
PD AB =,求APB ∠的度数。
探究:已知ABC ∆为直角三角形,斜边5BC =,3AB =,准外心P 在AC 边上,试探究PA 的长。
A
E
E D
C B A
A
【例8】1、如图:在矩形ABCD 中,已知5=AB ,12=AD ,P 是AD 边上任意一点,BD PE ⊥于E ,AC PF ⊥于F ,那么PF PE +的值为 ;
2、(广州-改编)如图,在等边ABC ∆中,6AB =,D 是BC 上一点,且3BC BD =,ABD ∆绕点A 旋转后得到ACE ∆,则____________ADE S ∆=;
3、(深圳)如图,Rt ABC ∆中,90C ∠=︒,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知5AC =,62OC =,则另一直角边BC 的长为 .
【例9】如图,C 为线段BD 上一动点,分别过点B 、D 作AB BD ⊥,ED BD ⊥,连接AC 、EC 。
已知5AB =,1DE =,8BD =,设CD x =。
(1)用含x 的代数式表示AC CE +的长;
(2)请问点C 满足什么条件时,AC CE +的值最小?
(3)根据(2)中的规律和结论,9)12(42
2
+-++x x 的最小值.
作业设计
O
B
A
6cm 3cm
1cm
姓名: 作业等级: .
第一部分:
1、已知2(21)0a ++=,则22012
____________a b
-+=;
2
、若4y =,则___________y
x
=; 3、若51
=+
m
m ,则m m 1-的平方根是( )
A 、2±
B 、1±
C 、1
D 、2
4、(湖北孝感)对实数a 、b ,定义运算★如下:a ★b =(,0)
(,0)
b
b a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如:
2★33
1
2
8
-==。
计算:[2★(﹣4)]×[(﹣4)★(﹣2)]
第二部分:
1、若0<a ,化简
=-a a 22 ;
2有意义的实数x 的取值范围是 ;
3、(青岛)如图,长方体的底面边长分别为1cm 和3cm ,高为
6cm 。
如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B , 那么所用细线最短需要 cm ;若从点A 开始经过4个侧面 缠绕n 圈到达点B ,则所用细线最短需要 cm
4(13哈尔滨)在
ABC ∆中,AB =,1BC =,45ABC ∠=︒,以AB 为一边作等腰直角三角形ABD ,使90ABD ∠=︒,连接CD ,则线段CD 的长为
欢迎您的下载,资料仅供参考!。