第12章混频与倍频
- 格式:ppt
- 大小:326.00 KB
- 文档页数:15
随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。
用集成模拟乘法器可以构成性能优良的调幅和检波电路,其电路元件参数通常采用器件典型应用参数值。
作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。
调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
作调幅时,高频信号加到输入端,低频信号加到Y输入端;作检波时,同步信号加到X输入端,已调信号加到Y输入端。
调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。
还需注意:(1)Y端有关,否则输出波输入信号幅度不应超过允许的线性范围,其大小与反馈电阻RY形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出。
信息传输系统中,检波是用以实现电信号远距离传输及信道复用的重要手段。
由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。
关键词:模拟乘法器,调幅器,检波器,MC1496第一章、集成模拟乘法器的工作原理 (2)第一节、模拟乘法器的基本特性 (2)一、模拟乘法器的类型 (2)第二节、变跨导模拟乘法器的基本工作原理 (2)第三节、单片集成模拟乘法器 (3)第二章、集成模拟乘法器的应用 (4)第一节、基本运算电路 (4)一、平方运算 (4)二、除法运算器 (5)三、平方根运算 (5)四、压控增益 (5)第二节、倍频、混频与鉴相 (6)一、倍频电路 (6)二、混频电路 (6)三、鉴相电路 (6)第三节、调幅与解调 (7)一、信息传输的基本概念 (7)二、调幅原理 (8)三、采用乘法器实现解调(检波) (10)第三章、MC1496模拟乘法器构成的振幅器 (10)第一节、振幅调制的基本概念 (10)第二节、抑制载波振幅调制 (13)第三节、有载波振幅调制 (14)第四章、MC1496模拟乘法器构成的同步检波器 (14)总结 (18)参考文献 (18)附录 (19)第一章、集成模拟乘法器的工作原理第一节、模拟乘法器的基本特性模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
场效应管、三极管倍频器一、实验目的1、 理解场效应管、三极管的非线性特性;2、 理解场效应管、三极管倍频器的工作原理。
二、实验内容1、观察倍频器输出信号频率与输入信号频率的关系。
三、实验仪器1、20MHz 示波器 一台2、数字万用表 一块3、调试工具 一套四、实验原理设1u (频率为1f )为输入信号电压,将1u 输入到非线性器件,若非线性器件的伏安特性)(u f i =用幂级数近似,则在静态工作点电压V Q 上展开的台劳级数为+++++=+=nn Q u a u a u a a u V f i 12121101)( (4-1)式中, n a a a 10、是各次方项的系数,它们与静态工作点电压V Q 有关。
由式4-1可见,当非线性器件输入一个电压信号时,器件的响应电流中存在着这个电压的平方项,即存在1f 的二倍频成分。
选择平方律特性好的非线性器件,并在后级加入选频网络(谐振频率为12f ),就可实现二倍频的功能。
场效应管和晶体三极管组成的谐振放大器就是由非线性器件(场效应管、三极管)和选频网络组成的,因此可实现倍频的功能。
实验电路如图4-1和4-2所示。
R2Q1C3CC1R3C1TT1D1D2T1+12VTP1图4-1 场效应管倍频器C17R28Q2R30C18C19R31 CC2R27 W3T2+12VTT2TP5图4-2 三极管倍频器五、实验步骤1、场效应管倍频器(1)连接实验电路在主板上正确插好小信号放大器模块,开关K1、K2、K3、K5向左拨。
主板GND接模块GND,主板+12V 接模块+12V。
检查连线正确无误后打开实验箱左侧的船形开关,K1向右拨,若正确连接,则模块上的电源指示灯LED1亮。
(2)输入信号参考低频信号源的使用方法,用低频信号源产生频率f1=5.35MHz,峰峰值约500mV的正弦波信号,将此信号接入到TP1。
(3)观察倍频器的输出波形用示波器在TT1处测量,调节T1、CC1使TT1处信号的峰峰值最大不失真。
模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号:************名:***年级专业:测控工程指导老师:***摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。
本设计主要应用集成模拟乘法器MC1496实现以上功能。
目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。
图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。
另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。
第1 1节倍频效应倍频效应是非线性光学效应。
当光束通过晶体后,除了原来的激光波长以外,还检测到波长为1/2入射光波长的成分,即从晶体中透出光的频率是入射光频率的两倍。
人们把这种光学现象称作光的倍频效应。
倍频效应是弗兰肯(Franken)等人在1 9 6 1年首先发现的。
他们将红宝石激光器输出的波长为694. 3nm的红光射到石英晶体上。
当这束红光通过石英晶体后,他们发现在透射光中除了波长为6 91.3nn的红光外,还出现了波长为347.1nn的成分。
后者的波长刚好等于红宝石激光波长的一半,即频率加倍。
照相板图l0-91 弗兰肯等人的倍频实验装胃若用其它一些晶体材料来取代石英晶体,如磷酸二氢氨(ADP)、磷酸二氢钾(KDP)、砷酸二氢铷(RDA)、铌酸锂( LiNb03)、碘酸锂(Li103)、铌酸钡钠(BNN)等等,都能产生倍频效应。
不仅在透射光中能够检测到倍频光波,在反射光中也能出现倍频光。
将高功率的激光束投射到表面光滑的金属表面上,例如,金、银、铜、铋做的镜面,或者由碱金属盐类,如氯化钙、氯化钠,氯化钾以及半导体材料做成的镜面,甚至液体(例如水、二硫化碳、苯)和空气的分界面,在反射光中也包含有倍频的光波。
图10-22是用红图J e)22 反射光出现倍频光波宝石激光在砷化镓反射镜上反射,在反射光中产生倍频光波的实验示意图。
如果在装砷化镓反射镜的盒中充入一种液体(比如苯).就可以观察到两束反射光,其中一束是原来的红宝石激光,另一束是由砷化镓晶体产生的倍频光束。
前者遵守反射定律,即反射角等于入射角,01 =02,倍频光不再遵守反射定律。
它的反射角以满足刀1;inplsin秒。
=瓦5式中的n,和l12分别是基波和倍频光波在浸没砷化镓晶体片的液体中的折射率。
根据.L面式子可以计算出反射光中倍频光波与基波之间夹角。
如果盒内不充入引起色散的介质.,倍频光波满足通常的反射定律。
倍频效应是非线性的光学效应,当介质在很强的光波电场作用下,不但产生线性极化,而且产生-次、三次等非线性极化。