北师数学八上第三章知识点总结
- 格式:ppt
- 大小:1.07 MB
- 文档页数:5
八年级上册数学北师大版第三章知识点八年级上册数学北师大版第三章主要涵盖了线性方程和一次不等式的知识点。
本章的主要目标是通过学习和掌握线性方程和不等式的相关概念、性质和解法,培养学生运用代数方法解决实际问题的能力。
一、线性方程组的解1.定义和性质线性方程组指的是由一组线性方程构成的方程组。
在本章中,我们主要研究由两个未知数的线性方程组。
在二元一次方程组中,一般形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知数,x、y为未知数。
2.线性方程组的解的判定线性方程组的解主要通过消元法和代入法进行求解。
其中,消元法是将方程组中的某个未知数表示为其他未知数的函数,然后代入到其他方程中,进而求得未知数的值。
代入法则是将一个方程的解代入到另一个方程中,求得另一个未知数的值。
当线性方程组有解时,其解的形式为有序数对。
3.解线性方程组的方法解二元一次方程组的一般步骤为:(1)通过消元法或代入法得到一个未知数的值;(2)将得到的未知数的值代入到另一个方程中,求得另一个未知数的值;(3)验证求得的未知数值是否满足原来的方程组。
当方程组有无数解或者无解时,需要通过消元法或代入法的结果进行判断。
二、一次不等式的解集1.定义和性质一次不等式指的是含有未知数的一元一次方程,其一般形式为ax + b > 0或ax + b < 0。
一次不等式的解集表示为某个区间或某个区间的并集。
2.解一次不等式的方法解一次不等式的方法主要有两种:图像法和代数法。
图像法是通过绘制一次不等式的解集的数轴图,来直观地表示解集的范围。
代数法是通过转化一次不等式的形式,将其变为一个等价的一次方程,再求解方程的解集。
解一次不等式时要注意变号的性质,并对解进行验证。
三、实际问题与线性方程或不等式的应用1.实际问题的建模通过实际问题的建模,将问题转化为适合使用线性方程或不等式求解的代数关系式。
2.实际问题的求解将建模后的方程或不等式进行求解,得到满足实际问题要求的解。
第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。
2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。
(北师大版《数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理直角三角形两直角边 a ,b 的平方和等于斜边 c 的平方,即 2、勾股定理的逆定理如果三角形的三边长 a ,b ,c 有关系,那么这个三角形是直角三角形。
3、勾股数:满足的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类正有理数 有理数零有限小数和无限循环小数实数负有理数 正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率 π,或化简后含有 π 的数,如+8 等;(3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数值,如 sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是 零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数, 则有 a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0)。
零的绝对值 是它本身,也可看成它的相反数,若|a|=a ,则 a ≥0;若|a|=-a ,则 a ≤0。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒 数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素 缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数 x 的平方等于 a ,即 x 2=a ,那么这个正数 x 就 叫做 a 的算术平方根。
特别地,0 的算术平方根是 0。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。
过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级上册知识点总结第一章勾股定理1.勾股定理直角三角形两直角边a, b的平方和等于斜边c的平方, 即a2 +b2=c23、2.勾股定理的逆定理如果三角形的三边长a, b, c有关系, a2 +b2=c2则这个三角形是直角三角形。
勾股数: 满足a2 +b2=c2的三个正整数, 称为勾股数。
常见的勾股数(3, 4, 5), (6, 8, 10), (5, 12, 13), (8, 15, 17), (7, 24, 25)第二章实数一、实数的概念与分类1.实数的分类整数(包括正整数, 0, 负整数)有理数实数分数(包括正分数和负分数)正无理数无理数无限不循环小数负无理数2.无理数: 无限不循环小数叫做无理数。
在理解无理数时, 要抓住“无限不循环”, 归纳起来有三类:(1)开方开不尽的数, 如等;(2)化简后含有π的数, 如+8等;(3)有特定结构的数, 如0.1010010001…等;注意:分数是有理数, 不是分数。
二、实数的倒数、相反数和绝对值1.相反数: 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b, 反之亦成立。
2.绝对值: 在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a≥0;若|a|=-a, 则a≤0。
3、倒数:如果a与b互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时, 要注意上述规定的三要素缺一不可)。
三、平方根、算数平方根和立方根1.算术平方根: 一般地, 如果一个正数x的平方等于a, 即x2=a, 则这个正数x就叫做a 的算术平方根。
特别地, 0的算术平方根是0。
第三章 位置与坐标一、选择题1、一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是 ( ) (A )(-5,2) (B )(1,4) (C )(2,1) (D )(1,2) 2、若点P 的坐标为)0,(a ,且a <0,则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限,则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2,5)关于x 轴的对称点是N ,则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图,把矩形OABC 放在直角坐标系中,OC 在x 轴上,OA 在y 轴上,且OC=2,OA=4,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′,则点B ′的坐标为( ) A 、(2,3) B 、(-2,4) C 、(4,2) D 、(2,-4)二、填空题6、如右下图,Rt △AOB 的斜边长为4,一直角边OB 长为3,则点A 的坐标是_____,点B 的坐标是_____.7、如右图,∠OMA =90°,∠AOM =30°,AM =20米,OM =203米,站在O 点观察点A ,则点A 的位置可描述为:在北偏东_____度的方向上,距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称,则ab =_____.9、将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____. 10、(2012山东泰安)如左下图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 .11题三、解答题11、如图,每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过A、B、C、D、E多点的坐标;(2)按图中所示规律,标出下一个点F的位置.12、(1)在左下的直角坐标系中作△ABC,使点A、B、C的坐标分别为(0,0),(-1,2),(-3,-1);(2)作出△ABC关于x轴和y轴的对称图形.13、在右上的平面直角坐标系中作点A(4,6),B(0,2),C(6,0),并求△ABC的周长和面积.专题05 二次根式☞解读考点☞2年中考【2015年题组】1.(2015的结果是( ) A B C . D . 【答案】B .考点:二次根式的乘除法.2.(2015徐州)使1-x 有意义的x 的取值范围是( ) A .x≠1 B .x≥1 C .x >1 D .x≥0 【答案】B . 【解析】试题分析:∵1-x 有意义,∴x ﹣1≥0,即x≥1.故选B . 考点:二次根式有意义的条件. 3.(2015扬州)下列二次根式中的最简二次根式是( )A .30 B.12C .8D.21【答案】A . 【解析】试题分析:A.符合最简二次根式的定义,故本选项正确;B=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误; C=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误; D=故选A .考点:最简二次根式.4.(2015合并的是( )AB C D 【答案】C .考点:同类二次根式. 5.(2015宜昌)下列式子没有意义的是( )A B C D【答案】A .【解析】试题分析:A A 符合题意;B 有意义,故B 不符合题意;C 有意义,故C 不符合题意;D 有意义,故D 不符合题意;故选A .考点:二次根式有意义的条件. 6.(2015潜江)下列各式计算正确的是( )A +=B .1=C . 363332=⨯D 3= 【答案】D .考点:1.二次根式的乘除法;2.二次根式的加减法.7.(2015有意义,那么x 的取值范围在数轴上表示出来,正确的是( )A .B .C .D .【答案】C.【解析】试题分析:由题意得,2x+6≥0,解得,x≥﹣3,故选C.考点:1.在数轴上表示不等式的解集;2.二次根式有意义的条件.8.(2015钦州)对于任意的正数m、n定义运算※为:m※n=))m nm n≥<,计算(3※2)×(8※12)的结果为()A.2-B.2 C.D.20【答案】B.【解析】试题分析:∵3>2,∴3※,∵8<12,∴8※,∴(3※2)×(8※12)=)×=2.故选B.考点:1.二次根式的混合运算;2.新定义.9.(2015孝感)已知2x=,则代数式2(7(2x x++)A.0 BC.2+D.2-【答案】C.【解析】试题分析:把2x=代入代数式2(7(2x x+++得:2(7(2+-+=(743+-+-= 49481-++2.故选C.考点:二次根式的化简求值.10.(2015荆门)当12a<<的值是()A.1-B.1C.23a-D.32a-【答案】B.考点:二次根式的性质与化简.11.(2015随州)若代数式11x -x 的取值范围是( )A .1x ≠B .0x ≥C .0x ≠D .0x ≥且1x ≠ 【答案】D . 【解析】试题分析:∵代数式11x -有意义,∴100x x -≠⎧⎨≥⎩,解得0x ≥且1x ≠.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件.12.(2015淄博)已知,则22x xy y ++的值为( )A .2B .4C .5D .7【答案】B . 【解析】 试题分析:原式=2()x y xy +-=2-21-=51-=4.故选B .考点:二次根式的化简求值.13.(2015朝阳)估计的运算结果应在哪两个连续自然数之间( )A .5和6B .6和7C .7和8D .8和9【答案】B . 【解析】试题分析:原式=2+,∵6<2+<7,∴的运算结果在6和7两个连续自然数之间,故选B .考点:1.估算无理数的大小;2.二次根式的乘除法.14.(2015的结果是 . 【答案】5.考点:二次根式的乘除法.15.(2015泰州)计算:21218-等于 .【答案】 【解析】试题分析:原式=2-==.考点:二次根式的加减法.16.(20153x =-,则x 的取值范围是 .【答案】x≤3. 【解析】3x =-,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.考点:二次根式的性质与化简. 17.(2015攀枝花)若2y =+,则y x = .【答案】9. 【解析】试题分析:2y =+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=9.故答案为:9.考点:二次根式有意义的条件.18.(2015毕节)实数a ,b b-= .【答案】b -.考点:1.实数与数轴;2.二次根式的性质与化简.19.(2015有意义,则实数x 的取值范围是 .【答案】x≥0且x≠1. 【解析】有意义,∴x≥0,x ﹣1≠0,∴实数x 的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件.20.(2015陕西省)计算:()3212263-⎪⎭⎫⎝⎛+-+-⨯.【答案】8.【解析】试题分析:根据二次根式的乘法法则、绝对值的意义、负整数整数幂的意义化简后合并即可. 试题解析:原式=8+=8-+=8. 考点:1.二次根式的混合运算;2.负整数指数幂.21.(2015大连)计算:11)()2+-+-.【答案】1+考点:1.二次根式的混合运算;2.零指数幂.22.(2015山西省)阅读与计算:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 【答案】1,1. 【解析】试题分析:分别把1、2代入式子化简即可.试题解析:第1个数,当n=1时,原式=1.第2个数,当n=2时,原式22]--=1.考点:1.二次根式的应用;2.阅读型;3.规律型;4.综合题.【2014年题组】1.(2014年四川甘孜中考)使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C. x≥5 D. x≥﹣5【答案】D.【解析】试题分析:由题意得,x+5≥0,解得x≥﹣5.故选D.考点:二次根式有意义的条件.2.(2014有意义,则实数x的取值范围是()A.x≥一1 B.x≥一1且x≠3 C.x>-l D.x>-1且x≠3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.3.(2014年镇江中考)若x、y()22y10+-=,则x y+的值等于()A.1 B.32 C.2 D.52【答案】B.【解析】()22y10+-=,∴()212x10x22y10y1⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩∴13x y122+=+=.故选B.考点:1.二次根式被开方数和偶次幂的非负性质;2.求代数式的值.4.(2014年甘肃白银中考)下列计算错误的是()A. •=B. +=C. ÷=2D. =2【答案】B.【解析】试题分析:A=,计算正确;B+,不能合并,原题计算错误;C、2==,计算正确;D=故选B.考点:二次根式的混合运算.5.(2014年山东省聊城市中考)下列计算正确的是()A.2×3=6B. +=C. 5﹣2=3D . ÷=【答案】D.【解析】试题分析:A、23318=⨯⨯=,故A错误;B、不是同类二次根式,不能相加,故B错误;C、不是同类二次根式,不能相减,故C错误;D、÷==D正确;故选D.考点:二次根式的加减法、乘除法.6.(2014)A.BCD【答案】D.考点:同类二次根式.7.(2014年凉山中考)已知12x x=,则x12+x22= .【答案】10.【解析】试题分析:∵12x x==,∴x12+x22=(x1+x2)2﹣2x1x2=2212210 +-=-=.考点:二次根式的混合运算.8.(2014年哈尔滨中考)计算:=.【答案】3.【解析】试题分析:312-=23﹣3=3.考点:二次根式的加减法.9.(2014=.【答案】2.考点:二次根式的乘除法.10.(2014)(13)-1.【答案】【解析】试题分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指数幂的运算,然后合并即可求出答案.试题解析:原式.考点:1.二次根式的混合运算;2.负整数指数幂.☞考点归纳归纳1:二次根式的意义及性质基础知识归纳:二次根式有意义的条件是被开方数大于或等于0.注意问题归纳:1.首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.【例1】函数()0y x2=--中,自变量x的取值范围是.【答案】x≥0且x≠2且x≠3.考点:二次根式有意义的条件.归纳 2:最简二次根式与同类二次根式 基础知识归纳: 1.最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 2. 同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 注意问题归纳:最简二次根式的判断方法:1.最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关. 【例2】下列二次根式中,能与3合并的是( )A .18;B .31; C .-8; D .24【答案】B .考点:同类二次根式. 归纳 3:二次根式的运算 基础知识归纳: (1).二次根式的加减法:实质就是合并同类二次根式.合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2).二次根式的乘除法 二次根式的乘法:ab b a =⋅(a ≥0,b ≥0). 二次根式的除法:b ab a =(a ≥0,b >0).注意问题归纳:正确把握运算法则是解题的关键【例3】如果ab>0,a+b<0,那么下面各式:①=,②1=,③b=-其中正确的是()①②B.②③C.①③D.①②③【答案】B.【解析】∵ab>0,a+b<0,∴a<0,b<0=,被开方数应≥0a,b不能做被开方数,(故①错误)1=(故②正确),③b=-(故③正确).故选B.考点:二次根式的运算.归纳4:二次根式混合运算基础知识归纳:先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).注意问题归纳:注意运算顺序.【例4】计算:4(1-考点:二次根式的运算.归纳5:二次根式运算中的技巧基础知识归纳:1.二次根式的被开方数是非负数;2.非负数的性质.注意问题归纳:【例5】若-2,则(x+y)y=【答案】14.【解析】由题意得,x-4≥0且4-x≥0,解得x≥4且x≤4,∴x=4,y=-2,∴x+y)y=(4-2)-2=14.考点:二次根式的运算.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)要使+有意义,则x应满足()A.12≤x≤3 B.x≤3且x≠12C.12<x<3 D.12<x≤3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2.(2015届四川省成都市外国语学校中考直升模拟)已知0<a<b,,,则x,y的大小关系是()A.x>y B.x=y C.x<y D.与a、b的取值有关【答案】C.【解析】试题分析:x-y=-=,∵0<a<b,∴22b+=+4b-<0,∴x-y<0.故选C.考点:二次根式的化简.3.(2015届山东省潍坊市昌乐县中考一模)2−x,那么x取值范)围是()A.x≤2 B.x<2 C.x≥2 D.x>2【答案】A.【解析】=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.4.(2015届山东省聊城市中考模拟)下列运算正确的是()A.2a2+3a2=6a2 B=C=D.1111b ba a---=--【答案】D.【解析】试题分析:A.2a2+3a2=5a2,故本选项错误;B+无法计算,故本选项错误;C=,故本选项错误;D.1111b ba a---=--,正确.故选D.考点:1.二次根式的加减法;2.合并同类项;3.分式的基本性质;4.二次根式的乘除法.5.(2015=2−x,那么x取值范)围是(A.x≤2 B.x<2 C.x≥2 D.x>2 【答案】A.【解析】=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.6.(2015届北京市门头沟区中考二模)在函数y=中,自变量x的取值范围是.【答案】x≥1.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.7.(2015,则x的取值范围是.【答案】x≤3.【解析】,∴3-x≥0,解得:x≤3.故答案为:x≤3.考点:二次根式的性质与化简.8.(2015x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010x x x +⎧≥-≠+≠⎪⎨⎪⎩解得:x >-1且x ≠1.故答案为:x >-1且x ≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂. 9.(2015届河北省沙河市二十冶第三中学九年级上学期第二次模拟数学)若∣b-1∣=0,且一元二次方程20kx ax b ++=有实数根,则k 的取值范围是 .【答案】k ≤4且k ≠0.考点:1.根的判别式;2.绝对值;3.二次根式的性质.10.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)已知x 、y 是实数,并且096132=+-++y y x ,则2014)(xy 的值是_______【答案】1. 【解析】试题分析:先将式子变形,然后根据二次根式和偶次幂的性质求出x 和y 的值,再代入到所求式子中即可因为096132=+-++y y x ,即0)3(132=-++y x ,所以03013=-=+y x 且,解得3,31=-=y x ,所以1)1()331()(201420142014=-=⨯-=xy考点:1.二次根式的性质;2.偶次幂的性质;3.完全平方公式. 11.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)若3,m, 5为三角形三边,则22)8()2(---m m = .【答案】2m -10.【解析】试题分析:因为3,m, 5为三角形三边,所以5-3<m <5+3,即2<m <8,所以22)8()2(---mm =m-2-(8-m )=m-2-8+m=2m-10.考点:1.三角形的三边关系;2.二次根式的性质.12.(2015届四川省雅安中学九年级一诊数学试卷)观察下列各式:=,= ,=请你将发现的规律用含自然数(1)n n ≥的等式表示出来 .(n =+(1n ≥).【解析】试题分析:∵(1=+;(2=+;∴(n =+(1n ≥).(n =+1n ≥).考点:规律型.13.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)(1)计算:312760tan 2)21(1--+--【答案】3.考点:1.负整数次方;2.特殊教的三角函数值;3.二次根式;4.绝对值. 14.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)计算:24)32()21(801-+-+-【答案】1.【解析】试题分析:根据二次根式的性质及运算法则进行计算 试题解析:原式=1221222=--+. 考点:二次根式的混合运算.15.(2015届北京市门头沟区中考二模)计算:()1163tan 60()3--π-︒+【答案】4.【解析】 试题分析:本题涉及零指数幂、特殊角的三角函数值、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=13-++=4.考点:1.实数的运算;2.零指数幂和负整数指数幂;3.特殊角的三角函数值和二次根式的化简.16.(2015届江苏省南京市建邺区中考一模)计算:()【答案】.考点:二次根式的混合运算.。
北师大版八上数学知识点归纳第一章勾股定理。
1. 勾股定理。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两直角边分别为3和4,那么斜边的平方c^2=3^2+4^2=9 + 16=25,所以斜边c = 5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 例如,三角形三边为5,12,13,因为5^2+12^2=25+144 = 169=13^2,所以这个三角形是直角三角形。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
第二章实数。
1. 无理数。
- 无限不循环小数叫做无理数。
如√(2),π等。
2. 平方根。
- 如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根。
正数a有两个平方根,它们互为相反数,记为±√(a);0的平方根是0;负数没有平方根。
- 例如,4的平方根是±2,因为(±2)^2=4。
3. 算术平方根。
- 正数a的正的平方根叫做a的算术平方根,记为√(a)。
0的算术平方根是0。
- 例如,9的算术平方根是3,即√(9)=3。
4. 立方根。
- 如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根,记为sqrt[3]{a}。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
- 例如,8的立方根是2,因为2^3=8;-8的立方根是-2,因为( - 2)^3=-8。
5. 实数的分类。
- 实数包括有理数和无理数。
有理数包括整数和分数,整数又分为正整数、0、负整数;分数分为有限小数和无限循环小数。
无理数是无限不循环小数。
6. 实数的运算。
- 在进行实数运算时,有理数的运算法则和运算律同样适用于实数。
北师大版初二上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足的三222c b a =+个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0; 另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
新版北师大版八年级数学上册知识点全面总结第一章勾股定理1 •勾股定理:直角三角形两直角边的平方和等于斜边的平方;即a2 b2 c2。
2 •勾股定理的证明:用三个正方形的面积关系进行证明(两种方法) 。
3 •勾股定理逆定理:如果三角形的三边长 a , b , c满足a2 b2 c2,那么这个三角形是直角三角形。
满足a2 b2 c2的三个正整数称为勾股数。
常见勾股数:(3、4、5) (6、8、10) (5、12、13) (& 15、17)第二章实数1 •平方根和算术平方根的概念及其性质:(1)概念:如果x2 a,那么x是a的平方根,记作:.a ;其中,a叫做a的算术平方根。
(2)性质:①当a > 0时, > 0;当a vo时,a .a2a。
2 .立方根的概念及其性质:(1 )概念:若x3 a,那么x是a的立方根,记作:3 a ;(2 )性质:①需3a :②Va a :③旷=需3 .实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4 .与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是----------- 对应的。
因此,数轴正好可以被实数填满。
5•算术平方根的运算律:f ag. b , ag) ( a》0, b》0);第三章图形的平移与旋转1 •平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
初二(上)第三章位置与坐标一.平面内特殊位置的点的坐标特征(1)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(2)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(3)坐标平面内的点与有序实数对是一一对应的关系.我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b)(4)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(5)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(6)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:a=b;②二、四象限:a=-b.二.两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为221221)y-(y)x-(x+=d.说明:求直角坐标系内任意两点间的距离可直接套用此公式.1、2、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.三.坐标点的对称(1)(2)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).☆(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)☆(4)关于平分线对称①关于直线y=x对称,P(a,b)⇒P(b,a)(x,y轴交换位置,变不变符号视对称后的象限而定)②关于直线y=-x对称,P(-a,b)⇒P(b,-a)(x,y轴交换位置,变不变符号视对称后的象限而定)四.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.五.平移变换与坐标变化①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)①向左平移a个单位,坐标P(x,y)⇒P(x-a,y)①向上平移b个单位,坐标P(x,y)⇒P(x,y+b)①向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(1)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.。