_板块构造与成矿作用
- 格式:ppt
- 大小:1.79 MB
- 文档页数:14
板块构造的基本原理地球的岩石圈并不是一个整体,而是由许多大型板块构成,这些板块在地球表面移动和相互作用。
本文将介绍板块构造的基本原理,主要包括以下方面:岩石圈板块概念、板块边界类型、板块移动和漂移、板块内构造和变形、板块俯冲和碰撞、板块构造与地球动力学以及板块构造与成矿作用。
岩石圈板块概念岩石圈板块是地球表面的大型地质单元,由地壳和上地幔顶部组成。
它们通常被称为“板块”,因为它们在地球表面移动并与相邻板块相互作用。
板块的尺寸可以从几百千米到数千千米不等,地球上的岩石圈可以划分为数个不同的板块。
板块边界类型板块之间的边界类型主要有以下三种:(1) 洋脊:这是两个板块分离形成的长条形区域,通常沿着这个区域可以找到高热流值的地带。
(2) 海沟:当一个板块俯冲到另一个板块下方时,会形成深而狭窄的海沟。
这些海沟通常伴随着火山活动和地震。
(3) 缝合线:这是两个板块碰撞并融合在一起的地方,通常会形成山脉和地震。
板块移动和漂移板块在地球表面的移动和漂移是由地幔的流动和地球的自转引起的。
板块的运动速度很慢,每年只移动几厘米。
板块的运动方式和驱动力主要是由地球内部的热能、重力能和地球的自转能共同作用。
历史上的板块运动导致了地球表面的地形和气候的演变。
板块内构造和变形在板块内部,地壳和地幔的变形和构造是复杂的。
在板块内部可以观察到地壳的抬升和下沉,以及地震活动和火山活动。
这些活动主要由地壳和地幔的密度差异、地壳应力以及地球的自转等因素引起。
板块俯冲和碰撞当两个板块相互碰撞时,会发生俯冲和碰撞。
俯冲是指一个板块俯冲到另一个板块下方,而碰撞是指两个板块在缝合线处融合。
这些过程会导致大规模的地震和构造运动,例如山脉的形成和地壳的抬升。
地球深处的作用力和能量在这些过程中起着关键作用。
板块构造与地球动力学板块构造与地球动力学密切相关。
地球动力学是研究地球内部运动和演化的学科,而板块构造研究的是地球表面的大型地质单元。
这两个领域的交互作用体现在地震学、地质学和地球物理学中。
板块构造知识点总结初中一、板块构造的概念1. 板块构造的定义板块构造是地球表层的岩石在地壳对流的作用下分裂成数块,并以不断运动的方式相互碰撞、挤压和改变形态的过程。
板块构造理论是地球科学领域的一个重要理论,它对地壳构造和地质现象的形成解释提供了重要理论依据。
2. 板块构造的基本特征(1)地壳板块的分布:地壳板块呈现出分布不均匀的特点,全球共有7大板块和多个小板块,分布在地球表层。
(2)板块运动的方式:板块构造理论认为,地壳板块运动的方式有三种,即辐射型、消减型和滑动型。
(3)板块之间的相互作用:板块之间的相互作用主要表现为板块之间会发生碰撞、挤压、滑动和拉伸,导致地震、火山喷发等地质活动。
(4)板块构造与自然灾害的关系:板块构造理论指出,地球表层的板块运动会引起地震、火山喷发、地壳变形等自然灾害。
二、板块构造理论的发展1. 板块构造理论的历史(1)形成阶段:板块构造理论起源于20世纪初,以阿尔弗雷德·韦格纳的“大陆漂移”理论为基础,经过地球物理学、地震学、火山学等相关领域的研究,逐渐形成了板块构造理论。
(2)发展阶段:板块构造理论在20世纪50年代进入了快速发展阶段,经过一系列重要的地质探测和理论研究,建立了如今的板块构造理论体系,并被广泛应用于地质学领域。
2. 板块构造理论的重要贡献(1)对地壳运动的解释:板块构造理论为地壳运动提供了全新的解释方式,即地壳板块的运动是地球内部对流的结果,解释了地震、地质构造、火山活动等地质现象的成因。
(2)对自然灾害的预测:板块构造理论为地震、火山喷发等自然灾害的预测提供了理论依据,使人们对自然灾害有了更深刻的认识和理解。
三、板块构造的基本过程1. 地壳运动的原因(1)地幔对流:地幔的热对流是地壳板块运动的原因之一,地幔底部的热源不断向上输送热量,使地幔物质发生对流,导致地壳板块产生运动。
(2)地壳内部能量释放:地壳内部的热量、压力等能量不断释放,也是导致地壳板块运动的原因之一。
华北克拉通的形成演化与成矿作用华北克拉通是中国地壳最稳定、最古老的一个构造单元,位于中国北方地区,包括山西、河北、内蒙古、北京、天津等地。
华北克拉通形成于古元古代,经历了漫长的地质演化,形成了丰富的矿产资源。
本文将对华北克拉通的形成演化和成矿作用进行介绍。
华北克拉通形成于古元古代,在这个时期,地球表面正发生着大规模的岩浆活动,形成了大量的地幔物质并且向上迁移,这些岩浆物质在地壳中冷却,形成了众多的岩石体。
随着时间的推移,这些岩石体被压实,从而形成了一个大陆性块体,即华北克拉通。
由于华北克拉通位于地球板块之间,因此在构造运动中,克拉通地块经历了多次的构造变形和风化侵蚀,形成了典型的克拉通地貌。
华北克拉通地区也是全球爆发性火山岩最广泛分布的地区之一,火山岩的存留为研究华北克拉通古构造演化提供了重要线索。
华北克拉通是一个非常丰富的矿产资源地区,包括铜、铁、金、煤等多种矿产资源。
华北克拉通中的成矿作用主要发生在古生代和中生代,其形成与华北克拉通地区的构造演化密不可分。
早期的成矿作用主要发生在晚古生代,此时华北克拉通正在受到由华夏地块向北的构造力的挤压和剪切,产生了多个构造体系,这些构造体系的运动激活了华北克拉通内的岩浆活动,形成了大量的伟晶岩、花岗岩等岩石,为后期的矿床成矿提供了物质基础。
中生代是华北克拉通中矿床成矿密度最高的阶段,多种类型的矿床在这个时期形成。
河北地区矿床以铁矿和铜矿为主要成矿类型,煤炭、石墨、贵金属等矿种也有一定规模的产出。
山西地区主要铁路成矿带沿列别山次生构造形成,煤、铁、金、铀等多种矿产资源丰富。
内蒙古地区矿床以煤和稀土矿为主要类型,同时还有铜、铜-铁复合矿床等。
总的来说,华北克拉通是一个非常重要的构造单元,其形成演化和成矿作用已经得到了深入的研究,更深入的了解华北克拉通的地质特征和成矿规律,对于寻找和开发矿产资源具有重要意义。
以下是近年来全球范围内一些与大气环境、气候变化等相关的数据:1. 全球二氧化碳(CO2)浓度持续升高,自1850年以来CO2浓度已经上升了约40%。
大地构造与成矿学影响因子一、概述大地构造与成矿学是地质学的重要分支,研究地球内部和外部的物理、化学、生物等多种因素对矿床形成和分布的影响。
本文将从以下几个方面探讨大地构造与成矿学的影响因子。
二、大地构造对成矿作用的影响1.板块构造板块构造是指地球上由岩石板块组成的外壳层在地幔上运动和变形的现象。
板块构造对成矿作用有着重要的影响,主要表现在以下几个方面:(1)岩浆活动:板块间相互碰撞或拆离时,会产生巨大的应力和能量,导致岩浆活动加剧。
而岩浆是形成许多金属、非金属矿产资源的重要来源。
(2)变质作用:在板块碰撞过程中,高温高压条件下岩石会发生变质作用,从而形成许多具有经济价值的金属和非金属矿床。
(3)断裂带:板块运动过程中常伴随着断裂带形成,这些断裂带是许多矿床形成的重要地质背景。
2.地震活动地震活动是指地球内部能量释放所产生的震动现象。
地震活动对成矿作用有着重要的影响,主要表现在以下几个方面:(1)构造变形:地震活动会导致岩石构造变形,从而改变了岩层中的渗透性和通透性,为成矿作用提供了条件。
(2)岩浆活动:地震活动会引起岩浆上升和喷发,促进了金属、非金属元素的聚集和沉积。
(3)断裂带:地震活动常伴随着断裂带形成,这些断裂带是许多矿床形成的重要地质背景。
三、物理化学因素对成矿作用的影响1.温度温度是影响成矿作用的重要因素之一。
高温条件下,岩浆或者流体中的金属元素更容易溶解和聚集,从而促进了金属矿床的形成。
2.压力压力也是影响成矿作用的重要因素之一。
高压条件下,岩石中的金属元素更容易聚集和沉积,从而形成了许多大型的金属矿床。
3.流体流体是影响成矿作用的重要因素之一。
地下水、地热水、岩浆等流体在运动过程中可以携带金属元素,促进了金属矿床的形成。
四、生物因素对成矿作用的影响生物因素也是影响成矿作用的重要因素之一。
生物在地球历史长期演化的过程中,不仅改变了地表环境,还对地下环境产生了深远影响。
例如:有些微生物可以通过代谢作用将硫化物氧化为硫酸盐,从而促进了铜、铅、锌等金属元素的富集和沉积。
板块构造运动与成矿作用经典优秀资料导语:板块构造运动与成矿作用是地质学中的两个重要概念,它们之间密切相关。
本文将以雄厚的资料为基础,系统论述板块构造运动与成矿作用的内在关系及其经典理论。
一、板块构造运动的基本概念板块构造理论是20世纪50年代中期提出的,它认为地球的外壳由若干个互相移动的“板块”组成。
板块构造运动是指地球上板块之间相互作用产生的各种现象。
它包括板块的相互碰撞与分离、板块的滑动和互推、板块之间的剪切与扭转等。
板块构造运动是地球表面形态变化、地震、火山、地热等现象的根本原因。
二、成矿作用的基本概念成矿作用是指地壳中元素和矿物质在一定时间和空间条件下形成矿石的过程。
它是地壳中固体物质资源形成和再分布的重要方式。
成矿作用主要包括岩浆活动、热液活动和沉积作用等。
岩浆活动是指地壳中岩浆的生成和运动过程;热液活动是指在热水或热气体作用下,地壳中的元素和矿物质发生重新组合形成矿石的过程;沉积作用是指地壳中物质通过沉积过程形成矿床的过程。
三、板块构造运动与成矿作用的关系板块构造运动通过构造活动改变地球的物理环境,进而影响成矿作用的发生与发展。
板块构造运动可以直接或间接地引起地壳的断裂、抬升、下沉等现象,从而为成矿提供了必要的条件。
例如,板块的相互碰撞会形成造山带和地下深部岩浆活动,进而促使成矿物质的形成。
板块的分离和滑动会导致裂隙和断层的形成,为矿物组分的运移提供通道。
同时,成矿作用也对板块构造运动产生着一定的影响。
当岩浆活动或热液活动发生在板块边缘或板块交界处时,其能量和作用力会受到板块构造运动的制约和调控。
例如,板块构造运动的剪切和扭转会形成断裂带和拉张带,有利于岩浆的侵入和矿化作用的扩展。
四、经典理论1. 岛弧成矿理论岛弧成矿理论是由美国地质学家里特·S·格林希(S. R. Ghentsch)和美国地质学家D·毕晓普(D. M. Bipolos)等人在20世纪60年代提出的。
造山带的深部过程与成矿作用1.国内外研究现状及存在问题矿产资源和能源历来是保障国民经济持续发展、支撑GDP快速增长、确保国家安全的重要物质基础。
随着我国工业化进程的快速发展,对能源、矿产资源的需求量急剧增加,大宗矿产和大部分战略性资源日渐面临严重短缺的局面,并将成为制约我国经济快速发展的瓶颈。
因此,深入研究能源和矿产资源的形成过程及成矿成藏机理,拓展新的找矿领域,增强发现新矿床的能力,是缓解我国当前大宗矿产资源紧缺局面的重要途径。
近年来,国内外矿床学理论研究和勘探技术得到了快速发展,在地壳浅表矿床日益减少枯竭的情况下,逐步提高深部矿床勘探和开发能力。
例如,我国大冶铁矿床、红透山铜矿床、铜陵冬瓜山特大型铜矿床、新疆阿尔泰阿舍勒铜、金、锌特富矿床, 会理麒麟铅、锌矿床、山东增城、乳山金矿床等开采深度均已超过1000米, 有的矿床已近2000米(滕吉文等,2010)。
加拿大萨德伯里( Sodbury) 铜-镍矿床已开采到2000米,最深矿井达3050米。
南非金矿钻井深4800米。
更为重要的是找矿勘探实践和地球深部探测实验证实,虽然绝大多数矿床的形成、就位和保存发生在地壳环境,但成矿系统的驱动机制和成矿金属的集聚过程则受控于岩石圈尺度的深部地质过程,地球深部蕴藏着巨量矿产资源,深度空间找矿潜力巨大。
深部过程与动力学是控制地球形成演化、矿产资源、能源形成,乃至全球环境变化的核心。
因此,深入研究地球深部过程与动力学,不仅是提高人类对地球形成与演化、地球系统运行规律认识程度的重要途径,也是建立和研发新的成矿理论与勘查技术, 以促进我国找矿勘查的重大突破,是解决我国资源能源危机的根本途径。
20世纪90年代以来,国际地学界一直非常注重大陆岩石圈结构、深部作用过程和动力学研究,并将其作为国际岩石圈计划的主要研究领域。
美国于20世纪70-80年代开展了地壳探测计划,首次揭示了北美地壳的精细结构,确定了阿帕拉契亚造山带大规模推覆构造,并在落基山等造山带下发现了多个油气田。
构造地质学与成矿作用机制的关联研究地质学是研究地球的构造、成因和演化规律的科学,成矿作用则是指地球内部矿物质与外界环境作用,形成矿产资源的自然过程。
构造地质学与成矿作用机制密切相关,研究二者之间的关联对于揭示地球内部运动与物质循环规律,促进矿产资源勘查与开发具有重要意义。
一、我国地质构造背景中国地处欧亚板块边缘,地质构造复杂多样。
从造山运动到洋中脊扩张,从持续沉积到大陆碰撞,我国地质历史悠久,构造变化频繁。
各种构造活动塑造了中国丰富的矿产资源,深入探讨地质构造与成矿作用机制的关联,有助于理解我国矿产资源的分布规律。
二、地质构造对成矿作用的影响地质构造对成矿作用有着直接的影响。
构造活动可以改变岩石的物理化学性质,促进矿物质的迁移和沉淀。
地质构造还对热液活动和岩浆活动的形成、迁移产生影响。
通过对地球构造与成矿作用机制的关联研究,可以揭示构造对成矿作用的影响机制,为勘查开发提供科学依据。
三、地质构造演化与矿产资源形成地质构造演化过程中,不同的构造环境对矿产资源的形成具有不同影响。
例如,在造山带环境下,构造应力作用下的岩石变形会促进矿物质的形成与聚集;在盆地环境下,沉积岩的压实作用、流体运移等过程也会催化矿床的形成。
地质构造与成矿作用密切相关,通过研究二者的关联,可以更好地理解矿床的形成规律。
四、构造地质学技术在成矿研究中的应用构造地质学技术在成矿研究中有着广泛的应用价值。
通过构造地质调查,可以揭示矿床与构造之间的联系,明确矿床的成因类型和形成时代。
结合构造解析技术,可以分析矿床的形成演化历史,为找矿勘查提供重要依据。
构造地质学技术为成矿作用的机制研究提供了重要的技术支撑,推动了矿产资源勘查技术的发展。
五、结语构造地质学与成矿作用机制之间存在着紧密的关联。
地球构造的演化过程直接影响着矿产资源的形成,地质构造对成矿作用有着直接的影响。
通过深入研究地质构造与成矿作用机制的关联,可以更好地理解矿床的形成规律,为我国矿产资源的勘查与开发提供科学依据。
华南板块前寒武纪的构造演化史及成矿事件华南板块是全球研究最为深入的构造单元之一,区域变形复杂、岩石类型丰富,历史演化过程悠久,一直以来备受地质学者的关注。
其中,前寒武纪时期是华南板块构造演化史的重要阶段,同时也是华南区域成矿事件的开端。
华南板块主要由元古宙岩浆岩基底和晚元古代-中新元古代沉积岩及基性岩构成。
前寒武纪的构造演化受到了独特的地质背景和构造环境的影响,整个华南地区被大规模的印度-澳大利亚板块活动所控制,隆升作用和变形爆发相互交织,导致华南地区出现了极为复杂的变形构造及地质事件。
在前寒武纪时期,华南板块的构造演化可以分成两个阶段。
第一个是伊犁尔山事件后,到早古元古代岩浆活动的阶段。
这是华南板块的一次快速演化时期,华南板块发生了一系列的岩浆作用和变形构造,杰出的岩浆地质特征是独特的岩墙体,如桐南岩墙、衡阳岩墙和苍南岩墙等等。
同时,在这一时期,岩墙的形成代表了华南板块地壳伸展的复杂性和演化模式的多样性。
第二个阶段是早古元古代到前寒武纪的早期。
这一时期华南地区经历了较为稳定的演化,大部分时间是以长周期的深层变形和稍有不齐的岩浆活动为主。
其中,少量的晚元古代和早古元古代沉积物和建造物质也在这一时期形成。
在此期间,华南地区的岩石类别也逐渐多样化,包括花岗质、闪长质、二长英质、石英斑岩体,并且在华南地区的许多地方形成了大规模的金属矿床,这一时期标志着华南地区成矿性质的转变。
总的来说,前寒武纪是华南地区构造演化和成矿过程十分关键的时期,探索这个时期的地质演化历史对于理解整个华南板块的构造演化、成矿模式和深部地质演化过程都有着极为重要的意义。
华南板块是中国的重要构造单元,历史演化过程复杂,章节繁多。
在这篇文章中,我们将探索华南板块前寒武纪的相关数据,并对其进行分析。
构造演化阶段:华南板块前寒武纪的构造演化可以分成两个阶段,第一个是伊犁尔山事件后,到早古元古代岩浆活动的阶段。
这一时期的构造演化主要表现为伸展构造、隆升和变形活动。