北师大版八年级上册数学三角形的内角和定理课件
- 格式:pptx
- 大小:2.98 MB
- 文档页数:27
7.5.1 三角形内角和定理(1)教学设计(二)将三角形纸片的三个角剪下,随便将它们拼凑在一起.由实验可知三角形的内角和正好为一个平角.(三)利用几何画板验证三角形内角和180.但视察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?这节课我们一起探究一下三角形内角和定理的证明. 生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.自主探究1、认真研读课本177—178页;2、求证:三角形三个内角的和等于180°.思考:将准备好的三角形纸片的一个顶角下,并放置在如图∠1的位置,你能说明“三角形内角和定理”结论吗?(提示:利用平行可证明)已知:如右下图,△ABC求证:∠A+∠B+∠C=180°证法一:证明:延长BC到D,过C作CE平行BA,则∠A=∠(两直线平行,内错角相等)1、认真研读课本177—178页;动手操作:通过撕三角形纸板并拼凑成一个平角,体会三角形内角和定理,并利用平行充分发挥学生自主学习、独立思考的能力.第一种证明方法给出辅助线的做法,及以补全证明过程的情势完成,循序渐激情展示一、展示”三角形内角和定理”的两种基本证明方法.这里的CD,CE称为辅助线,辅助线通常画成虚线.证明:延长BC到D,过点C作射线CE//BA,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).∵∠l+∠2+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).证法2::过点A作DE∥BC.∵DE∥BC,∴∠1=∠B,∠2=∠C(两直线平行,内错角相等).∵∠1+∠2+∠3=180°(平角的定义),∴∠BAC+∠B+∠C=180°(等量代换).老师点评:强调辅助线的做法和叙述,规范证明过程.(1)辅助线通常画成虚线;(2)辅助线要正确、规范地写出作法,并标明字母,便于书写证明过程;(3)辅助线能把题目中可利用的隐藏条件显露出来,化难为易.二、展示不同的验证方法鼓励学生积极展示,大胆质疑、答疑.学生展示时,可能语言不准确,教师及时引导,让学生自主感悟体会到证明的关键是添加辅助线,把三角形内角和转化成一个平角或同旁内角.教学中的一个难点,学生通过思考、讨论、交流对辅助线的认识,展示思维过程,然后在老师的引导下达成共识,进一步加深了对辅助线的理解,易于突破教学难点,提高学生解决问题的能力.激情展示这个环节充分体现学生的主体性.充分调动学生学习积极性,激发学生学习数学的兴趣.老师点评:添加辅助线基本思路:1、构造平角:"凑”到三角形一个顶点处、"凑"到三角形边上的一点处、"凑"到三角形内部一点处或三角形外部一点处;小小辅助线,作时画虚线,写清其来源,隐藏条件见.2、构造同旁内角.三、展示以下三个问题的分析过程.1、直角三角形的两锐角之和是多少度?2、等边三角形的一个内角是多少度?请证明你的结论.3、四边形的内角和是多少度?证明你的结论。