第三章 信号容量 知识点归纳
- 格式:ppt
- 大小:418.50 KB
- 文档页数:13
信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。
对不同的输入概率分布,互信息一定存在最大值。
我们将这个最大值定义为信道的容量。
一但转移概率矩阵确定以后,信道容量也完全确定了。
尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。
我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。
其中必有一个试验信源使互信息达到最大。
这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。
在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。
接收到了信号,不确定度小了,我们也就在一定程度上消除了发端信源的不确定性,也就是在一定程度上获得了发端信源的信息,这部分信息的获取是通过信道传输信号带来的。
如果在通信的过程中熵不能够减小(不确定度减小)的话,也就没有通信的必要了。
最理想的情况就是在接收信号条件下信源熵变为0(不确定度完全消失),这时,发端信息完全得到。
通信信道,发端X,收端Y。
从信息传输的角度看,通过信道传输了I(X;Y)=H(X)-H(X|Y) ,( 接收Y前后对于X的不确定度的变化)。
I该值与两个概率有关,p(x),p(y|x),特定信道转移概率一定,那么在所有p(x) 分布中,max I(X;Y)就是该信道的信道容量C(互信息的上凸性)。
入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
[3]X代表已传送信号的随机变量空间,Y代表已收到信号的随机变量空间。
代表已知X的情况下Y的条件机率。
我们先把通道的统计特性当作已知,p Y | X(y | x)就是通道的统计特性。
第三章 总结节1 信道的概念一、信道定义:狭义信道、广义信道二、信道模型:1、调制信道共性:①一对(或多对)信道输入,必对应有一对(或多对)信道输出。
②绝大多数信道是线性的,满足叠加定理。
③信道对信号有延时,还有衰耗(固定或时变)④无信号输入,信道也有输出。
调制信道可用时变线性网络表示恒参信道、随参信道2、编码信道编码信道模型用码序列的转移概率描述3、信道分类节2 调制信道特性及对信号传输的影响一、恒参信道1、幅频特性:2、相频特性:若Φ(ω) = - ω t d ( t d 是常数,为线性函数),无失真。
Φ(ω) 非线性,有失真。
二、随参信道1、随参信道传输媒质三个特点:①传输衰耗随时间而变;()()则有幅频失真则无幅频失真const H const H ≠=ωω②传输时延随时间而变;③多径传播。
2、随参信道对信号传输的影响分析:影响结果:①等幅信号变为有包络变化的信号,即存在幅度快衰落影响;②单一频率信号变为窄带频谱信号,即存在频率弥散影响。
相关带宽△f节3 加性噪声节4 信道容量概念信道传输信息的最大速率 R 称为信道容量, C 为差错任意小的最高信息速率。
待传送的信源信息速率 R 源>C ,则信道肯定不能正确传送该信息;而R 源≤C ,采用适当的方法,该信道能正确无误的传送该信息。
加性高斯白噪声作用下的调制信道(白高斯信道)可由Shannon 公式计算信道的容量:B :信道带宽(Hz ) S :信号功率( W )N = n 0 B :白噪声功率s bit B n S B N S B C /1log 1log 022⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=。