勾股定理易错点剖析
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
勾股定理知识点归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定cb aHG F EDCB A bacbac cabcab a bc c baE D CBA理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
勾股(逆)定理应用中的易错点勾股定理的逆定理:若一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且∠C=90°,如果已知一个三角形的三条边长,则可以利用勾股定理的逆定理来判断这个三角形是不是直角三角形.由于勾股定理及其逆定理形式上都比较简单,因而在运用这两个定理时,同学们往往因不够重视而出现这样那样的错误.现将几种典型错解列举如下,并作简要的剖析,供同学们参考.一、忽视应用的前提例1 △ABC中,a,b,c是∠A,∠B,∠C的对边,a=3,b=4,c为质数,求c.错解由勾股定理得:c2=a2+b2=32+42=25,故c=5.分析不注意定理的成立条件,而盲目使用勾股定理,这样便出现了错解.其实,只有在直角三角形中,勾3股4弦5才是成立的,但本题条件中并没有说△ABC是直角三角形,故只能用一般三角形三边之间的关系来解.正解由三角形的三边关系知:b-a<c<b+a,即1<c<7,又c为质数,故c=2,或c=3,或c=5.例2 如图1,在△ABC中,AB=10,BC=16,BC边上的中线AD=6,试说明AB=AC.错解∵AD是BC边上的中线,∴CD=BC=8,又∵AD=6,∴在△ADC中,由勾股定理,得而AB=10,故AB=AC.分析由于受题目题设、结论及图形的影响,在没有进行推证说明的情况下,就先行认为△ADC是直角三角形,忽视了运用勾股定理的前提,导致解题过程错误.正解∵AD是BC边上的中线,∴BD=CD=BC=8.又∵AB=10,AD=6,且有62+82=102,即AD2+BD2=AB2,则△ADB是直角三角形,且AD⊥BC.∴在Rt△ADC中,由勾股定理得:∴AB=AC.友情提示:勾股定理揭示了直角三角形三边的关系,值得注意的是:只有在直角三角形中才有两边(较小的两边)的平方和等于第三边(最长的边)的平方,在非直角三角形中不具备这种关系,因此,在非直角三角形中或者是不知道三角形是否是直角三角形的情况下,不能盲目地使用勾股定理.二、忽视直角所对的边是斜边例3 在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=b,b=8,求c的长.错解∵△ABC为直角三角形.由勾股定理得:a2+b2=c2,且c==10.分析错解未抓住题目实质,受勾股定理的表达式:a2+b2=c2的影响而理所当然的认为c是斜边,其实,由∠B=90°,知道斜边应该是b(如图2).因此,我们在运用勾股定理时,首先要正确识别哪个角是直角,从而确定哪条边是斜边,然后准确写出勾股定理表达式进行解题.正解因为∠B=90°,则在Rt△ABC中,由勾股定理得:友情提示:在使用勾股定理时,要注意直角所对的边才是斜边,而并不一定是我们所习惯的c为斜边.三、忽视隐含情形例4 已知直角三角形的两边长分别为3,4,求第三边长,错解第三边长为:分析同学们都知道3.4.5是最小的勾股数,在我国古代就已有“勾三、股四、弦五”的说法,这意味着当两直角边分别为3和4时,斜边长为5,部分学生在解这道题时,由于思考不周全,忽略隐含情形,误认为一边是3,一边是4,第三边长也就是斜边长为5.实际上,题目中包含着两种情况:一种是已知的两边之长3,4都是直角边长,这时的第三边即斜边长为5;另一种是已知的两边中较长的边(长)4为斜边长,长为3的边为直角边,此时的第三边(另一条直角边)长为.正解(1)当两直角边为3和4时,第三边长为:;(2)当斜边为4,一直角边为3时,第三边长为:∴第三边的长为5或.友情提示:在给出直角三角形两条边长,并且没有确定它们都是直角边时,第三边既可能是斜边,也可能是直角边.四、忽视分类讨论例5 在△ABC中,AB=15,AC=13,BC边上的高AD=12.求BC的长.错解如图3,在Rt△ABD和Rt△ACD中,由勾股定理可得:分析由于题目并没有给出对应的图形,所以根据习惯画出了图3,认为三角形的高在三角形的内部,忽视了三角形的高也可能在三角形的外部(即图4所示),此时BC=BD-CD.错解忽视了分类讨论思想的运用.正解如图3,当△ABC的高AD在三角形内部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:如图4,当△ABC的高AD在三角形外部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:友情提示:在题目没有给出相应图形时,我们一定要周密思考,根据题意画出所有符合条件的图形进行解答.五、忽视区别应用勾股定理是直角三角形的性质定理,而其逆定理则是直角三角形的判定定理.在已知直角三角形中,需要用到三边的关系时用勾股定理;而已知三边想用直角三角形的性质定理进行有关计算或推理时,则需先用勾股定理的逆定理判断它是否是直角三角形.在使用时要特别注意区别对待,例6 △ABC的三边长分别为7,24,25,试判断△ABC的形状.错解∵72+242=252,∴由勾股定理可知△ABC是直角三角形.分析虽然最终判断的结果是对的,但是判断的根据是错误的.因为勾股定理是直角三形的性质定理,故只有在直角三角形中才能使用,而本题需对三角形形状作出判断,判断的依据是勾股定理的逆定理,错解的原因在于未能充分理解勾股定理及其逆定理的概念和区别,导致错误运用.正解∵72+242=252,∴由勾股定理的逆定理可知:△ABC是直角三角形.友情提示:勾股定理是直角三形的性质,可以用它来解决直角三角形的三边的等量关系.而勾股定理的逆定理是根据三边的一个等量关系来判断三角形的形状的.六.忽视定理实质例7 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )(A)∠A为直角(B)∠C为直角(C)∠B为直角(D)不是直角三角形错解选B.分析因为常见的直角三角形表示时,一般将直角标注为∠C,因而有同学就习惯性的认为∠C就一定表示直角,加之对本题所给条件的分析不缜密,导致错误,该题中的条件应转化为a2-b2=c2,即a2=b2+c2,应根据这一等式进行判断.正解∵a2-b2=c2,∴a2=b2+c2.故选A.例8 下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A)1.2.3 (B)32,42,52(C),,(D),,错解选B.分析对勾3股4弦5的形式根深蒂固,对概念的理解流于表面形式,判断一个三角形是不是直角三角形时,应将所给三边的长进行平方看是否满足a2+b2=c2的形式.正解因为,故选C.友情提示:在使用勾股定理及其逆定理时,既要看是否满足a2+b2=c2的形式,更要看这个定理中字母a,b,.c的实质.七、忽视最大边所对的角是直角例9 一个三角形的三边的长分别是a=,b=,c=2.问这个三角形是直角三角形吗?所以这个三角形不是直角三角形.分析以上解答是错误的,因为根据三角形的边角关系可知,最大的角所对的边最大,而直角三角形中直角是最大的角,直角所对的边才是它的最大边即斜边,直角三角形中最大的边所对的角是直角.所以要判断一个三角形是不是直角三角形,先得找到它的最大边,而错解中并没有判断哪条边是最大边,却受a2+b2=c2的影响,认为c为最大边.实际上本题中b才是最大边.所以应判断a2+c2与b2之间的关系.根据勾股定理逆定理可知由a,b,c为边组成的三角形为直角三角形.例10 已知△ABC的三边的长分别是BC=41,AC=40,AB=9.试说明△ABC是直角三角形.错解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠C=90°.∴△ABC是直角三角形.分析以上解题思路是对的,但∠C=90°是不对的.直角三角形中哪个角是直角,应以最大边所对的角来确定,这里的最大边为BC,其所对的角为∠A,所以这里的∠A=90°.而不是∠C=90°.正解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠A=90°.∴△ABC是直角三角形.友情提示:在判断所给的线段能否组成直角三角形时,要先确定最大边,然后再通过计算,判断最大边的平方是否等于其它两边的平方和,应用勾股逆定理时,一定要注意最长边对的角为直角.勾股定理及其逆定理是初中几何中的重要工具,因此熟练掌握它们的使用方法是十分重要的,我们要加深理解这两个定理的本质意义,把“忽视”变为“重视”,尽量减少错误的发生.。
勾股定理易错题分析勾股定理是初中几何的重要知识,是几何中的常用工具。
初学时,很多同学常易犯各种各样的错误。
下面仅选择几例,供同学们参考和借鉴,以免犯这类错误。
【例1】在Rt△ABC中,a=3,b=4,求c.错解由勾股定理,得诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a 时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,【例2】已知RT△ABC中,∠B=RT∠,c=求b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴【例3】若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解 设第三边长为xcm .由勾股定理,得x 2=62+82.即第三边长为10cm .诊断 这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,所以第三边可能是斜边,也可能是直角边.正确解法 设第三边长为xcm .若第三边长为斜边,由勾股定理,得若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得=因此,第三边的长度是10cm 或者【例4】如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12AD.又RT △ABC 的周长是求AD .错解 ∵△ABC 是直角三角形,∴AC:AB:BC=3:4:5∴AC∶AB∶BC=3∶4∶5.∴AC=31232+AB=4 12BC=512)=156+又∵12AC AB∙=12BC AD∙∴AD=AC AB BC∙=25诊断我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AD∴AD又∵MC=MA,∴CD=MD.∵点C与点M关于AD成轴对称.∴AC=AM,∴∠AMD=60°=∠C.∴∠B=30°,AC=1 2∴AC+AB+BC=12BC+2BC+BC=6+∴BC=4.∵12∴AD=122BC【例5】在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.【例6】已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE.错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.所以高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误。
勾股定理易错题型整理:易错点1:错误理解勾股数例1:下列条件中,不能判断△ABC为直角三角形的是()A、a2:b2:c2=1:2:3B、a:b:c=3:4:5C、∠A+∠B=∠CD、∠A:∠B:∠C=3:4:5易错点2:求最短距离时展开图数据错误或展开错误例1:在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,求一只蚂蚁从点A处,到达C处需要走的最短路.例2:如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,那么它所行走的最短路线的长是______.(2)这个长方体盒子内能容下的最长木棒的长度为______.例3:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.14cm C.10cm D.无法确定易错点3:忽略分类讨论或多解例1:直角三角形两边长分别是3和4,则第三边长为______.例2:直角三角形两直角边长分别是3和4,则第三边长为______.例3:直角三角形两边长分别是3和4,则最长边为______.易错题型3:作图错误例1:如图所示,铁路上A,B两站(视为直线上两点)相距14km,C,D为两村庄(可看为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少km处?例2:如图,牧童在A处放牛,其家在C处,A、C到河岸l的距离分别为AB=2km,BD=8km,且CD=4km。
(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由。
(2)求出(1)中的最短路程。
(6分)必考知识点1:最短距离问题例1:如图3,在Rt△ABC中,∠ACB=90°,CD是高,AC=5,BC=12,求CD的长度。
八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
用勾股定理解题应注意的几个问题勾股定理是中学几何中一个很重要的定理,是继学习三角形三边关系之后用来描述特殊三角形三边关系的又一个重要的结论.它揭示了直角三角形三边长的内在联系,反映了三边之间特殊的平方关系,它为我们利用代数方法来研究几何图形提供了新的途径和方法,因此应用十分广泛.但在应用勾股定理时,经常会出现这样或那样的错误,那么怎样正确运用勾股定理呢?一、注意分清直角边和斜边例1 在Rt △ABC 中,a=8㎝,b=10㎝,90B ∠=,求第三边长c .错解:由勾股定理,得22222810164c a b =+=+=,∴C =分析:本题解法中错在没有正确运用题中所给的条件,忽视了90B ∠=,由于90B ∠=,所以b 应为斜边,而不是c .正解:因为90B ∠=,222b a c ∴=+,2222210836c b a ∴=-=-=, 6c ∴=,故第三边长为 6㎝.二、注意定理的应用条件例2 已知△ABC 中,三边长a 、b 、c 为整数,其中a=3㎝,b=4㎝,求第三边c 的长. 错解: 由勾股定理,得222a b c +=,∴2223425c =+=,5c ∴=(㎝). 分析: 勾股定理使的条件必须是在直角三角形中,本题解法是受“勾3股4弦5 ”的影响,错把ABC 当成直角三角形,导致错误的使用勾股定理.正解: 由三角形三边关系可得-<<+b a c b a ,17c ∴<<,又c 为整数,∴C 的长应为2㎝、3㎝、4㎝、5㎝或6㎝.三、注意定理和逆定理的区别例3 判断下列三条线断能否构成直角三角形:a=3、b=4、c=5.错解:22234916255+=+==,即222a b c +=,所以根据勾股定理可知,a 、b 、c 能构成直角三角形.分析: 本题错在在解题依据上混淆了定理和逆定理的条件结论,勾股定理是由“形”推得“数”,而逆定理则是由“数”推得“形”.因此不可混用.正解: 22234916255+=+==,即222a b c +=,由勾股定理逆定理可知,三条线段能构成直角三角形.四、注意解题语言叙述例4 已知三角形的三边长为5、12、13,试说明三角形是直角三角形.错解:因为直角边是5和12,斜边是13 ,所以22251216913+==,故三角形是直角三角形.分析:解法中错在一开始就明示了“直角边”和“斜边”,事实上只有在三角形是直角三角形的条件下才能称其为“直角边”、“斜边”.正解:22251216913+==,满足222a b c +=,由由勾股定理逆定理可知, 三角形是直角三角形.五、注意分类讨论例5 在Rt ABC 中,已知两边长为3、4,求第三边的长.错解: 因为ABC 是直角三角形,∴ABC5=.分析: 本题错在只考虑3、4为直角边的可能,而忽视了4也可以作为斜边的情况,因此须分类讨论.正解:(1)若4为直角边,5=;(2) 若4为斜边, 则第三边的=5.例6已知在ABC 中,AB=4,AC=3,BC 边上的高等于2.4,求ABC 的周长.错解:如图1所示, A B C D图12.434由勾股定理,得165BD ==,95CD ==,169555BC BD DC ∴=+=+=. ∴ABC 的周长为45312AB BC CA ++=++=.分析:上面解法中,只考虑了三角形的高在三角形内部的情况,忽视了高在形外的情况,即当ABC 是钝角三角形时.因此须分类讨论.正解:由勾股定理,得165BD ==,95CD ==. (1)若C ∠是锐角(如图1),则169555BC BD DC =+=+=,这时ABC 的周长为 45312AB BC CA ++=++=;(2) 若C ∠是钝角(如图2),AB D C图22.434则1697555BC BD DC =-=-=,这时ABC 的周长为7424355AB BC CA ++=++=.所以ABC 的周长为12或425. 例7已知在Rt ABC 中,两直角边的长为20和15,90BAC ∠=,求BD 的长. 错解: 如图3所示, ABC D 12图31520由题意根据勾股定理,得25BC ==,又由面积法可得1120152522AD ⨯⨯=⨯⨯,12AD ∴=,在Rt ADB 中,由勾股定理得16=.分析:本题错在只考虑了AB 的长是20的可能,忽视了AC 的长也可能为20的情况.因此须分两种情况求解.正解: 由题意根据勾股定理,得25BC ==,又由面积法可得1120152522AD ⨯⨯=⨯⨯,12AD ∴=. (1)当AB=20时,如图3,16=.(2) 当AC=20时,如图4,A1520B CD图4=.9所以BD的长为16或9 .当然,应用勾股定理解题时的错误不仅仅上述这些,错误也多种多样,但最根本原因是对定理不熟悉或理解不深刻造成的,为避免上述错误,大家一定要加强基础知识的学习,在正确理解的基础上强化练习,不断提高自己.。
勾股定理及其逆定理的探究忽视运用勾股定理的逆定理判定三角形的形状例在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某角度以每小时15海里的速度前进.2小时后,甲船到达M岛,乙船到达P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?错解:甲船航行的距离为 BM=8×2=16(海里),乙船航行的距离为 BP =15×2=30(海里).∵223016 =34(海里),且 MP=34(海里),∴△MBP 为直角三角形,∴∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.错解分析:本题最终判断的结果虽然也是正确的,但是在解题的过程中忽略了对使用勾股定理的前提条件的证明,犯了运用上的错误.本题考查的重点是对三角形形状的判定,应该先应用勾股定理的逆定理,判定三角形的形状,再求出乙船的航行方向.正解:甲船航行的距离为 BM=8×2=16(海里),乙船航行的距离为 BP =15×2=30(海里).∵162+302=1156,342=1156,∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.点拨:已知三角形为直角三角形求其边的关系时,应用直角三角形的勾股定理;知道三角形的三边关系判定三角形是否为直角三角形时,应用勾股定理的逆定理。
在解题时要分清这两个定理的使用方法.通过本例告诉我们,掌握勾股定理的逆定理要注意以下两点:一是勾股定理的逆定理是利用三角形三边之间的数量关系来判定一个三角形是否为直角三角形的定理;二是只要一个三角形的三边满足两较小边的平方和等于第三边的平方,就可以判定这个三角形是直角三角形,反之,这个三角形就不是直角三角形.。
勾股定理错题集一、盲目套用勾股定理致错例1在△ABC 中,a ,b ,c 分别是△A ,△B ,△C 的对边,且a =3,b =4,且b <c .若c 为整数,则c =____________. 错解:填5.剖析:错解受“勾3,股4,弦5”的思维定势,将△ABC 当作直角三角形,盲目套用勾股定理计算,而本题并没有说△ABC 是直角三角形,因此只能运用三角形三边关系求解.正解:_______________.二、考虑不全发生漏解致错例2 若直角三角形的两边长分别为5和12,则该三角形的第三边长为____________.错解:填13.剖析:错解将第三边当成斜边直接计算,而本题中已知的两边并未说明是直角边还是斜边,因此要分类讨论. 正解:_______________.三、不理解勾股弦数的概念致错例3 下列各组数:△0.07,0.24,0.25;△6,8,10;△7,8,10;△53,54,1.其中是勾股数的有____________.(填序号)错解:填△△△.剖析:错解把勾股数理解为满足勾股定理的三个数即为勾股数,而勾股弦数不仅要满足勾股定理,还必须是一组正整数.正解:_______________.四、不验证勾股定理致错例4 有下列各组数:△3,4,5;△3,4,5;△32,42,52;△6,8,10.其中分别以它们为三边长的三角形中,是直角三角形的有( )A. 1组B. 2组C. 三组D. 4组错解:选D.剖析:错解并未验证各组数是否满足勾股定理,想当然地认为勾股数“3,4,5”及它们的倍数、平方数和开方后的数都满足勾股定理,而将勾股数同时平方或开方,得到新的一组数不再满足勾股定理.正解:_______________.例1 由三角形三边关系,得4-3<c <4+3,即1<c <7.因为b < c ,所以4< c < 7.又因为c 为整数,所以c 的值为5或6.故填5或6.例2 设该直角三角形的第三边长为x .当x 为斜边时,由勾股定理,得52+122=x 2,解得x =±13;(负值舍去)当x 为直角边时,由勾股定理,得52+x 2=122,解得x =±119.(负值舍去)故填13或119.例3 △ 例4 B。
《勾股定理》专题复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2—a2 .2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形.这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方—最小边的平方=中间边的平方。
③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角。
④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2=c2的三个正整数,称为勾股数.注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数.常见勾股数有:(3,4,5)(5,12,13)(6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短.二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.4、在直线l 上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。
考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为 .2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 . 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
第11讲勾股定理与锐角三角函数易错点梳理易错点梳理易错点01利用勾股定理解题漏解在题目中没有明确哪个角为直角时,常需要分类讨论,不可漏解。
易错点02利用勾股定理弄错第三边在利用勾股定理计算时,误认为第三边为斜边,其实第三边可能是斜边,也可能是直角边。
易错点03不能正确理解坡度的概念坡度是指坡面的垂直高度h 和水平宽度l 的比值,而并非度数。
易错点04误解仰角与俯角的概念仰角和俯角是指视线与水平线的夹角,而非视线与铅垂线的夹角。
易错点05忽略解直角三角形的前提条件只有在直角三角形中才能解直角三角形,没有直角三角形时需要通过作辅助线构造直角三角形求解。
例题分析考向01勾股定理例题1:(2021·山东李沧·九年级期中)如图,已知矩形纸片ABCD 的两边AB =4,BC =2,过点B 折叠纸片,使点A 落在边CD 上的点F 处,折痕为BE ,则EF 的长为()A .8-B .C .6D .65【答案】A【思路分析】由翻折的性质,得BF =AB =4,AE =EF ,设AE =EF =x ,在Rt △DEF 中,利用勾股定理构建方程并求解,即可解决问题.【解析】∵四边形ABCD 是矩形,∴AD =BC =2,CD =AB =4,∠D =∠C =90°,根据题意,得:BF =AB =4,AE =EF ,∴CF ==设AE =EF =x ,在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴()(22224x x-+-=∴432x =-∴8x =-故选:A .【点拨】本题考查了轴对称、矩形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握轴对称、矩形、勾股定理的性质,从而完成求解.例题2:(2021·河南泌阳·九年级期中)如图,在△ABC 中,∠C =90°,∠A =30°,AB =2.以点B 为圆心,BC 为半径画弧交AB 于点D ,再以点A 为圆心,AD 为半径画弧交AC 于点E .则CE 的长等于()A1B C 1D .1【答案】A【思路分析】解直角三角形求出AC ,AE ,可得结论.【解析】解:90,30,2C A AB ︒︒∠=∠== ,112BC AB =∴=,C A ===,1BC BD AD AE =∴===,CE 1AC AE =--∴,故选:A【点拨】本题考查直角三角形30°角的性质等知识,解题的关键是求出BC =BD =AD =AE =1,属于中考常考题型.考向02勾股定理的逆定理例题3:如图,点E 是正方形ABCD 内一点,点E 到点A ,B 和D 的距离分别为1,,延长AE 与BC 相交于点F ,则EF 的长为()A .3B .4C .83D .103【答案】D 【思路分析】将绕点A 顺时针旋转90°得到,作BM AF ⊥垂足为M ,根据勾股定理逆定理得到是直角三角形,求出2MB =,AB =利用∽AFB △得到AF ,可得结论.【解析】解:作BM AF ⊥垂足为M ,将绕点A 顺时针旋转90︒得到,连接EG .∵四边形ABCD 为正方形,∴AB AD =,90BAD ∠=︒,∵绕点A 顺时针旋转后得到,∴90EAG DAB ∠=∠=°,DE BG =∵1AE AG ==,∴EG ==45AEG AGE ∠=∠=°∵(222210EG EB +=+=,2210BG ==,∴222BG EG EB =+,∴90BEG ∠=︒,∵90BEM AEG ∠+∠=°,∴9045BEM AEG ∠=︒-∠=︒,∵EB =∴sin 452ME MB EB ==⋅︒=,∴AM =AE +EM=1+2=3,在中,AB ===在和AFB △中,BAM BAF ∠=∠,=90AMB ABF ∠=∠︒,∴∽AFB △,∴AB AMAF AB=,∴AF =∴133AF =,∴1310133EF AF AE =-=-=,故选择:D .【点拨】本题考查了解直角三角形和相似三角形的判定与性质,锐角三角函数,勾股定理与勾股定理逆定理,解题关键是通过旋转构建直角三角形,利用勾股定理与逆定理,相似三角形性质和锐角三角函数求解是解题关键.例题4:(2021·陕西灞桥·一模)如图,在矩形ABCD 中,AB =10,P 是CD 边上一点,M 、N 、E 分别是PA 、PB 、AB 的中点,以下四种情况,哪一种四边形PMEN 不可能为矩形()A .AD =3B .AD =4C .AD =5D .AD =6【答案】D【思路分析】先证四边形PMEN 是平行四边形,当∠APB =90°时,四边形PMEN 是矩形,设DP =x ,CP =10-x ,再由勾股定理得出方程,分别计算即可.【解析】解:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD =10,∠C =∠D =90°,∵M 、N 、E 分别是PA 、PB 、AB 的中点,∴ME 、NE 是△ABP 的中位线,∴ME ∥BP ,NE ∥AP ,∴四边形PMEN 是平行四边形,当∠APB =90°时,四边形PMEN 是矩形,设DP =x ,CP =10﹣x ,由勾股定理得:AP2=AD2+x2,BP2=BC2+(10﹣x)2,AP2+BP2=AB2,∴AD2+x2+AD2+(10﹣x)2=102,AD2+x2﹣10x=0,①当AD=3时,x2﹣10x+9=0,x=1或x=9,符合题意;②当AD=4时,x2﹣10x+16=0,x=2或x=8,符合题意;③当AD=5时,x2﹣10x+25=0,x=5,符合题意;④当AD=6时,x2﹣10x+36=0,无解;故选:D.【点拨】本题考查了矩形的判定与性质、平行四边形的判定与性质以及勾股定理等知识;熟练掌握矩形的性质和勾股定理是解题的关键.考向03勾股定理的应用例题5:(2021·山东省诸城市树一中学三模)如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱侧面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()BAC【答案】B【思路分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理来求.【解析】解:把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,BC =6,AC 为底面半圆弧长,AC =2π,所以AB 故选:B .【点拨】此题主要考查了平面展开图的最短路径问题,本题的关键是要明确,要求两点间的最短线段,就要把这两点放到一个平面内,即把圆柱的侧面展开再计算.例题6:(2021·山东长清·一模)如图,一艘轮船在A 处测的灯塔C 在北偏西15°的方向上,该轮船又从A 处向正东方向行驶20海里到达B 处,测的灯塔C 在北偏西60°的方向上,则轮船在B 处时与灯塔C 之间的距离(即BC 的长)为()A .B .()10海里C .40海里D .()10海里【答案】D【思路分析】过A 作AD BC ⊥于D ,解直角三角形求出CD 和BD ,即可解决问题.【解析】解:过A 作AD BC ⊥于D ,如图所示:在Rt △ABD 中,30ABD ∠=︒,20AB =海里,∴1102AD AB ==(海里),BD AB ===(海里),∵30ABC ∠=︒,9015105BAC ∠=︒+︒=︒,∴1801053045C ∠=︒-︒-︒=︒,∴ACD △是等腰直角三角形,∴10CD AD ==海里,∴()10BC BD CD =+=+海里,故选:D .【点拨】本题考查了解直角三角形-方向角问题,正确的作出辅助线是解题的关键.考向04正弦、余弦和正切例题7:如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若AC BC =2,则sin ∠ACD 的值为()A 3B .3C D .23【答案】A【思路分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sinB .【解析】在直角△ABC 中,根据勾股定理可得:AB 3===,∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴AC sin ACD sin B AB ∠=∠==.故选:A .【点拨】本题考查了锐角三角函数的定义,利用了勾股定理,余角的性质,正弦三角函数等于对边比斜边.例题8:如图所示,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为()A .12B .34C .2D .45【答案】C【思路分析】连接CD ,在中,由勾股定理求得OD 的长;由同弧所对的圆周角相等得到∠OBC =∠ODC ,求得∠ODC 的余弦值即可.【解析】解:设⊙A 交x 轴于另一点D ,连接CD ,作图如下:∵90COD ∠= ∴CD 是直径∴CD =10∵(0,5)C ∴OC =5在中,90COD ∠= ,OC =5,CD =10由勾股定理得:222OC OD CD +=即:21002575OD =-=∵0OD >∴OD =∵∴∠OBC =∠ODC ,∴在中,cos cos OD OBC ODC CD ∠=∠=故选:C【点拨】本题考查圆周角定理的推论,勾股定理解直角三角形,锐角三角函数等知识点,能够结合图形,利用数形结合思想是解此类题的关键.例题9:(2021·广东·深圳市新华中学九年级期末)如图,已知E 是正方形ABCD 中AB 边延长线上一点,且AB BE =,连接CE 、DE ,DE 与BC 交于点N ,F 是CE 的中点,连接AF 交BC 于点M ,连接BF .有如下结论:①=DN EN ;②;③1tan 3CED ∠=;④=2CMF BEFM S S 四边形,其中正确的是()A .①②③B .①②④C .②③④D .①②③④【答案】D【思路分析】(1)证明△NCD ∽△NBE ,根据相似三角形的性质列出比例式,得到DN =EN ,判断①;根据两边对应成比例、夹角相等的两个三角形相似判断②;FG ⊥AE 于G ,根据等腰直角三角形的性质、正切的定义求出tan ∠FAG ,根据相似三角形的性质判断③;根据三角形的面积公式计算,判断④.【解析】解:∵四边形ABCD 为正方形,AB =BE ,∴AB =CD =BE ,AB ∥CD ,∴△NCD ∽△NBE ,∴ND CDNE BE==1,∴DN =EN ,故①结论正确;∵∠CBE =90°,BC =BE ,F 是CE 的中点,∴∠BCE =45°,BF 12=CE =,FB =FE ,BF ⊥EC ,∴∠DCE =90°+45°=135°,∠FBE =45°,∴∠ABF =135°,∴∠ABF =∠ECD ,∵2DC CE =,2BF AB =,∴DC BFCE AB=,∴△ABF ∽△ECD ,故②结论正确;作FG ⊥AE 于G ,则FG =BG =GE ,∴13FG AG =,∴tan ∠FAG 13FG AG ==,∵△ABF ∽△ECD ,∴∠CED =∠FAG ,∴tan∠CED 13=,故③结论正确;∵tan∠FAG 1 3=,∴13 BMAB=,∴12 BMMC=,∴S△FBM12=S△FCM,∵F是CE的中点,∴S△FBC=S△FBE,∴S四边形BEFM=2S△CMF,故④结论正确;故选:D.【点拨】本题考查的是相似三角形的判定和性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、三角形的面积公式是解题的关键.考向05特殊角的三角函数值例题10:(2021·江苏·苏州高新区第二中学二模)如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD 时,CF的值为()A1B.2-C.2D.4-【答案】D【思路分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得CB=CM,△D′FM是含30°角的直角三角形,利用正切函数的知识,即可求得答案.【解析】解:延长FC 、A ′D ′交于M ,设CF =x ,FD =2-x ,∵四边形ABCD 为菱形,∠A =60°,∴AB ∥CD ,∠DCB =∠A =60°,∴∠A +∠D =180°,∴∠D =120°,由折叠得:∠BD ′F =∠D =120°,∴∠FD ′M =180°-120°=60°,∵D ′F ⊥CD ,∴∠D ′FC =90°,∴∠M =90°-60°=30°,在Rt △FOC 中,∠DCB =60°,∵∠DCB =∠CBM +∠M ,∴∠CBM =60°-30°=30°,∵∠BCD =∠CBM +∠M =60°,∴∠CBM =∠M =30°,∴CB =CM =2,由折叠得:D ′F =DF =2-x ,tan M =tan30°=22D F x FM x -=+'=∴x∴CF 故选:D .【点拨】本题考查了翻折变换和菱形的性质,及特殊角的三角函数值,作辅助线,构建直角三角形是解题的关键.例题11:(2021·贵州黔东南·中考真题)如图,在边长为2的正方形ABCD 中,若将AB 绕点A 逆时针旋转60︒,使点B 落在点B '的位置,连接B B ',过点D 作DE ⊥BB ',交'BB 的延长线于点E ,则B E '的长为()A.31-B .232-C .233D .433【答案】A 【思路分析】利用已知条件求得30CBF EDF ∠=∠=︒,设EF x =,将,,DF FC BF 都表示出含有x 的代数式,利用tan FBC ∠的函数值求得x ,继而求得B E '的值【解析】设,BE CD 交于点F ,由题意:,60AB AB BAB ''=∠=︒∴是等边三角形∴60ABB '∠=︒四边形ABCD 为正方形90ABC C ∴∠=∠=︒∴∠CBF =90°-60°=30°,DE ⊥BB '90E ∴∠=︒又DFE CFB∠=∠ 30EDF CBF ∴∠=∠=︒设EF x=则221sin 2EF EF DF EF x EDF ====∠22FC DC DF x=-=-=244sin FC BF FC x CBF==-∠43BE BF EF x=+=-43223B E BE BB x x''=-=--=-tan 3FC CBF BC ∠==2223x -∴=解得:13x =-23(1)13B E '∴=-⨯-=故选A 【点拨】本题考查了正方形的性质,等边三角形的判定与性质,锐角三角函数定义,特殊角的锐角三角函数值,灵活运用锐角三角函数的定义及特殊三角函数值是解题的关键.考向06锐角三角函数的性质例题12:已知sin cos αα>,那么锐角α的取值范围是()A .3045α<<B .045α<<C .4560α<<D .4590α<< 【答案】D【思路分析】根据当α=45°时sin α=cos α和正弦函数和余弦函数的增减性即可得出答案.【解析】解:∵α=45°时sin α=cos α,当α是锐角时sin α随α的增大而增大,cos α随α的增大而减小,∴45°<α<90°.故选D .【点拨】考查了锐角三角函数的增减性,当角度在0°~90°间变化时,正弦值随着角度的增大而增大,余弦值随着角度的增大而减小.例题13:已知α为锐角,下列结论:①sin cos 1αα+=;②如果45α> ,那么sin cos αα>;③如果1cos 2α>,那么60α< 1sin α=-,正确的有()A .1个B .2个C .3个D .4个【答案】C【思路分析】根据锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义求解.【解析】①如果α=30°,那么sinα=12,,,错误;②∵90°>α>45°,∴0°<90°-α<45°<α,∴sinα>sin (90°-α),∴sinα>cosα,正确;③∵cos60°=12,锐角余弦函数随角的增大而减小,∴如果cosα>12,则α<60°,正确;④∵sinα≤1,∴sinα-1≤0,,正确.故选C .【点拨】本题考查了锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义,综合性较强,涉及知识点较多,须认真仔细.考向07解直角三角形及其应用例题14:(2021·河南镇平·九年级期中)如图给出了一种机器零件的示意图,其中2m =米、3n =米,则AB 的长为()A .1⎛ ⎝⎭米B .1⎛ ⎝⎭米C .)1米D .)1+米【答案】C 【思路分析】如图,作CE BA ⊥交BA 的延长线于,E 作BF CD ⊥交CD 的延长线于F ,证明四边形FBEC 为矩形,可得,,BF CE CF BE ==再求解tan ,DF BF DBF n =Ðg ,AE CE BF n ===可得AB BE AE CD DF AE =-=+-,3m n =+-再代入数据可得答案.【解析】解:如图,作CE BA ⊥交BA 的延长线于,E 作BF CD ⊥交CD 的延长线于F ,而90,F ABF Ð=Ð=°∴四边形FBEC 为矩形,,,BF CE CF BE \==在Rt BDF V 中,,30,BF n DBF =Ð=°tan ,3DF BF DBF n \=Ð=g 在Rt ACE △中,90,45,AEC ACE �靶=,AE CE BF n \===AB BE AE CD DF AE\=-=+-,3m n =+-当2m =米、3n =米,)231AB \=-=米,故选:C【点拨】本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建需要的直角三角形是解题的关键.例题15:(2021·浙江平阳·九年级期中)我国伟大的数学家刘徽于公元263年攥《九章算术注》中指出,“周三径一”不是圆周率值,实际上是圆内接正六边形周长和直径的比值(图1).刘徽发现,圆内接正多边形边数无限增加时,多边形的周长就无限逼近圆周长,从而创立“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法.如图2,六边形ABCDEF 是圆内接正六边形,把每段弧二等分,作出一个圆内接正十二边形,连结AG ,CF ,AG 交CF于点P ,AP =AP CP =()A .2BC D 【答案】D 【思路分析】设正六边形的中心为O ,连接OA ,过点A 作AH ⊥FC 于点H ,则△OFA 是等边三角形,∠PFA =60°,由正十二边形的中心角及圆周角定理,可得∠FAG =75°,则易得△AHP 是等腰直角三角形,从而可求得AH =PH 的长,以及FH 、AF 的长,故可得PF 、FC 的长,最后求得PC 的长,并求得结果.【解析】设正六边形的中心为O ,连接OA ,过点A 作AH ⊥FC 于点H ,如图∵正六边形的中心角为:360°÷6=60°,OA =OF∴△OFA 是等边三角形∴∠PFA =60°,OF =AF∵AH ⊥FC∴∠FAH =90°-∠PFA =30°∵正十二边形的中心角为:360°÷12=30°∴弧FEG 所对的圆心角为5×30°=150°∴∠FAG ==75°∴∠HAP =∠HPA =45°∴2AH PH AP ===∴tan 302FH AH =︒= ∴AF =2FH =4∴2PF FH PH =+=+FC =2OF =8∴8(26PC FC PF =-=-+=-∴AP CP =故选:D .【点拨】本题考查了正多边形与圆,圆周角定理,等边三角形的判定与性质,解非直角三角形等知识,关键是通过恰当的辅助线把一般三角形转化为特殊三角形来解决.微练习1.有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1.其中勾股数有()A .1组B .2组C .3组D .4组【答案】A【解析】解:①32+42=52,三边是整数,同时能构成直角三角形,故为勾股数;②(62)2+(82)2≠(102)2,不能构成直角三角形,故不为勾股数;③0.5,1.2,1.3三边不是正整数,故不为勾股数;④1故其中勾股数有1组.故选:A .2.(2021·广东·深圳市龙岗区百合外国语学校九年级期中)如图,正方形ABCD 的边长为4,点E 在边AB 上,BE =1,∠DAM =45°,点F 在射线AM 上,且AF F 作AD 的平行线交BA 的延长线于点H ,CF 与AD 相交于点G ,连接EC 、EG 、EF .下列结论:①CG ;②△AEG 的周长为8;③△EGF 的面积为1710.其中正确的是()A .①②③B .①③C .①②D .②③【答案】D 【解析】解:如图,在正方形ABCD 中,AD ∥BC ,AB =BC =AD =4,∠B =∠BAD =90°,∴∠HAD =90°,∵HF ∥AD ,∴∠H =90°,∵∠HAF =90°﹣∠DAM =45°,∴∠AFH =∠HAF .∵AF ∴AH =HF =1=BE .∴AE=3,EH=AE+AH=AB﹣BE+AH=4=BC,∴△EHF≌△CBE(SAS),∴EF=EC,∠HEF=∠BCE,∵∠BCE+∠BEC=90°,∴HEF+∠BEC=90°,∴∠FEC=90°,∴△CEF是等腰直角三角形,在Rt△CBE中,BE=1,BC=4,∴EC2=BE2+BC2=17,∴S△ECF12=EF•EC12=EC2172=,过点F作FQ⊥BC于Q,交AD于P,∴∠APF=90°=∠H=∠HAD,∴四边形APFH是矩形,∵AH=HF,∴矩形AHFP是正方形,∴AP=PF=AH=1,同理:四边形ABQP是矩形,∴PQ=AB=4,BQ=AP=1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,∵AD∥BC,∴△FPG∽△FQC,∴FP PG FQ CQ=,∴153PG =,∴PG3 5 =,∴AG=AP+PG8 5 =,∴DG=AD﹣AG=4812 55-=,在Rt△EAG中,根据勾股定理得,EG175 ==,∴△AEG的周长为AG+EG+AE81755=++3=8,故②正确;在Rt△CDG中,根据勾股定理得,CG=∵S △ECG =S 正方形ABCD ﹣S △AEG ﹣S △EBC ﹣S △GDC =AD 212-AG •AE 12-GD •DC 12-EB •BC =421825-⨯⨯311225-⨯⨯412-⨯1×4345=,∴S △EGF =S △ECF ﹣S △ECG 1734172510=-=,故③正确;故选:D .3.(2021·广东·深圳市龙岗区宏扬学校九年级期中)矩形ABCD 中,AB =2,AD =1,点M 在边CD 上,若AM 平分∠DMB ,则DM 的长是()AB .14C 32D .2【答案】D【解析】解:∵四边形ABCD 是矩形,∴CD =AB =2,AB ∥CD ,BC =AD =1,∠C =90°,∴∠BAM =∠AMD ,∵AM 平分∠DMB ,∴∠AMD =∠AMB ,∴∠BAM =∠AMB ,∴BM =AB =2,∴CM∴DM =CD -CM 故选:D .4.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是()A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2﹣a 2=b 2【答案】C【解析】解:在△ABC 中,∠B =90°,∴△ABC 为直角三角形,则根据勾股定理得:222a c b +=.故选:C .5.如图,已知△ABC 中,AB =AC ,∠BAC =90°,∠EPF =90°,且其顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①△PFA ≌△PEB ;②∠PFE =45°;③EF =AP ;④图中阴影部分的面积是△ABC 的面积的一半.当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的有()A .1个B .2个C .3个D .4个【答案】C 【解析】∵AB =AC ,∠BAC =90°,点P 是BC 中点∴∠APB =90°,AP =CP =BP ,∠B =∠C =∠CAP =45°∵∠EPF =∠APB =90°∴∠FPA +∠APE =∠APE +∠EPB∴∠FPA =∠EPB在△PFA 和△PEB 中45FPA EPB AP BP CAP B ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△PFA ≌△PEB故①正确∴PF =PE ,△PFA 的面积=△PEB 的面积∴11(180)(18090)4522PFE PEF EPF ∠=∠=︒-∠=⨯︒-︒=︒故②正确∴阴影部分面积=12PCF PEB PCF PFA PAC ABC S S S S S S +=+==△△△△△△故④正确当点E 、F 分别是AB 、AC 的中点时,PE ⊥AB ,则△PAE 是等腰直角三角形,由勾股定理得222PA PE =∵222EF PE =∴EF =AP当点E 、F 不是AB 、AC 的中点时,则PE 与AB 不垂直,从而222PB PE ≠但222EF PE =∴EF ≠AP 故③错误所以正确的结论有3个故选:C6.在△ABC 中,∠C =90°,tan A =13,则sin A =()A B 2C .214aD 【答案】A【解析】解:∵1tan 3BC A AC ==,∴在中,设BC =x ,AC =3x ,由勾股定理得:222=+AB BC AC∴AB x ,∴sin A =BCAB =10,故选:A .7.(2021·四川·成都绵实外国语学校九年级期中)在Rt △ABC 中,∠C =90°,AC =1,BC =2,则cos B 的值是()A .12B C .2D 【答案】D【解析】解:如图,,∠C =90°,AC =1,BC =2,AB \=cos ,5BC B AB \==故选D8.(2021·广东·佛山市华英学校九年级期中)在中,90C ∠=︒,A ∠、B Ð、C ∠的对边分别是a 、b 、c .当已知A ∠和a 时,求c ,应选择的关系式是()A .sin a c A=B .cos a c A=C .tan c a A =⋅D .sin c a A=⋅【答案】A【解析】解:∵在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ∴sin A =a c,∴c =sin aA,故选A .9.(2021·山东岱岳·九年级期中)如图,在C 处测得旗杆AB 的顶端A 的仰角为30°,向旗杆前进10米到达D 处,在D 处测得A 的仰角为60°,则旗杆的高为()米.A .B .10C .D .【答案】C【解析】解:由题意得:∠C =30°,∠ADB =60°,∴∠DAC =∠ADB ﹣∠C =30°,∴∠DAC =∠C ,∴AD =DC =10米,在Rt △ADB 中,sin ∠ADB =ABAD,则AB =AD •sin ∠ADB =,故选:C .10.(2021·山东任城·九年级期中)如图,为方便行人过某天桥,市政府在10米高的天桥两端修建斜道,设计斜坡满足sin A =13,则斜道AC 的长度是()A .25B .30C .35D .40【答案】B【解析】在Rt △ABC 中,∠ABC =90°,BC =10米,sin A =13,则BC AC=13,即10AC=13,解得:AC =30(米),故选:B .二、填空题11如图,已知CD 是ABC V 的边AB 上的高,若CD =,1AD =,2AB AC =,则BC 的长为_____.【答案】【解析】解:∵CD 是△ABC 的边AB 上的高,∴△ADC ,△BDC 是直角三角形,在Rt △ADC 中,由勾股定理得:AC =2,∵AB =2AC ,∴AB =4,BD =AB +AD =4+1=5,在Rt △BDC 中,由勾股定理得:BC故答案为:12.若三角形ABC V 的三边边长分别为6,8,12,则ABC V 的面积是______.【解析】解:如图,AB =6,AC =8,BC =12,过A 作AD ⊥BC ,垂足为D ,设BD =x ,则CD =12-x ,则有2222AB BD AC CD -=-,∴()22226812x x -=--,解得:x =296,即BC =296,∴AD∴△ABC 的面积为12AD BC ⨯⨯,.13.(2021·浙江·杭州市天杭实验学校九年级期中)⊙O 内一点P ,OP =3cm ,过点P 的最短的弦AB =,Q 是⊙O 上除AB 两点之外的任一点,则∠AQB =____.【答案】60︒或120︒【解析】解:如下图当AB ⊥OP ,AB 为过点P 的最短的弦且AB =,连接OA ,OB ,∵AB ⊥OP ,∴12AP AB ==,∠AOB =2∠AOP ,∴tan AP AOP OP ∠===∴60,120AOP AOB ∠=︒∠=︒,当Q 点在1Q 处时,11602AQ B AOB ∠=∠=︒,当Q 点在2Q 处时,21180120AQ B AQ B ∠=︒-∠=︒,故答案为:60︒或120︒.14.(2021·广东·佛山市华英学校九年级期中)在直角坐标系中,等边如图放置,点A的坐标为()1,0,每一次将绕着点O 逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11OB A ∆,第二次旋转后得到22A OB V ,…,以此类推,则点2021A 的坐标为________.【答案】(20202,20202)【解析】解:(1)∵A 点坐标为(1,0),∴OA =1,∴第一次旋转后,点1A 在第一象限,1122OA ==;第二次旋转后,点2A 在第二象限,2242OA ==;第三次旋转后,点3A 在x 轴负半轴,3382OA ==;第四次旋转后,点4A 在第三象限,44162OA ==;第五次旋转后,点5A 在第四象限,55322OA ==;第六次旋转后,点6A 在x 轴正半轴,86642OA ==;如此循环,每旋转6次,A 的对应点又回到x 轴正半轴上,∵2021÷6=336余5,∴点2021A 在第四象限,且202120212OA =,2021=60AOA ∠o,过点2021A 作2021A H x ⊥轴于H ,∴202130OA H =o∠,∴20202021122OH OA ==,∴202020212A H ==,∴点2021A 的坐标为(20202,20202),故答案为:(20202,20202).三、解答题15.如图1,正方形ABCD 中,点E 是边BC 延长线上一点,连接DE ,过点B 作BF ⊥DE ,垂足为点F ,BF 与CD 相交于点G .(1)求证:△BCG ≌△DCE ;(2)如图2,连接BD ,若BE =,DG =,求tan ∠DBG 的值.【答案】(1)见解析;(2)12【解析】(1)证明:∵四边形ABCD 是正方形,∴∠BCG =∠DCE =90°,BC =CD ,∵BF ⊥DE ,∴∠DFG =∠BCG =90°,∵∠BGC =∠DGF ,∴∠CBG =∠CDE .在△BCG 和△DCE 中,CBG CDE BC CD BCG DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCG ≌△DCE ,(2)解:过点G 作GH ⊥BD 垂足为H,∵△BCG ≌△DCE ,∴CG =CE ,∵BE =BC +CE=DG =CD ﹣CG=∴BC =CD=CG =CE,在RT △BDC 中,∵∠BCD =90°,∴BD6=,∵∠DHG =45°,∠DHG =90°,DG =∴sin 45DH DG ︒==2,∴DH =2,∴GH =DH =2,∵BH =BD ﹣DH ,∴BH =6﹣2=4,在RT △BHG 中,∵∠BHG =90°,∴tan ∠DBG =HGBH,∴tan ∠DBG =1216.如图,图1,图2,均为正方形网格,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)画一个直角三角形,且三边之比为1:2(2)画一个边长为整数的菱形,且面积等于24【答案】(1)见解析;(2)见解析【解析】解:(1)如图1中,△ABC即为所求.(2)如图2中,菱形ABCD即为所求.17.(2021·福建同安·九年级期中)如图,在等边中,点D为内的一点,△绕点A逆时针旋转60°得,连接DE.∠=︒,90120ADB∠=︒,将ABDADC(1)求证:AD DE=;(2)若1BD=,求AD,CD的长.【答案】(1)见解析;(2)2,==AD CD【解析】(1)证明:∵将△ABD 绕点A 逆时针旋转60°得△ACE ,∴△ABD ≌△ACE ,∠BAC =∠DAE ,∴AD =AE ,BD =CE ,∠AEC =∠ADB =120°,∵△ABC 为等边三角形,∴∠BAC =60°,∴∠DAE =60°,∴△ADE 为等边三角形,∴AD =DE ;(2)∵△ABD ≌△ACE ,∴∠ADB =∠AEC =120°,∵∠ADC =90°,∠DAE =60°,∴∠DCE =360°-∠ADC -∠AEC -∠DAE =90°;∵△ADE 为等边三角形,∴∠ADE =60°,∴∠CDE =∠ADC -∠ADE =30°,又∵∠DCE =90°,∴DE =2CE =2BD =2,∴AD =DE =2,在Rt △DCE 中,DC ===18.(2021·河北·广平县第二中学九年级期中)如图,小东在教学楼距地面8米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】国旗匀速上升的速度约为0.25米/秒.【解析】解:由题意得:,37,45,8CD AB ACD BCD BD ⊥∠=︒∠=︒=米,是等腰直角三角形,8CD BD ∴==米,在Rt ACD △中,tan 80.756AD CD ACD =⋅∠≈⨯=(米),14AB AD BD ∴=+≈米,∴国旗匀速上升的速度约为(14 2.5)460.25-÷=(米/秒),答:国旗匀速上升的速度约为0.25米/秒.19.(2021·上海市金山初级中学九年级期中)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点D 为边AB 的中点,DE ⊥AB 交边BC 于点E ,点P 为边AC 上一动点(P 与A 、C 不重合),点Q 为边BC 上一动点,且∠PDQ =90°.(1)求证:△ADP ∽△EDQ ;(2)在点P 运动过程中,请写出线段BQ 的取值范围;(3)连结PQ ,求∠DPQ 的正切值.【答案】(1)见解析;(2)72544BQ <<;(3)34【解析】解:(1)∵DE ⊥AB ,∴∠ADE =∠BDE =∠PDQ =∠C =90°,∴∠A +∠B =90°,∠B +∠DEQ =90°,∠ADP +∠PDE =90°,∠PDE +∠EDQ =90°,∴∠A =∠DEQ ,∠ADP =∠EDQ ,∴△ADP ∽△EDQ ;(2)∵在△ABC 中,∠ACB =90°,AC =6,BC =8,∴10AB ==,∵D 是AB 的中点,∴152AD BD AB ===,∵∠EDB =∠ACB =90°,∠B =∠B ,∴△EDB ∽△ACB ,∴ED EB BDAC AB BC==即56108ED EB==,∴154ED=,254EB=,如图所示,当P与C点重合时,BQ有最小值,∵D为直角三角形ABC斜边AB的中点,∴152AD DC DB AB====,∴∠DCQ=∠B,∵∠ACB=∠CDQ=90°,∴△CDQ∽△BCA,∴DC CQBC AB=即5810CQ=,∴254 CQ=,∴74 BQ BC CQ=-=;如图所示,当P点和A点重合时,BQ有最大值,最大值即为BE,∵P与A、C不重合,∴725 44BQ<<;(3)由(1)得△ADP∽△EDQ,由(2)得154ED=,AD=5,∴DQ DE DP AD=,∵∠PDQ=90°,∴1534tan =54DQ DE DPQ DP AD ===∠.20.(2021·广东·佛山市华英学校九年级期中)如图,矩形ABCD 中,8,3AB AD ==,M 是边CD 上一点,将ADM △沿直线AM 翻折,得到.(1)如图1,当AN 平分MAB ∠时,求DM 的长.(2)如图2,当M 是CD 的中点时,连接CN ,则cos MCN ∠的值;(3)连接BN ,当1DM =时,求的面积.【答案】(1)DM (2)cos MCN ∠=45,(3)S △ABN =485.【解析】解:(1)∵ADM △沿直线AM 翻折得到.∴∠DAC =∠NAM ,∵NA 平分∠MAB ,∴∠NAM =∠NAB ,∴∠DAC =∠NAM =∠NAB ,∵四边形ABCD 为矩形,∴∠DAB =90°,∴3∠DAM =∠DAC +∠NAM +∠NAB =∠DAB =90°,∴∠DAM =30°,∴DM =AD tan30°=3=(2)过ME ⊥NC 于E ,∵将ADM △沿直线AM 翻折得到.∴DM =NM ,∠DMA =∠NMA ,∵M 为DC 中点,∴DM =CM =MN ,在Rt △ADM 中,5AM ===,∵MN =MC ,ME ⊥NC ,∴∠NME =∠CME ,∴∠DMA +∠NMA +∠NME +∠CME =180°,∴∠DMA +∠CME =90°,∵∠EMC +∠MCE =90°,∴∠MCE =∠DMA ,∴cos MCN ∠=cos ∠DMA =45MD AM =,(3)过N 作GF ⊥DC ,交CD 于G ,交AB 于F ,连结DN 交AM 于H ,∵将ADM △沿直线AM 翻折得到.∴点D 与点N 关于AM 对称,∴DN ⊥AM ,∴∠NDG +∠DMH =90°,∵∠DAM +∠DMA =90°,∴∠NDG =∠MAD ,在Rt △ADM 中,AM ===∴S △ADM =1122AD DM AM DH ⋅=⋅∴31DH ⨯=,∴DH∴DN =2DH =5,∴Sin ∠GDN =sin ∠DAM=∴35GN =,∴FN =GF -GN =3-31255=,∴S △ABN =11124882255AB FN ⋅=⨯⨯=.。
(每日一练)(带解析)人教版初中数学勾股定理易错知识点总结单选题1、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√52、如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a⋅b C.√a2+b22D.√a2−b223、如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86B.64C.54D.484、若一个直角三角形的两边长为4和5,则第三边长为()A .3B .√41C .8D .3或√415、如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于 12 AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于( )A .2B .103C .158D .152 6、在下列四组数中,不是勾股数的一组数是( )A .a=15,b=8,c=17B .a=9,b=12,c=15C .a=7,b=24,c=25D .a=3,b=5,c=77、如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .488、已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形填空题9、如图,Rt △ABC 中,∠BAC =90°,分别以△ABC 的三条边为直角边作三个等腰直角三角形:△ABD 、△ACE 、△BCF ,若图中阴影部分的面积S 1=6.5,S 2=3.5,S 3=5.5,则S 4=_____.10、如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.11、如图所示的网格是正方形网格,则∠PAB+∠PBA=_____°(点A,B,P是网格线交点).12、如图的平面直角坐标系中,已知点A(-3,0)、B(0,4),将△OAB沿x轴作连续无滑动的翻滚,依次得到三角形①,②,③,④.则第⑯个三角形的直角顶点的坐标是___________.13、如图.在RtΔABC中,∠BAC=90°,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过点D作DE⊥AC于点E,若DE=a,则ΔABC的周长用含a的代数式表示为_______________.解答题14、中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.15、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.(带解析)人教版初中数学勾股定理_012参考答案1、答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、答案:C解析:根据全等三角形的性质,设CD=AH=x,DE=AG=BC=y,由CE=a,HG=b建立方程组,求解即可得出CD=x=a−b 2,BC=y=a+b2,然后借助勾股定理即可表示BD.解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x,DE=AG=BC=y,∵CE=a,HG=b,∴{x+y=ay−x=b解得:{x =a−b 2y =a+b 2, 故CD =a−b 2,BC =a+b 2在RtΔBCD 中,根据勾股定理得:BD 2=BC 2+CD 2=(a+b 2)2+(a−b 2)2=a 2+b 22,∴BD =√a 2+b 22.故选:C.小提示:本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键.3、答案:C解析:分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴DE=√AE 2−AD 2=√32x ,∴S 2=12×x ×√32x =√34AB 2, 同理:S 1=√34AC 2,S 3=√34BC 2,∵BC2=AB2-AC2,∴S3=S2-S1,如图2,S4=12×(12AB)2π=π8AB2,同理S5=π8AC2,S6=π8BC2,则S4=S5+S6,∴S3+S4=45-16+11+14=54.小提示:本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4、答案:D解析:由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论.当5是直角边时,则第三边=√42+52=√41;当5是斜边时,则第三边=√52−42=3.综上所述,第三边的长是√41或3.故选D .小提示:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、答案:C解析:根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC=√52−32=4,连接AE ,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得:AC2+CE 2=AE 2, 即32+(4-AE )2=AE 2, 解得:AE=258,在Rt △ADE 中,AD=12AB=52,由勾股定理得:DE2+(52)2=(258)2,解得:DE=158.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.6、答案:D解析:解:A .152+82=172,是勾股数;B .92+122=152,是勾股数;C .72+242=252,是勾股数;D .32+52≠72,不是勾股数.故选D .7、答案:C解析:分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x , ∴DE=√AE 2−AD 2=√32x ,∴S 2=12×x ×√32x =√34AB 2,同理:S1=√34AC2,S3=√34BC2,∵BC2=AB2-AC2,∴S3=S2-S1,如图2,S4=12×(12AB)2π=π8AB2,同理S5=π8AC2,S6=π8BC2,则S4=S5+S6,∴S3+S4=45-16+11+14=54.小提示:本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8、答案:B解析:依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.小提示:本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、答案:2.5解析:DE分别交BF、CF于点G、点H;设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n,由a2+b2=c2,可得S△ABD+S△ACE=S△BCF,由此构建关系式,通过计算即可得到答案.如图,DE分别交BF、CF于点G、点H∵△ABD、△ACE、△BCF均是等腰直角三角形∴AB=BD,AC=CE,BC=CF,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n∵a2+b2=c2∴S△ABD+S△ACE=S△BCF∵S△ABD=S1+m,S△ACE=n+S4,S△BCF=S2+S3+m+n∴S1+m+n+S4=S2+S3+m+n∴S4=S2+S3−S1=3.5+5.5−6.5=2.5所以答案是:2.5.小提示:本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理的性质,从而完成求解.10、答案:14解析:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知斜边和一条直角边,根据勾股定理即可求另一条直角边,计算两直角边之和即可解题.解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,由题意得:∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC=√AB2−AC2=√102−62=8(米),则AC+BC=14(米),所以答案是:14.小提示:本题考查了勾股定理的应用,本题中把求地毯长转化为求两直角边的长是解题的关键.11、答案:45解析:延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,即△PBD为等腰直角三角形,∴∠DPB=∠PAB+∠PBA=45°,所以答案是:45.小提示:本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.12、答案:(60,0)解析:先利用勾股定理计算出AB,从而得到△ABO的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于16=3×5+1,于是可判断第⑯个三角形与第①个三角形的状态一样,然后计算即可得到第⑯个三角形的直角顶点的坐标.∵A(-3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴△ABO的周长=3+4+5=12,由题意知,△OAB每连续3次后与原来的状态一样,∵16=3×5+1,∴第⑯个三角形与三角形①的状态一样,∴第⑯个三角形的直角顶点的横坐标=5×12=60,∴第⑯个三角形的直角顶点坐标为(60,0).故答案为(60,0).小提示:本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标,解决本题的关键是确定循环的次数.13、答案:(6+2√3)a解析:根据“∠BAC=90°,∠C=30°”可知∠B=60°,根据“以直角顶点A为圆心,AB长为半径画弧交BC于点D”可知△ABD是等边三角形,∠BAD=60°,继而可知∠DAE=30°,利用直角三角中30°所对的边是斜边的一半,即可知AB和BC的长,再利用勾股定理即可求出AC的长,从而可得周长.∵RtΔABC中,∠BAC=90°,∠C=30°∴∠B=60°,BC=2AB∵以直角顶点A为圆心,AB长为半径画弧交BC于点D,∴AB=AD∵∠B=60°∴△ABD是等边三角形∴∠BAD=60°,∴∠DAE=30°,又∵DE⊥AC∴△ADE是直角三角形∴AD=2DE=2a∴AB=2a,BC=4a根据勾股定理有AB2+AC2=BC2∴AC=√BC2−AB2=√16a2−4a2=2a√3∴△ABC的周长=AB+AC+BC=2a+2a√3+4a=(6+2√3)a故答案为(6+2√3)a.小提示:本题考查的是含有30°角的直角三角形和勾股定理,能够根据含有30°角的直角三角形相关性质和勾股定理求出三边的长是解题的关键.14、答案:(1)证明见解析;(2)23解析:(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.ab,小正方形面积为(b﹣a)2,解:(1)∵大正方形面积为c2,直角三角形面积为12∴c2=4×1ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;2(2)由图可知:ab=13﹣3=10,(b﹣a)2=3,4×12∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.小提示:本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.15、答案:证明见解析解析:连接AC,根据四边形ABCD面积的两种不同表示形式,结合全等三角形的性质即可求解.解:连接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四边形ABCD=SΔABD+SΔBDC=12BD⋅AE+12BD⋅CD=12AE⋅AE+12BD⋅BE=12AE2+12BD⋅BE,又∵S四边形ABCD=SΔABC+SΔADC=12AB⋅BC+12CD⋅DE=12AB⋅AB+12BE⋅DE=12AB2+12BE⋅DE,∵12AE2+12BD⋅BE=12AB2+12BE⋅DE,∴AB2=AE2+BD•BE-BE•DE,∴AB2=AE2+(BD-DE)•BE,即AB2=BE2+AE2.小提示:本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.。
勾股定理常见错解剖析江苏 刘 顿勾股定理是我们研究几何的重要定理之一,是勾通代数与几何的桥梁,所以,同学们一定要认真学好.但仍有不少同学在运用勾股定理解题时,因缺乏慎重考虑,时常出现错解现象,为了方便同学们学习,现就常见错误说明如下:一、忽视利用勾股定理解题的格式例1 已知在Rt △ABC 中,∠C =90°,AB =15cm ,BC =12cm ,求AC 的长.错解 在Rt △ABC 中,因为∠C =90°,AB =15cm ,BC =12cm ,所以由勾股定理,得AB 2=AC 2+BC 2,所以AC2=AB 2-BC 2=221512-=81=9.即AC 的长是9cm . 剖析 AC 的长确实是9cm ,不过问题出在求解过程中的格式书写不当,即AC 2=AB 2-BC 2≠221512-. 正解 在Rt △ABC 中,因为∠C =90°,AB =15cm ,BC =12cm ,所以由勾股定理,得AB 2=AC 2+BC 2,所以AC =22AB BC -=221512-=81=9.即AC 的长是9cm .二、忽视勾股定理的存在条件例2 已知在△ABC 中,若AB >BC >AC ,且AB =10,BC =8.试求偶数AC 的长.错解 在△ABC 中,因为AB >BC >AC ,所以AB 是斜边,所以由勾股定理,得AB 2=AC 2+BC 2,即AC 2=AB 2-BC 2,又因为AB =10,BC =8,所以AC =22AB BC -=22108-=6,即偶数AC 的长是6.剖析 勾股定理适用的范围必须是在直角三角形中才能成立.然而本题中并没有说明是直角三角形,所以不能利用勾股定理求解.根据题设条件可以利用三角形的三边关系求解.解 在△ABC 中,因为AB =10,BC =8,所以2<AC <18,又BC >AC ,所以2<AC <8,而AC 是偶数,所以AC 只能取4或6.三、忽视对直角三角形边的分类讨论例3 已知一个直角三角形的两条边是3cm 和4cm ,求第三条边的长.错解 因为直角三角形的两条边是3cm 和4cm ,所以由勾股定理,得第三条边,即斜边是2234+=25=5,即第三条边的长是5cm .剖析 受勾3股4的影响,误以为已知的3cm 和4cm 就是两条直角边,求第三条边的长就是斜边,当然是5了.事实上,这里也并没有指明已知的两条边就是直角边,所以4cm 可以是直角边,也可以是斜边,即应分情况讨论.正解 在直角三角形中,若3cm 和4cm 两条直角边,所以由勾股定理,得斜边=2234+=25=5,即第三条边的长是5cm .在直角三角形中,若3cm 是直角边,4cm 是斜边,则由勾股定理,得另一条直角边=2243-=7,即第三条边的长是7cm .故第三条边的长是5cm 或7cm .四、忽视对图形中高的分类讨论例4 已知:在△ABC 中,AB =15cm ,AC =13cm ,高A D =12cm ,求S △ABC .错解 如图1,在Rt △ADB 和Rt △ADC 中,分别由勾股定理,得BD =22AB AD -=221512-=81=9;CD =22AC AD -=221312-=25=5.所以BC =BD + CD =9+5=14.故S △ABC =12BC ·A D =12×14×12=84(cm 2).剖析 由于给定的条件中并没有给出图形,所以求解时除了要考虑如图1的情况外,还要考虑如图2的情况.即要画出所有可能的图形.错解时正是漏掉了如图2的情形.正解 分两种情况:①如图1,在Rt △ADB 和Rt △ADC 中,分别由勾股定理,得BD =22AB AD -=221512-=81=9;CD =22AC AD -=221312-=25=5.所以BC =BD + CD =9+5=14.故S △ABC =12BC ·A D =12×14×12=84(cm 2);②如图2,在Rt △ABD 和Rt △ACD 中,分别由勾股定理,得BD =22AB AD -=221512-=81=9;CD =22AC AD -=221312-=25=5.所以BC =BD -CD =9-5=4.故S △ABC =12BC ·A D =12×4×12=24(cm 2). 五、忽视对等腰三角形底和腰的分类讨论例5 已知:等腰三角形中,一边长是6cm ,另一边是8cm ,求一腰上的高.错解 如图3,作BD ⊥AC 于D ,则在Rt △ABD 和Rt △CBD 中,分别由勾股定理,得BD 2=AB 2-AD 2=BC 2-CD 2,即AB 2-AD 2=BC 2-(AC -AD )2,所以82-AD 2=62-(8-AD )2,即AD =234,所以BD =22AB AD -=222384⎛⎫- ⎪⎝⎭=3554.剖析 对于已知等腰三角形的两边应分类讨论,漏解的原因可能是只对图3中的一种情况计算,而忽视了如图4的情形.正解 分两种情况讨论:①若以6cm 为底,8cm 为腰,则如图3,在Rt △ABD 和Rt △CBD 中,分别由勾股定理,得BD 2=AB 2-AD 2=BC 2-CD 2,即AB 2-AD 2=BC 2-(AC -AD )2,所以82-AD 2=62-(8-AD )2,即AD =234,所以D C B A图1 图2 C D B A 8 图3 A D C B 6 图4 B D C 6 8 ABD =22AB AD -=222384⎛⎫- ⎪⎝⎭=3554;②若以8cm 为底,6cm 为腰,则如图4,在Rt △ABD 和Rt △CBD 中,分别由勾股定理,得BD 2=AB 2-AD 2=BC 2-CD 2,即AB 2-AD 2=BC 2-(AC -AD )2,所以62-AD 2=82-(6-AD )2,即AD =23,所以BD =22AB AD -=22263⎛⎫- ⎪⎝⎭=85.。
关于勾股定理的几个误区示例一、主观确定斜边例1 已知直角三角形的三边长分别是3,4, x ,则x =_______________. 错解:由勾股定理,得23+24=2x ,∴x =5.错解分析:这种解法是将x 当成斜边,事实上,本题没有指明x 与4的大小关系,因此长度为4的边可能是直角边,也可能是斜边,应分两种情况讨论.正解:当x 为斜边时,同错解.当4为斜边时,由勾股定理,得x,∴x =5答案:5二、忽略题目中的隐含条件例2 在Rt △ABC 中,∠B =90°, a =5, b =12,求c 边的长.错解: ∵△ABC 是直角三角形,∴222a b c +=,即222512c +=,解得c =13. 错解分析:这种解法忽略了题目中∠B =90°,则b 为斜边这个隐含条件. 正解: ∵∠B =90°, ∴b 为斜边.由勾股定理,得222a c b +=,∴c 三、忽略高在三角形外例3 在△ABC 中, AB =15, AC =20, BC 边上的高AD =12,求BC 的长.错解:如图,由勾股定理,得222BD AB AD =-=22215129-=,即BD=9.222CD AC AD =-=222201216-=,即CD=16.∴BC = BD +CD =9+16=25.图1DC B错解分析:本题满足条件的三角形除上图外,还有下图所示的情况,即高AD 在△ABC 的外部.图2B正解:⑴当高AD 在△ABC 的内部时,同错解.⑵当高AD 在△ABC 的外部时,同样由勾股定理可求得BD=9, CD=16,这时BC = CD-BD =16 -9=7. ∴BC 的长是25或7.四、混淆勾股定理及其逆定理的区别例4 已知△ABC 的三边a ,b ,c 的长分别是6,8,10,试判断△ABC 的形状.错解: ∵22a b +=2268+=100,2210100c ==,∴222a b c +=,由勾股定理,知△ABC 是直角三角形.错解分析:勾股定理是由直角三角形推导三边的数量关系,而逆定理是由三角形的三边之间的数量关系推导三角形是直角三角形,二者不可混淆.正解:把错解中的“由勾股定理,知……”改为“由勾股定理的逆定理,知△ABC 是直角三角形”.五、盲目套用勾股定理例 5 已知在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且 a =3,b =4,且 b <c .若 c 为整数,则 c =________.错解:由勾股定理得 c = 22b a +=2243+=25 =5.错解分析:上面的解法受“勾 3,股 4,弦 5”的影响,没有认真审题,错在没有注意到题目中的三角形是否为直角三角形,就把△ABC 当成直角三角形,盲目套用勾股定理进行计算,导致错误.解题时应注意已知条件,要注意勾股定理只在直角三角形中才成立.由于题目中没有明确给出三角形为直角三角形,只能利用三角形的三边关系解题.正解:由三角形三边关系:两边之和大于第三边,两边之差小于第三边,知 b -a <c <a +b .又 b <c ,∴b <c <a +b ,即 4<c <7.∵c 为整数,∴c 为5或者6.点拨:应用勾股定理解题的前提是在直角三角形中,否则勾股定理是不适用的.掌握勾股定理要注意以下三点:一是勾股定理所揭示的是直角三角形三边之间平方关系的定理,它反映了直角三角形三条边之间的数量关系;二是在直角三角形中一定要分清已知的边是直角边还是斜边;三是勾股定理只对直角三角形适用,而不适用于锐角三角形或钝角三角形.六、不理解勾股数的概念例6 下列各组数能构成勾股数的是________.①0.07,0.24,0.25; ②6,8,10; ③7,8,10; ④53,54,1.错解:①,②,④错解分析:首先,勾股数必须是一组正整数,其次是勾股数要满足两个较小数的平方和等于最大数的平方.将①,④选上主要是对勾股数概念不理解,出现概念错误.正解:②点拨:若 a,b,c 满足 a2+b2=c2,且 a,b,c 均为正整数,则 a,b,c 是一组勾股数.七、对勾股数想当然例 7 以下列各组数为三边长的三角形中,是直角三角形的有().①3,4,5;②3,4,5;③32,42,52;④6,8,10.A.1组B.2组C.3组D.4组错解:选D.错解分析:由于3,4,5是一组勾股数,故把这组数同时扩大相同的倍数,所得一组数仍为勾股数.但将这组数同时开方或平方,得到的数就不是勾股数,因此3,4,5和32,42,52不是勾股数.正解:选B.点拨:判断一组正整数是不是勾股数,就是运用勾股定理的逆定理,将两条较短的线段的平方和a2+b2与最长的线段的平方c2作比较,看它们是否满足a2+b2=c2.这样才能判断它们是否是勾股数,以这样的三条线段能否构成直角三角形,千万不要出现认为3,4,5和32,42,52是勾股数这样的想当然的错误.八、仅凭直觉记忆,模糊解题例 8 已知在△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且(a+b)(a-b)=c2,则()A.∠A 为直角B.∠C 为直角C.∠B 为直角D.不是直角三角形错解:选B.错解分析:错解错在受思维定势的影响:在通常情况下,将直角标注为∠C.因而有的学生就习惯性认为∠C 所表示的角就是直角,导致对已知条件粗略地分析了一下,得出存在平方关系之后就习惯性认为边 c 的对角∠C 就是直角,出现直觉错误.该题中的条件应转化为 a2-b2=c2,根据这一关系,利用勾股定理的逆定理进行判断.正解:选A.∵a2-b2=c2,∴b2+c2=a2,∴a 边所对的角∠A为直角,故选A.点拨:我们在判断直角三角形哪一个角是直角的时候,不能因为思维定势,看到数量之间的平方关系,就得到某个角是直角的结论,这样很容易产生直觉错误,丢掉不该丢的分.它告诫我们在审题时一定要仔细,防止由于思维定势而产生会做却做不对的情况.。
勾股定理知识点易错点一、知识体系:二、知识点:1、直角三角形两边的平方和等于斜边的平方..即:a2+b2=c2a、b为直角边;c为斜边.如图所示;我国古代把直角三角形的较短的直角边叫做“勾”;较长的直角边叫做“股”;斜边叫做“弦”..注意:1勾股定理只有在直角三角形中才适用;如果不是直角三角形;三边就没有这种关系..2勾股定理揭示的是直角三角形三边之间的数量关系:两直角边的平方和等于斜边的平方;不是任意两边的平方和都等于第三边的平方..2、勾股定理的验证验证勾股定理的有效方法;一般遵循以下几个步3、勾股定理的逆定理:重点如果三角形的三边长a、b、c且a2+b2=c2;那么这个三角形是直角三角形..注意:1证明时不能说成“在直角三角形中”;因为还没有确定是直角三角形;当然也不能说成“斜边、直角边”2a2+b2=c2它只是一种表现形式;不能因为a2+b2≠c2就说这个三角形不是直角三角形..如a=5;b=3;c=4. a2+b2≠c2但此三角形是直角三角形..a为斜边..利用勾股定理判别一个三角形是不是直角三角形的方法:求出三角形中较小两边的平方和与较大边的平方进行比较;如果相等;可判断这个三角形是直角三角形;否则不是..勾股数:满足a 2+b 2=c 2的3个正整数;且满足a 2+b 2=c 2..用拼图的方法验证勾股定理的思路是①图形进过割补拼接后;只要没有重叠;没有空隙;面积不会改变②根据同一种图形的面积不同的表示方法;列出等式;推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ;2214()2ab b a c ⨯+-=;化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形;2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形;化简得证 易错点1;;;勾股定理揭示了直角三角形三边的关系;值得注意的是;只有在直角三角形中才有两边较小的两边的平方和等于第三边最长的边的平方;非直角三角形不具备这种关系..因此;在非直角三角形中或者是在不知道三角形是不是直角三角形的情况下;不能盲目地使用勾股定理..另一方面;若已知三角形中有直角;使用勾股定理时也需谨慎;不能机械地把它记为222c b a =+;这只是o C 90=∠时的情形..当o A 90=∠时;有222a c b =+;当o B 90=∠时;有222b c a =+2;;注意隐含条件已知直角三角形的两边长分别为3cm;4cm;求第三边的长由于思考不周全;忽略隐含条件;误认为一边是3cm;一边是4cm;所以第三边就应该是5cm;实际上;题目隐含着两种情况3;注意应用的区别在直角的三角形中需要用到三边关系时用勾股定理;而已知三边长想用勾股定理进行有关计算或推理时;则需先用勾股定理的逆定理判定它是不是直角三角形..4;注意遇到求高问题常考虑用勾股定理解决一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方..即:a 2+b 2=c 2要点诠释:勾股定理反映了直角三角形三边之间的关系;是直角三角形的重要性质之一;其主要应用:1已知直角三角形的两边求第三边2已知直角三角形的一边与另两边的关系;求直角三角形的另两边3利用勾股定理可以证明线段平方关系的问题二:勾股定理的逆定理如果三角形的三边长:a、b、c;则有关系a2+b2=c2;那么这个三角形是直角三角形..要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:1首先确定最大边;不妨设最长边长为:c;2验证c2与a2+b2是否具有相等关系;若c2=a2+b2;则△ABC是以∠C为直角的直角三角形若c2>a2+b2;则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2;则△ABC为锐角三角形..三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理;而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反;都与直角三角形有关..四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设;这样的两个命题叫做互逆命题..如果把其中一个叫做原命题;那么另一个叫做它的逆命题..规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的..2.勾股定理反映的是直角三角形的三边的数量关系;可以用于解决求解直角三角形边边关系的题目..3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边;这是这个知识在应用过程中易犯的主要错误..4. 勾股定理的逆定理:如果三角形的三条边长a;b;c有下列关系:a2+b2=c2;•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算;通过学习加深对“数形结合”的理解.。
勾股定理及其逆定理的探究
忽视运用勾股定理的逆定理判定三角形的形状
例在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某角度以每小时15海里的速度前进.2小时后,甲船到达M岛,乙船到达P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?
错解:甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).
∵2
230
16 =34(海里),且MP=34(海里),
∴△MBP 为直角三角形,∴∠MBP=90°,
∴乙船是沿着南偏东30°的方向航行的.
错解分析:本题最终判断的结果虽然也是正确的,但是在解题的过程中忽略了对使用勾股定理的前提条件的证明,犯了运用上的错误.本题考查的重点是对三角形形状的判定,应该先应用勾股定理的逆定理,判定三角形的形状,再求出乙船的航行方向.
正解:甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).
∵162+302=1156,342=1156,
∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,
∴乙船是沿着南偏东30°的方向航行的.
点拨:已知三角形为直角三角形求其边的关系时,应用直角三角形的勾股定理;知道三角形的三边关系判定三角形是否为直角三角形时,应用勾股定理的逆定理.在解题时要分清这两个定理的使用方法.通过本例告诉我们,
掌握勾股定理的逆定理要注意以下两点:一是勾股定理的逆定理是利用三角形三边之间的数量关系来判定一个三角形是否为直角三角形的定理;二是只要一个三角形的三边满足两较小边的平方和等于第三边的平方,就可以判定这个三角形是直角三角形,反之,这个三角形就不是直角三角形.。