利用“不动点”法巧解高考题
- 格式:doc
- 大小:404.50 KB
- 文档页数:4
高中数学函数不动点题解题技巧在高中数学中,函数不动点是一个重要的概念,也是一种常见的题型。
函数不动点指的是一个函数的输入等于输出的点,即f(x) = x。
解题时,我们需要找到函数的不动点,并求解。
一、基本概念函数不动点是指在函数中,存在一个点x,使得f(x) = x。
这意味着当我们将x 作为函数的输入时,函数的输出等于x本身。
函数不动点的求解可以通过方程f(x) = x来实现。
二、解题方法为了解决函数不动点的题目,我们可以采用以下几种方法:1. 图像法图像法是一种直观的方法,通过绘制函数的图像来找到函数的不动点。
首先,我们可以将函数的表达式转化为图像,然后观察图像与y=x的交点。
这些交点就是函数的不动点。
例如,考虑函数f(x) = 2x - 1。
我们可以绘制出它的图像,并观察图像与y=x的交点。
通过观察,我们可以发现函数的不动点为x=1。
2. 代数法代数法是一种通过代数运算来求解函数不动点的方法。
我们可以将方程f(x) = x转化为f(x) - x = 0的形式,然后求解这个方程。
例如,考虑函数f(x) = x^2 - 3x + 2。
我们可以将方程f(x) - x = 0转化为x^2 - 4x + 2 = 0的形式,然后求解这个方程。
通过解方程,我们可以得到函数的不动点为x=1和x=2。
3. 迭代法迭代法是一种通过迭代计算来逼近函数的不动点的方法。
我们可以选择一个初始值x0,然后通过不断迭代计算来逼近函数的不动点。
例如,考虑函数f(x) = sin(x)。
我们可以选择一个初始值x0,然后通过不断迭代计算来逼近函数的不动点。
具体的迭代计算公式为x(n+1) = sin(x(n))。
通过不断迭代计算,我们可以逼近函数的不动点。
三、举一反三函数不动点题型可以通过举一反三的方法来扩展。
我们可以将题目中的函数替换为其他函数,然后采用相同的解题方法来求解。
例如,考虑函数f(x) = 2sin(x)。
我们可以使用相同的解题方法来求解函数的不动点。
2022年高考数学基础题型重难题型突破类型四用“不动点法”求数列的通项公式设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10c dx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.【典例1】已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 【典例2】已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列?定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p、q、r、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=.(1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ则λλ-++=-=++hra qpa a d n n n n 11h ra hq r p a n n +-+-=λλ)(hd r hq r p d n n ++-+-+=)())((λλλλλλλλr h rd q p h r r p d n n -+--+--=])([)(2①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ②将rpx =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+④由λ是方程h rx q px x ++=的两个相同的根可以求得.2r hp -=λ∴,122=++=---+=-+h p p h rrh p p rr h p h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp r d d n n λ令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp rn b b n λ其中.11111λ-==a db 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra qpa a n n n ++=+1代入再整理得N,)()(22111∈-+--+-=+n hq r p a hq r p a c n n n λλλλ⑤由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ故.0,021≠-≠-r p r p λλ所以由⑤式可得:N,2211211∈--+--+⋅--=+n rp h q a r p hq a r p r p c n n n λλλλλλ⑥∵特征方程hrx qpx x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程.∴222111,λλλλλλ-=---=--rp hq r p h q 将上两式代入⑥式得N,2121211∈--=--⋅--=-n c rp rp a a r p r p c n n n n λλλλλλ当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp rp 21λλ--.此时对于N ∈n 都有.)(((12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ当01=c 即11λ=a 时,上式也成立.由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra qpa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.【典例3】已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.【典例4】已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?下面分两种情况给出递推数列dt c bt a t n n n +⋅+⋅=+1通项的求解通法.(1)当c=0,时,由d t c b t a t n n n +⋅+⋅=+1dbt d a t n n +⋅=⇒+1,记k d a =,c db=,则有c t k t n n +⋅=+1(k≠0),∴数列{n t }的特征函数为)(x f =kx+c,由kx+c=x ⇒x=k c -1,则c t k t n n +⋅=+1⇒1(11k ct k k c t n n --=--+∴数列}1{k ct n --是公比为k 的等比数列,∴11)1(1-⋅--=--n n k k c t k c t ⇒11)1(1-⋅--+-=n n k kct k c t .(2)当c≠0时,数列{n t }的特征函数为:)(x f =dx c bx a +⋅+⋅由x dx c bx a =+⋅+⋅0)(2=--+⇒b x a d cx 设方程0)(2=--+b x a d cx 的两根为x 1,x 2,则有:0)(121=--+b x a d cx ,0)(222=--+b x a d cx ∴12)(1x a d cx b -+= (1)222)(x a d cx b -+= (2)又设212111x t x t k x t x t n nn n --⋅=--++(其中,n∈N *,k 为待定常数).由212111x t x t k x t x t n nn n --⋅=--++⇒2121x t x t k x dt c b t a x d t c bt a n n n n n n --⋅=-+⋅+⋅-+⋅+⋅⇒212211x t x t k dx t cx b at dx t cx b at n nn n n n --⋅=--+--+……(3)将(1)、(2)式代入(3)式得:2122221121x t x t k ax t cx cx at ax t cx cx at n n n n n n --⋅=--+--+⇒212211))(())((x t x t k x t cx a x t cx a n nn n --⋅=----⇒21cx a cx a k --=∴数列{21x t x t n n --}是公比为21cx a cx a --(易证021≠--cx a cx a )的等比数列.∴21x t x t n n --=1212111-⎪⎪⎭⎫ ⎝⎛--⋅--n cxa cx a x t x t ⇒12121111212111211--⎪⎪⎭⎫ ⎝⎛--⋅---⎪⎪⎭⎫ ⎝⎛--⋅--⋅-=n n n cxa cx a x t x t cxa cx a x t x t x x t .【典例5】已知数列{a n }中,a 1=2,3121+=+n n a a ,求{a n }的通项。
点点突破河北郭现坤在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.不动点问题虽不是高考大纲的要求,但在函数迭代、方程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到不动点的影子.以全国卷为例,2007年、2008年、2010年高考的压轴题都是可以用不动点的方法比较容易地去解决.用不动点的方法在学生平时解题中主要是求数列通项、解函数方程、证明不等式等.在此,笔者主要想讨论第3个类型,利用不动点思路方法证明不等式的问题.例1f(x)=x-sin x,0<a1<1,a n+1=f (a n),n=1,2,3,证明:0<a n+1<a n< 1.分析令f(x)=x,即x-sin x=x sin x=0,可得x=0是f(x)的一个不动点.证明因为f(x)=1-cos x0,所以f(x)是增函数,0<a1<1,易得0<a2=a1-sin a1<a1 < 1.再用数学归纳法:设n=k时有0<a k+1<a k<1,因为f(x)是增函数,x(0,1),所以f(0)<f(a k+1)<f(a k)<f(1),0<a k+2<a k+1<1,即n=k+1时结论成立.故原不等式成立.例2(2008年全国)函数f(x)=x-x ln x.数列{a n}满足0<a1<1,a n+1=f(a n).证明:a n<a n+1< 1.分析函数f(x)=x-x ln x的不动点是x=1,显然此题就是要证明数列向不动点x=1收敛.证明当x(0,1)时,f(x)=-ln x>0,所以f(x)在区间(0,1)内是增函数;又0<a1<1,所以a1<a2=f(a1)=a1-a1lna1<f(1)=1;假设n=k时有a k<a k+1<1,因为f(x)是增函数,x(0,1),所以f(a k)<f(a k+1)<f(1)=1,即a k+1<a k+2<1,当n=k+1时结论也成立.故原不等式成立.这类问题可以以各种类型的函数与数列为载体,考查导数、单调性、方程的根等问题,对学生综合能力有较高的要求,在2010年的高考中此类问题进一步拓展,又有了一些新变化:例3(2010年全国)已知数列{a n}中,a1= 1,a n+1=c-1a n.求使不等式a n<a n+1<3成立的c的取值范围.该数列应该是向其某个不动点收敛.不妨设该不动点为x0,则有1<x03,即方程f(x)=x在(1,3]有一个实根.我们继续用不动点的思路方法解决该问题.因为a n<a n+1<3对任意自然数都成立,所以首先应有a1<a2<3,可得2<c<4.设f(x)=c-1x,则f(x)是增函数,x(0,+).令f(x)=x,即c-1x=x,x2-cx+1=0.当c> 2时,该方程有2个不等的实数根,设为x1、x2,x1< x2,由韦达定理x1x2=1,可知x1<1<x2,只要让x23即可.令g(x)=x2-cx+1,g(3)0c103.即当c103时,f(x)在(1,3]上存在不动点x0 (x0就是x2).所以c的取值范围是(2,103]再用数学归纳法证明结论的正确性:因为1<x03且f(x)=c-1x在(0,+)是增函数,所以当2<c103时,有a1=1<a2=f(1)<x0=f(x0).假设n=k时,有a k<a k+1<x0 3.因为f(x)是增函数,故f(a k)<f(a k+1)<f(x0),即a k+1<a k+2< x0,当n=k+1时结论也成立,所以当c的取值范围是(2,103]时,f(x)=c-1x有在区间(1,3]内的不动点x0,数列{a n}单调递增向该不动点收敛.以上题目均选自在笔者教学过程中,学生普遍问题较多、看似熟悉却又无从下手的问题.这种解法也是笔者在教学过程中的一点感悟,不足之处请大家多批评指正.(作者单位:河北省邯郸市第一中学)13。
摘要本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式. 其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用.关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性.AbstractThis article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem were introduced which can solve the problem about the monotonicity and astringency of sequence of number.Keywords:Banach fixed point theorem,Sequence, Boundedness, Monotonicity Convergence.目录第1章绪论 (3)1.1导论 (3)1.1.1 选题背景 (3)1.1.2 选题意义 (2)1.1.3 课题研究内容 (4)1.2 研究现状 (2)1.3本章小结 (3)第2章不动点定理 (4)2.1 有关概念 (4)2.2 不动点定理和几种推广形式 (4)2.3 本章小结 (7)第3章不动点定理在数列中的应用 (8)3.1 求数列的通项公式 (8)3.2 数列的有界性 (9)3.3 数列的单调性及收敛性 (11)3.3.1数列的单调性、收敛性的重要结论 (11)3.3.2数列的单调性、收敛性的证明 (14)3.4 本章小结 (17)第6章结束语 (18)参考文献 (19)第1章绪论1.1导论不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].不动点理论一个发展方向是只限于欧氏空间多面体[5]上的映射,不动点理论的另一个发展方向是不限于欧氏空间中多面体上的映射,而考察一般的距离空间或线性拓扑空间上的不动点问题.最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像原理发展了迭代思想,并给出了Banach 不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、积分方程、隐函数理论等中的许多存在性与唯一性问题均可以归结为此定理的推论.1.1.1 选题背景不动点定理在微分方程、函数方程、动力系统理论等中有极为广泛的应用.函数的"不动点"理论虽然不是中学教材的必修内容,但是它的存在确实使一些数学问题在无法想象中得到了解决.已知递推公式求其数列通项,数列有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.因此,它就自然成为各类数学竞赛和选择性考试必选的内容之一,尤其在近年的高考中对该定理的应用越来越频繁.1.1.2 选题意义利用“不动点”法巧解高考题,递推公式求数列的通项,证明数列的有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此本文对函数“不动点”问题的研究结果,来简化求数列的通项公式、数列的有界性、数列的单调性及收敛性等问题具有指导意义和理论意义.1.1.3 课题研究内容本文通过介绍不动点定理的证明,不动点定理的迭代思想和不动点定理的推论,研究了以下的内容:①利用不动点定理的迭代思想,简化求递推数列的通项问题.②以不动点定理为指导思想,证明数列的有界性.③利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.1.2研究现状不动点理论一直是一个既比较古老的问题,又比较有新生命力的领域,它的历史悠久,却又是近现代一个发展较快的理论定理.自不动点理论问世以来,特别是最近的二三十年来,由于学术上的不断发展和数学工作者的不懈努力,这门学科的理论及应用的研究已经取得了重要的进展,不断有新的不动点理论研究成果涌现,并日臻完善.不动点的有关理论是泛函分析中最重要的原理之一,它依据于著名的巴拿赫(Banach )压缩映射定理,如今已广泛应用于数学分析的各个方面.许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()f x ()f x 把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x ∈,使00()f x x =.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题.近年来,有不少人研究中学数学中所涉及到的不动点问题,将拓扑学不动点定理的一些基本思想,采用通俗易懂的语言和形象生动的例子运用到初等数学中去,扩大中学生的知识领域,加深中学生对数学基础知识的掌握.在中学中,不动点有关知识常常用来解决一些初等数学中的问题,例如以“不动点”为载体、将函数、数列、不等式、方程以及解析几何等知识有机地交汇在一起的数学问题,从而体现了用不动点有关知识来求解这些问题有时是非常简单和巧妙的.1.3 本章小结本章介绍了选题的背景和意义,并对课题的要求和研究内容作了分析,对不动点定理的现况作了概要性的说明,是不动点定理及其应用的前期研究基础.第2章 不动点定理2.1 有关概念函数的不动点,在数学中是指被这个函数映射到其自身的一个点,即函数()f x 的取值过程中,如果有0x ,使0()f x x =.就称0x 为()f x 的一个不动点.对此定义,有两方面的理解:⑴代数意义:若方程00()f x x =有实数根0x ,则00)(x x f =有不动点0x . ⑵几何意义:若函数)(x f y =与x y =有交点),(00y x ,则0x 为()y f x =的不动点.为了介绍不动点的一般概念,本文先介绍以下相关概念.定义1[7] 度量空间: 设X 是一个集合,R X X →⨯:ρ.如果对于任何X z y x ∈,,,有 ⑴(正定性)(,)0x y ρ≥,并且(,)0x y ρ=当且仅当y x =;⑵(对称性)(,)(,)x y y x ρρ=;⑶(三角不等式)(,)(,)(,)x z x y y z ρρρ≤+,则称ρ是集合X 的一个度量,偶对()ρ,X 是一个度量空间.定义2[7] 压缩映射:给定()ρ,X 如果对于映射T :X X →存在常数K ,10<<K 使得(,)(,)Tx Ty K x y ρρ≤,(,)x y X ∀∈则称T 是一个压缩映射.定义3[7] Cauchy 列 :给定(,)X ρ,{}n x X ⊂,若对任取的0>ε,有自然数N 使对εN n m >∀,,都成立(,)m n x x ρε<则称序列{}n x 是Cauchy 列.定义4[7] 完备度量空间:给定(,)X ρ,若X 中任一Cauchy 列都收敛,则称它是完备的.定义5[8] 不动点:给定度量空间(,)T ρ及X X → 的映射T 如果存在X x ∈*使**x Tx = 则称*x 为映射T 的不动点.定义6[9] 凸集:设X 是维欧式空间的一点集,若任意的两点X x X x ∈∈21,的连线上的所有的点)10(,)1(21≤∂≤∈∂-+∂X x x ;则称X 为凸集.2.2 不动点定理和几种推广形式不动点理论是关于方程的一种一般理论.数学里到处要解方程,诸如代数方程、微分方程、函数方程等,种类繁多,形式各异,但是它们常能改写成()f x x =的形状这里的x 是某个适当的空间X 中的点,f 是X 到X 的一个映射,把每个x 移到()f x .方程()f x x =的解恰好就是在f 这个映射下被留在原地不动的点,故称不动点,于是解方程的问题就是化成了找不动点的这个几何问题,不动点理论就是研究不动点的有无、个数性质与方法.首先,本文介绍Banach 不动点定理的证明定理l (Banach 不动点定理 ——压缩映射原理[10])设(,)X ρ是一个完备的度量空间T 是(,)X ρ到其自身的一个压缩映射,则T 在X 中存在惟一的不动点.证明 首先,证明T 存在不动点取定X x ∈0以递推形式n n Tx x =+1 确定一序列{}n x 是Cauchy 列.事实上,由1111221210(,)(,)(,)(,)(,)(,)m m m m m m m m m m m x x Tx Tx K x x K Tx Tx K x x K x x ρρρρρρ+------=≤=≤≤≤任取自然数n m ,,不妨设n m <那么 1111101010(,)(,)(,)()(,)1()(,)(,)11m m n m n m m n n n m mm x x x x x x K K K x x K K K x x x x K Kρρρρρρ-----≤++≤+++-=≤-- 从而知{}n x 是一Canchy 列,故存在X x ∈*使*x x n →且*x 是T 的不动点,因为******1(,)(,)(,)(,)(,)()n n n n x Tx x x x Tx x x K x x n ρρρρρ-≤+=+→→∞故**(,)0x Tx ρ=,即**x Tx =,所以*x 是T 的不动点.其次,下证不动点的惟一性设T 有两个不动点*1*,x x ,那么由**x Tx =及*1*1x Tx =有 ******111(,)(,)(,)x x Tx Tx K x x ρρρ=≤设*1*x x ≠,则**1(,)0x x ρ>,得到矛盾,从而*1*x x =,唯一性证毕. 作为Brouwer 不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder 不动点定理I :定理2 设E 是Banach 空间,X 为E 中非空紧凸集,X X f →:是连续自映射,则f 在X 中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意X x ∈,()x f 是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集,有下面定理,我们称其为Schauder 不动点定理II :定理3 设E 是Banach 空间,X 为E 中非空凸集,X X f →:是紧的连续自映射,则f 在X 中必有不动点.定义6 设E 是线性拓扑空间,如果E 中存在由凸集组成的零邻域基,则称E 是局部凸的线性拓扑空间,简称局部凸空间.1935年,Tyehonoff 进一步将Sehauder 不动点定理I 推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff 不动点定理:定理4 设E 是局部凸线性拓扑空间,X 是其中的非空紧凸集,X X f →:是连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.1950年,Hukuhara 将Schauder 不动点定理II 与Tyehonoff 不动点定理结合起来得到下面的定理,我们称其为Sehauder--Tychonoff 不动点定理:定理5 设E 是局部凸线性拓扑空间,X 是其中的非空凸集,X X f →:是紧连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.从20世纪30年代起,人们开始关注集值映射的不动点问题.所谓集值映射的不动点, 定义如下:定义7 设X 是拓扑空间,X X T 2:→是集值映射,其中X 2表示X 的所有非空子集的集合.若存在X x ∈0,使00()x T x ∈,则称0x 是T 的不动点.1941年,kllcIltani 把Bmuwer 不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani 不动点定理:定理6 设m R X →是凸紧集,且X X T 2:→是具闭凸值的上半连续集值映射,则T 必有不动点.1950年,Botmenblust ,Karlin 把Sehauder 不动点定理I 推广到集值映射的情形:定理7 设E 是Banach 空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1952年,Fan ,Glicksberg 分别把Tyehonoff 不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg 不动点定理或K-F —G 不动点定理.即:定理8 设E 是局部凸的Hausdorff 线性拓扑空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1968年,Browder 又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder 不动点定理:定理9 设X 是Hausdorff 线性拓扑空间E 中的非空凸紧子集,集值映射XX S 2:→满足:(1)对任意X x ∈,()S x 是X 中的非空凸集(2)对任意{}1,():()y X S y x X y S x -∈=∈∈是Z 中的开集则存在X x ∈0,使00()x S x ∈.本章小结本章详细介绍了Banach 不动点定理及其证明,概况了对不动点定理的几种推广形式. 第3章 不动点定理在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子以全国卷I 为例,2007年,2008年、2010年高考的压轴题都是可以用“不动点”的方法比较容易地去解决.用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.3.1求数列的通项公式定理10 已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明 因为p 是()x f 唯一的不动点,所以p 是方程d cx b ax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得 ap cp pd b cd a p -=--=2,2 所以()()()()d cx p x pc a dcx ap cp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()p x cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把 cd a p 2-=代入上式,得: px d a c p x n n -++=--1121 令 d a c k +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1 若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式. 解 根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理 可知2,1,1,0=-===d c b a ,则 111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为()()n n a n -=--+-=-21112111 解得nn a n 2123--= 又11-=a 也满足上式.所以{}n a 的通项公式为nn a n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c +2的等差数列. 推论 已知数列{}n x 满足()()b ax x f x f x n n +==-,1 ,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2 若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解 根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论 可知3,2==b a ,则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列,则当2≥n 时,有n n a 23=+,故32-=n n a又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.3.2 数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3(2008年全国II )函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析 函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明 当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;假设k n =时有11<<+k k a a ,因为()x f 是增函数()1,0∈x ,所以()()()111=<<+f a f a f k k ,即121<<++k k a a ,当1+=k n 时结论也成立.故原不等式成立这类问题可以以各种类型的函数与数列为载体.考查导数、单调性、方程的根等问题.对学生综合能力有较高的要求,在2010年的高考中此类问题进一步拓展,又有了一些新变化:利用数列的有界性求含参数列中参数的取值范围.例4(2010年全国I )已知数列{}n a 中,nn a c a a 1,111-==+,求使不等式31<<+n n a a 成立的c 的取值范围.解:该数列应该是向其某个不动点收敛.不妨设该不动点为0x ,则有310≤<x ,即方程()x x f =在(]3,1有一个实根.我们继续用不动点的思路方法解决该问题.因为31<<+n n a a 对任意自然数都成立,所以首先应有321<<a a ,可得42<<c . 设()xc x f 1-=,则()x f 是增函数,()+∞∈,0x . 令()x x f =,即01,12=+-=-cx x x xc .当2>c 时,该方程有2个不等的实数根.设为2121,,x x x x <,由韦达定理121=x x ,可知211x x <<只要让32≤x 即可.令()()31003,12≤⇒≥+-=c g cx x x g . 即当310≤c 时,()x f 在(]3,1上存在不动点0x (0x 就是2x )所以c 的取取范围是⎥⎦⎤ ⎝⎛310,2.再用数学归纳法证明结论的正确性:因为310≤<x 且()xc x f 1-=在()+∞,0是增函数,所以当3102≤<c 时,有()()002111x f x f a a =<=<=.假设k n =时,有301≤<<+x a a k k .因为()x f 是增函数,故()()()01x f a f a f k k <<+,即021x a a k k <<++,当1+=k n 时结论也成立,所以当c 的取值范围是⎥⎦⎤⎝⎛310,2时, ()xc x f 1-=有在区间(]3,1内的不动点0x ,数列{}n a 单调递增向该不动点收敛. 3.3 数列的单调性及收敛性近几年一些地区高考试题对利用不动点解决递推数列的问题比较青睐,如求数列的通项公式,利用不动点研究数列的单调性等等.下文利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.3.3.1 关于数列单调性、收敛性的重要结论定义8 设R I f →:,其中I 是R 的一个区间,数列{}n x 由a a =1和递推关系()n n x f x =+1来定义.则数列{}n x 称为递推数列.()x f 称为数列{}n x 的特征函数,()x f x =称为数列{}n x 的特征方程,a x =1称为初始值.若设f 是连续的,若{}n x 收敛而且有极限0x ,()()010lim lim x f x f x x n n ===+.因此问题就变为寻找方程 ()x f x =解(即f 的不动点),并验证数列是不是收敛于数 0x .定理 11设f 是定义在I 上的一个压缩映射,则由任何初始值[]b a x ,1∈和递推数列()n n x f x =+1,*N n ∈生成的数列{}n x 收敛.证明:由于f 是[]b a ,上的一个压缩映射,故[]()[]b a b a f ,,⊂,则[]b a x n ,∈,且()1,0∈∃k ,使得*,N p n ∈∀,有()().1112221111b a k x x k x x k x x k x f x f x x n p n p n n p n n p n n p n n -≤-≤≤-≤-≤-=-+--+--+--+-+ 于是,0>∀ε(不妨设 a b -<ε),只要取*,,ln /lnN p n k a b N ∈∀⎥⎦⎤⎢⎣⎡-=ε,都有ε<-+p n n x x 根据Cauchy 收敛准则,{}n x 收敛.[证毕]定义9 在不动点0x 处,若()10'<x f ,则称0x 为()x f y =的吸引不动点;若()10'>x f ,则称0x 为()x f y =的排斥不动点.定理12 若()x f y =是定义在I 上的连续可导函数,0x 是吸引不动点,则存在0x 的邻域区间U ,对一切 U x ∈,都有()1'<x f 且0lim ()n n f x x →∞=.这里的记号1`()(())n n f x f f x -=.证明:因为()x f 连续可导,又()10'<x f ,则这样的区间 显然存在.对任意一点U x ∈,在0,x x 为端点的闭区间上,由拉格朗日中值定理得()()()()00'00x x x x f x f x f x x f -<-=-=-ξ所以,()U x f ∈ 由定理1可得数列(){}x f n 收敛,且0lim ()nn f x x →∞=.[证毕]定理表明吸引不动点在迭代过程中,可以吸引周边的点.下面研究数列{}n x 将以何种方式收敛于0x .定理13 若()x f y =是定义在I 上的连续可导函数,只有一个不动点 0x ,且为吸引不动点,初始值01x x ≠,递推数列()*1,N n x f x n n ∈=+,则(1)当f 在I 上递增时,则数列{}n x 单调且收敛于0x ;(2)当f 在I 上递减时,则{}n x 的两个子列的{}12-k x 和{}k x 2一递增一递减,且收敛于0x .证明:(1)当f 在I 上递增时,若()121x x x f >=,则由数学归纳法可证明()()n n n n x x f x f x =>=-+11,{}n x 递增;若()121x x x f <=,则由数学归纳法可证明 ()()n n n n x x f x f x =<=-+11,{}n x 递减.(2)当f 在I 上递减时,此时复合函数()[]x f f 递增,而子数列{}12-k x 和{}k x 2中有一个递增,另一个递减.若13x x >,用数学归纳法可证明{}12-k x 单调递增.事实上,若1212+-<k k x x ,则 ()()2212122++-=>=k k k k x x f x f x ,()()3222212+++=<=k k k k x x f x f x ,由此可得{}k x 2单调递减;若13x x <,证明类似.[证毕]定理14 若()x f y =是定义在I 上的连续可导函数,有且只有两个不动点()βαβα<,且()()1,1''≠≠βαf f ,异于βα,的初始值1x ,递推数列()*1,N n x f x n n ∈=+.则两个不动点βα,至多只有一个吸引不动点.证明:设函数()()x x f x g -=,则()()1''-=x f x g .假设两个不动点βα,同为吸引不动点,则()()1,1''<<βαf f 从而()()0,0''<<βαg g .又()()0==βαg g ,可得()εαε,,00+∃>∀U ,使得()0'<x g ,则()()()0,,0=<∈∃+αεαg a g U a ,同理 ()βεβ,-∈∃b ,使得()0>b g .由()x g 连续及零点存在定理,得()x g 在区间()b a ,上必有一个零点.这与()x g 仅有两个零点矛盾.因此假设不成立,则两个不动点βα, ,至多一个为吸引不动点.[证毕]定理15 若()x f y =是定义在I 上的连续可导的凸函数,有且只有两个不动点()βαβα<,,且βα,,中有一个吸引不动点,()()1,1''≠≠βαf f .异于βα,的初始值1x ,递推数列 ()*1,N n x f x n n ∈=+,则α为吸引不动点,β为排斥不动点,且当α<1x <O 时,{}n x 单调递增且收敛于α;当βα<<1x 时,{}n x 单调递减且收敛于α;当 β>1x 时,{}n x 单调递增且不收敛;证明:由()x f y =为凸函数,可得()x f '为增函数.由βα<且中有一个吸引不动点及定理4得()()βα''1f f <<,即α为吸引不动点,β为排斥不动点.构造函数()()x x f x g -=,则()()1''-=x f x g 为增函数且()()0,0''><βαg g .于是()βα,∈∃x ,使得()0'=x g ,于是()x g 在()x ,∞-上递减,在()β,x 上递增.下面分四种情况进行说明:(1)当α<1x 时,()()01=>αg x g 即()11x x f >,所以12x x >,结合数学归纳法易证{}n x 单调递增且收敛于α;(2)当x x <<1α时,()()01=≤αg x g 即()11x x f <,所以12x x <,结合数学归纳法易证{}n x 单调递减且收敛于α;(3)当β<<1x x 时,()()01=<βg x g 即()11x x f <所以12x x <,结合数学归纳法易证{}n x 单调递减且收敛于α;(4)当β>1x 时,()()01=>βg x g 即()11x x f >,所以12x x >,结合数学归纳法易证{}n x 单调递增且不收敛.综上,当β>1x 时,{}n x 单调递增且不收敛;当βα<<1x 时,{}n x 单调递减且收敛于α;当α<1x 时,{}n x 单调递增且收敛于α [证毕]定理表明初始值也将影响数列{}n x 收敛与否、以何种方式收敛于α.3.3.2 数列的单调性、收敛性的证明当初始值与特征函数都确定的情况下,主要判断特征函数的单调性,及不动点是否为吸引不动点,借助定理13可以解决.例 5 (2007广东理)已知函数()12-+=x x x f ,βα,是方程()0=x f 的两个根(βα>) ,()x f '是()x f 的导数.设()()),2,1(,1'11 =-==+n a f a f a a a n n n n .(1)求βα,的值;(2)证明:对任意的正整数n ,都有α>n a ;(3)略.解:(1)易得.251,251--=+-=βα (2)()12'+=x x f ,则121121221++=+-+-=+n n n n n n n a a a a a a a ,特征函数()1212++=x x x g ,特征方程 1212++=x x x , 即012=-+x x ,于是不动点251,251--=+-=βα,()()()()()222'1221222+=+-+=x x f x x x x g ,()()()()()()0122,01222'2'=+==+=βββαααf g f g ,可得βα, 均为吸引不动点.又()132,1121<==>=a g a a α,当 ()()0,,'>+∞∈x g x α,由定理13可得数列{}n a 单调递减,且α>=+∞→n n n a a a ,lim .本题的背景是牛顿切线法求方程()0=x f 的近似解.本题特征函数()1212++=x x x g 在定义域上不连续,有两个吸引不动点.由于初始值α>=11a 且不动点的导数值恰为0,使得()+∞∈,αx 时恒有()0'>x g ,使问题简单化.例6(2009陕西22)已知数列{}n x 满足,*11,11,21N n x x x nn ∈+==+. ⑴猜想数列{}n x 的单调性,并证明你的结论;(2)略.解:由 nn x x +=+111得特征函数()x x f +=11,在()1,-∞-、()+∞-,1上分别单调递减.由特征方程x x +=11得不动点251,251--=+-=βα .由于()()2'11x x f +-=,则()()15142'>-=αf ,()()15142'<+=βf ,可得 α为排斥不动点,β为吸引不动点.由()x x f +=11在()+∞-,1上单调递减,又211=x 且 02122121111111112112111111111213>++--=+--+=-++=-++=-+=-x x x x x x x x x x x x x x x x由定理13得数列{}n x 的两个子列{}12-k x 单调递增,{}k x 2单调递减. 由于特征函数()xx f +=11在()+∞-,1上单调递减,结合定理13,可得如下结论: 当()α,11-∈x 时,可得13x x >,数列{}12-k x 单调递增,{}k x 2单调递减;当α=1x 时,数列{}n x 为常数列;当()+∞∈,1αx 时,可得13x x <,数列{}12-k x 单调递减,{}k x 2单调递增.当初始值或特征函数中出现未知量或参数时,难度有所增加,考虑降低难度要求的需要,高考题给出的特征函数一般为凹或凸函数,此时主要结合定理15进行判断即可.例7(2009安徽21)首项为正数的数列{}n a 满足()*21,341N n a a n n ∈+=+ . (I )略;(II )若对一切n ∈N ,都有n n a a >+1,求1a 的取值范围. 解:(II )记()()3412+=x x f ,则()x x f 21'=,()21''=x f ,于是()x f 为凸函数.令()3412+=x x 得不动点3,1==βα.由对一切*N n ∈,都有n n a a >+1,得数列{}n a 为递增,根据定理15得,α<1a 或β>1a ,又01>a ,所以1a 的取值范围101<<a 或31>a本题已知数列的单调性,求首项的取值范围,利用不动点定理可以证明数列的单调性及收敛性,所以此题是对数列单调性及收敛性的逆向考查,是高考中的难题,继续采用不动点定理的思想,根据定理15可以很简单快捷地求出首项的取值范围,有别出心裁的效果.3.4 本章小结本章详细研究了利用不动点定理解决求数列通项,数列有界性,数列的单调性及收敛性问题,对这类问题的解决方法做了简单的概括.第6章结束语本次的毕业论文创作过程是对大学四年学习的一个总结.在历时将近半年的时间里,我通过到图书馆翻阅资料,上网,质询指导老师,收集了足够的质料,按照指导老师提供的要求按时完成了我的论文.通过撰写毕业论文,对不动点定理有了自己的认识和进一步的理解.不动点定理虽然是拓扑学中的一个著名的定理,但它在初等数学中也有极其广泛的运用,运用不动点定理可以简单快捷地解决初等数学中的一些问题,例如本文中提到的求数列通项、数列的有界性问题,数列的单调性及收敛性方面的问题;当然本文所涉及的不动点定理的应用不是很全面,还有很多方面的内容没有涉及.本次毕业论文,我按照老师的要求完成了大部分论文的内容.不动点定理,我论文中有了详细的说明,不动点定理在数列中的应用文中也作了详细的分析.这次毕业论文让我在数学理论知识应用上成熟了很多,是大学四年学习的总结,也是今后工作的宝贵经验和财富.随着全国教育体系的逐步完善,我相信数学的学习深度将进一步提高,我希望本论文对读者了解不动点定理及其在数列中的应用有所帮助.参考文献[1] CLARKSON J A.Uniformly Convex Spaces[J].Trans.Amer.Math.Soc.,1936,40(3):396~414.[2] CLARKSON J A.1nhe von Neumann Constants for Lebesgue Space[J].Ann of Math,1937,38(1):114~115.[3] JAMES R C.Uniformly Non—square Spaces0].Ann of Math,1964,80(3):542~550.[4] KIILXAAFixed Point Theorem for Mappings Which Do Not IncreaseDistances[J].Amer.Math.Monthly,1965,72(9):1004~1006.[5] AKSOY A G,KHAMSI M A.Nonstandard Methods in Fixed Point Theory[M].Heidelberg:Springer-Verlag,1990:11~13.[6] 江秉华.隐函数存在定理及隐函数组定理的一个证明方法[J].湖北师范学院学报(自然科学版),2005,25(1):87~89.[7] 龚怀云.应用泛函分析[M].第1版.西安:西安交通大学出版社,1985.[8] 谭长明.龙丽.不动点定理在方程解方面的应用[J].吉林师范大学学报(自然科学版),2007,28(1):84~86.[9] 张学山.刘裕维.高等数学辅导与测试[M].北京:高等教育出版社,2004.[10] 刘炳初.泛函分析[M].北京:科学出版社,1998 .11] 裴礼文.数学分析中的典型问题与方法[M]. 北京:高等教育出版社,1993[12] 林武忠,等. 常微分方程[M]. 北京:科学出版社,2003 .`[13] 李思华. 积分方程[M]. 天津:天津大学出版社,1993 .14] 张恭庆,等.泛函分析讲义[M].北京:北京大学出版社,1990 .[15] 程其襄.数学分析[M](第二版).北京:高等师范出版社,1991.56~58.[16] 华东师范大学教学系.数学分析上册[M].北京:高等师范教育出版社.2000.56~58.[17] [不动点定理的方法与应用[J].德州师范学院报,2005,10(2):5~7.[18] 李德本.微分中值定理的新证法[J].四平师范学院学报,1982,1(4);32~34.[19] 刘炳初.泛函分析[M].北京:科学出版社,1998 .[20] 裴礼文.数学分析中的典型问题与方法[M]. 北京:高等教育出版社.1993.[21] 林武忠,等. 常微分方程[M]. 北京:科学出版社,2003 .[22 ] 李思华. 积分方程[M]. 天津:天津大学出版社,1993.[23] 张恭庆,等.泛函分析讲义[M].北京:北京大学出版社,1990 .。
已知数列{an}中,a1=1,an+1=c-。
求不等式a n<a n+1<3成立的c的取值范围。
不动点与折线图法巧解高考数列难题免费解析本课希望解决的问题:高考数列大题中的单调,有界,极限问题(近5年共考过6个该类题)【10.全国一】1an该类题特点:难度大,这6个题都为压轴题题目形式各异,似乎没有通法本课目标:用“折线图”为大家揭示这类题“统一”的本质,直观地“看出”答案。
什么是不动点?函数f(x)的不动点:即方程x=f(x)的解递推数列a n+1=f(an)的不动点:即递推函数f(x)的不动点,即方程x=f(x)的解不动点在数列问题中的应用:1.求通项中的不动点法★化递归式为an+1-x=a(a-x)n2.数列单调、有界、极限问题中不动点的应用(折线图)近五年的6个真题我们将都会讲到。
3=(a2+3),n∈N*,若对n∈N*,一切都有a4【例1】设数列{a}满足a=a(a>0),an1n+1=2a,n证明:存在常数M,使得对于任意的n∈N*,都有a≤M。
n【例2】(11.湖南)已知函数f(x)=x,g(x)=x+x。
设数列{a n},满足a1=a(a>0),f(an+1)=g(an),⑴求f-g的零点个数⑵证明:存在常数M,使得对任意的n∈N*,都有a≤Mn【例3】(09.安徽)首项为正数的数列{an}满足an+1取值范围。
1n n+1>an,求a1的【例4】(07.全国一)设函数f(x)=x-x ln x,数列{a n}满足0<a1<1,an+1⑴证明:函数f(x)在区间(0,1)是增函数=f(a)n⑵证明:a<an n+1<1【例5】(10.全国一)已知数列{an}中,a1=1,an+1=c-1an。
求使得不等式a<an n+1<3成立的c的取值范围。
(08.全国一)若数列{bn}中bn+1=3b+4,b=2,3≤a≤【例6】n1n证明:2<b≤2(1+(2-1)4n-3).n最后一题,复杂的折线图【例7】(11.重庆)设实数数列a n的前n项和S n满足S求证:对k≥3有0≤a4。
高考数学解题技巧如何灵活运用知识与解决难题高考数学对于许多考生来说是一大挑战,他们需要在有限的时间内解决各种各样的难题。
然而,通过灵活运用数学知识和解题技巧,考生可以更加高效地解决难题。
本文将重点探讨高考数学解题技巧,包括问题分析、常用方法和注意事项等内容,帮助考生在高考数学中取得好成绩。
一、问题分析在解决高考数学难题之前,考生首先需要对问题进行充分的分析。
问题分析的目的是理清思路,确定解题的方向和方法。
考生可以通过以下几个方面进行问题分析:1. 阅读理解题目:在解题过程中,考生要仔细阅读题目,理解题目的含义和要求。
如果题目涉及多个条件或多个数据,考生需要明确它们之间的关系。
2. 分析已知信息:考生需要将已知信息逐一列举出来,并分析它们之间的联系和作用。
通过对已知信息的充分理解,考生可以找到解题的关键点。
3. 弄清问题类型:高考数学题目包括选择题、填空题、计算题等多种类型。
考生需要根据题目要求,明确问题的类型,从而确定解题的方法。
二、常用解题方法灵活运用数学知识和解题技巧是解决高考数学难题的关键。
考生可以通过掌握以下常用解题方法,提高解题效率:1. 建立数学模型:对于一些复杂的实际问题,考生可以通过建立适当的数学模型来求解。
这样可以将实际问题转化为数学问题,更容易找到解题的路径。
2. 利用已知条件:已知条件是解题过程中的重要线索,考生需要将已知条件运用到解题过程中。
可以通过设立方程、三角函数性质等方式,将已知条件转化为计算的依据。
3. 探索特殊情况:对于一些复杂的问题,考生可以通过探索特殊情况来简化解题过程。
通过假设某些特殊情况,考生可以找到解题的思路或者验证解题的正确性。
4. 参考类似题目:高考数学题目中存在一些类似的问题,考生可以通过参考类似题目的解法,借鉴解题思路和方法。
这样可以节省解题时间,提高解题效率。
三、注意事项在解决高考数学难题之前,考生还需要注意以下几个方面:1. 注意审题:认真审题是解决数学难题的关键。
“不动点法”解决递推型数列不等式问题数列不等式历来是高中数学的重点和难点,常出现在高考压轴题中,具有极高的思想性和技巧性。
尤其是浙江省的高考,最近几年压轴题中连续考到递推型数列不等式,解决递推型数列不等式的一般方法是利用“不动点”来解决问题,要计算变比()n q a 在不动点处的函数值来进一步判定数列的类型是“裂项相消型”还是“等比型”,从而进行进一步地放缩。
一、 知识方法 1、不动点的定义:一般地,设函数()f x 的定义域为D ,若存在实数0x D ∈,使()00f x x =成立,则称0x 为函数()f x 的不动点。
对定义的理解: 代数角度:0x 为方程()f x x =的实数根; 几何角度:0x 为函数()y f x =与y x =图像交点的横坐标。
2、简单迭代数列任取初始值1a ,并且()()*1n n a f a n N +=∈,则得到数列{}n a 。
二次递推:()2f x ax bx c =++一次分式递推:()ax bf x cx d+=+根式递推:()f x d =双勾递推:()()0,0bf x ax c a b x=++>> 等等。
3、“五步法”求解递推型问题模型:已知数列{}n a 满足1a a =,()()*1n n a f a n N +=∈。
第1步:找出迭代函数()f x ;第2步:求出迭代函数的不动点:由()f x x =,得0x x =;通过猜想式画图或特殊值法得到n a 的初始范围。
第3步:“中心化”再作商得到“变比”()n q a ,研究数列在不动点附近的性质:求出()100n n n a x q a a x +-=-,分析()n q a (由变比的同号法则先证n a 的初始范围中和不动点有关的这边,然后再利用作差法或作商法或数学归纳法证明n a 的单调性,即得n a 的初始范围中和首项有关的这边)。
第4步:计算“变比”()n q a 在不动点处的函数值,判定数列类型:(1) 若()01q x =,则数列为“裂项相消型”。
数列问题不动点法的运用
有一位名叫ZeroToss的网友给我提出下列的数列问题,问我如何解决?
其实,本题可用“不动点法”求数列的通项公式。
首先,我们要知道,什么叫做函数的“不动点”?
对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”。
巧用“不动点”法求数列的通项公式,是高考中的一种比较特殊的方法。
为了让同学们好好理解并掌握这一方法。
下面我们以典型例题来加以说明(由于篇幅的关系,我们只讲步骤和方法,至于详细的证明,同学们可以在相关的《高中数学竞赛教程中》找到)。
当函数有两个“不动点”时,请同学们看下面的几个例题,即可掌握方法。
从上面的方法中,大家可以概括总结出函数“不动点”法求数列通项公式的基本方法了吗?
其实,第二种题型,相应的函数有两个不动点的,一般是形如
a(n+1)=(pan+m)/(qan+u)这样的数列求通项.这样的数列相应的函数的不动点为f(x)=(px+m)/(qx+u)=x的解x1=u,x2=v,最后一般都化归为:数列{(an-u)/(an-v)}是等比数列来求通项的问题。
我们现在再来看网友ZeroToss提出的数列问题的解答:。
不动点在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子。
用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.1求数列的通项公式定理1 已知数列{}n x 满足()()dcx bax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明 因为p 是()x f 唯一的不动点,所以p 是方程dcx bax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得ap cp pd b cda p -=--=2,2 所以()()()()dcx p x pc a dcx apcp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()px cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把 cda p 2-=代入上式,得: px d a c p x n n -++=--1121令 d a ck +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1 若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式.解 根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理 可知2,1,1,0=-===d c b a , 则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为()()n n a n -=--+-=-21112111 解得nna n 2123--=又11-=a 也满足上式.所以{}n a 的通项公式为nna n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx bax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c+2的等差数列.推论 已知数列{}n x 满足()()b ax x f x f x n n +==-,1 ,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2 若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解 根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论 可知3,2==b a , 则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列, 则当2≥n 时,有n n a 23=+, 故32-=n n a 又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.2 数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3 函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析 函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明 当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;假设k n =时有11<<+k k a a ,因为()x f 是增函数()1,0∈x ,所以()()()111=<<+f a f a f k k ,即121<<++k k a a ,当1+=k n 时结论也成立.故原不等式成立这类问题可以以各种类型的函数与数列为载体.考查导数、单调性、方程的根等问题.对学生综合能力有较高的要求,在2010年的高考中此类问题进一步拓展,又有了一些新变化:利用数列的有界性求含参数列中参数的取值范围.例4 已知数列{}n a 中,nn a c a a 1,111-==+,求使不等式31<<+n n a a 成立的c 的取值范围.解:该数列应该是向其某个不动点收敛.不妨设该不动点为0x ,则有310≤<x ,即方程()x x f =在(]3,1有一个实根.我们继续用不动点的思路方法解决该问题.因为31<<+n n a a 对任意自然数都成立,所以首先应有321<<a a ,可得42<<c . 设()xc x f 1-=,则()x f 是增函数,()+∞∈,0x . 令()x x f =,即01,12=+-=-cx x x xc .当2>c 时,该方程有2个不等的实数根.设为2121,,x x x x <,由韦达定理121=x x ,可知211x x <<只要让32≤x 即可.令()()31003,12≤⇒≥+-=c g cx x x g . 即当310≤c 时,()x f 在(]3,1上存在不动点0x (0x 就是2x )所以c 的取取范围是⎥⎦⎤ ⎝⎛310,2.再用数学归纳法证明结论的正确性:因为310≤<x 且()x c x f 1-=在()+∞,0是增函数,所以当3102≤<c 时, 有()()002111x f x f a a =<=<=.假设k n =时,有301≤<<+x a a k k .因为()x f 是增函数,故()()()01x f a f a f k k <<+,即021x a a k k <<++,当1+=k n 时结论也成立,所以当c 的取值范围是⎥⎦⎤⎝⎛310,2时, ()xc x f 1-=有在区间(]3,1内的不动点0x ,数列{}n a 单调递增向该不动点收敛. 3 数列的单调性及收敛性近几年一些地区高考试题对利用不动点解决递推数列的问题比较青睐,如求数列的通项公式,利用不动点研究数列的单调性等等.下文利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.3.1 关于数列单调性、收敛性的重要结论定义1 设R I f →:,其中I 是R 的一个区间,数列{}n x 由a a =1和递推关系()n n x f x =+1来定义.则数列{}n x 称为递推数列.()x f 称为数列{}n x 的特征函数,()x f x =称为数列{}n x 的特征方程,a x =1称为初始值.若设f 是连续的,若{}n x 收敛而且有极限0x ,()()010lim lim x f x f x x n n ===+.因此问题就变为寻找方程 ()x f x =解(即f 的不动点),并验证数列是不是收敛于数 0x .定理 2设f 是定义在I 上的一个压缩映射,则由任何初始值[]b a x ,1∈和递推数列。
不动点原理在高考中的应用1. 什么是不动点原理?不动点原理是数学中的一个重要概念,它指的是在某个函数下存在一个点,使得该点经过函数变换后仍保持不变。
换言之,对于函数f(x),如果存在a使得f(a)=a,那么a就是这个函数的不动点。
不动点原理在数学、物理、计算机科学等领域中具有广泛的应用。
2. 不动点原理在高考解题中的意义在高考中,考察学生对数学概念的理解和运用能力。
不动点原理作为数学中的一个重要概念,能够帮助我们更深入地理解和解决一些问题。
下面我们将介绍不动点原理在高考解题中的应用。
3. 不动点原理的应用举例3.1 函数的迭代不动点原理可以被用来解决函数的迭代问题。
例如,考虑函数f(x) = x^2 - 3x + 4。
我们希望找到f(x) = x的解。
首先,我们可以将f(x) = x转化为x = g(x),其中g(x) = x^2 - 3x + 4。
然后,我们可以通过迭代的方式来逐渐逼近函数的不动点。
具体步骤如下:1.选定一个初始值x0。
2.计算x1 = g(x0)。
3.依次计算x2 = g(x1),x3 = g(x2),…,直到收敛到某个不动点。
这样,我们可以通过不断迭代的方式,找到函数的不动点,从而解决方程f(x) = x的问题。
3.2 高考中的应用不动点原理在高考数学中的应用非常广泛。
举个例子,在函数的性质和应用方面,常常会涉及到函数的不动点。
考生可以通过不动点原理的应用来解决一些复杂的函数性质题。
具体实例如下:题目:已知函数f(x) = x^2 - 3x + 4,求函数的最小值。
解题思路: 1. 首先,求函数的导数f’(x) = 2x - 3。
2. 令f’(x) = 0,解得x = 3/2。
3. 计算f’’(x) = 2,根据二阶导数的正负确定函数的凸凹性。
4. 然后,我们可以通过不动点原理来求解函数的最小值。
5. 找到g(x) = x的不动点,即x = g(x)。
代入g(x) = f(x) + x,得到g(x) = x^2 - 2x + 4。
高考物理解题思路如何灵活运用物理知识高中阶段的学习对于考生来说是非常关键的,尤其是面临着高考,物理作为一门重要的科目,解题思路的灵活运用至关重要。
本文将从问题分析、知识运用和解题策略等方面来探讨如何灵活运用物理知识来解题。
一、问题分析在高考物理考试中,首先要做的是对问题进行全面准确的分析。
这包括了深入理解问题的背景和要求,通过仔细阅读和思考,找到题目中给出的具体条件。
在分析过程中,应该注意问题的关键信息,例如关键字和数字等,以确定解题的方向。
二、知识运用了解清楚问题的要求之后,接下来就是通过灵活运用物理知识来解题。
首先,要熟悉掌握基本的物理定律和概念,在解题过程中有针对性地应用。
其次,还需要掌握常见的物理公式和计算方法,能够准确地运用到具体问题中。
此外,还应该注意在解题过程中将问题转化为物理概念或实验场景来进行分析,这样可以更好地理解和应用物理知识。
三、解题策略除了灵活运用物理知识外,还需要掌握一些解题策略来提高解题的效率。
首先,要注重查漏补缺,对于易错的知识点和经典题型要重视,通过针对性的练习来强化记忆。
其次,要注重综合能力的提升,物理考试中往往会出现综合性的题目,需要综合应用多个知识点来解答。
因此,平时做题时也要注重培养分析问题和解决问题的能力。
此外,要善于思考和探索,多进行思维实验和逻辑分析,通过多角度的思考来解决问题。
四、题型解析高考物理试题中常见的题型包括选择题、填空题、计算题和解答题等。
对于不同的题型,要有相应的解题方法和策略。
例如,对于选择题,要善于利用排除法和提炼关键信息进行选择;对于填空题,要注重单位的转换和精度的控制;对于计算题,要注意思路的合理性和数据的合法性;对于解答题,要注重论证和结论的提炼,以及写作的条理性和逻辑性。
五、举一反三在学习物理解题的过程中,除了解决具体问题,还应该注重将所学知识运用到实际生活中,举一反三。
例如,观察身边发生的现象,思考其中的物理原理;或者通过实际问题的模拟和设计来巩固知识的运用。
巧用不动点法求数列的通项公式不动点法是解决函数方程和递归式问题的一种有效方法。
在数学中,如果一个函数f(x) 恰好等于x,那么x 就是这个函数的不动点。
巧用不动点法,我们也可以用来求解数列的通项公式。
通过这种方法,我们可以更加轻松地理解与求解数列的通项公式。
一、不动点法的概念及定理:不动点法早在古希腊数学家Euclid时代就已经被使用,但真正的发展是在20世纪50年代,康托尔和斯考特对其进行了重要的发展。
不动点法主要应用于非线性方程及函数不动点领域。
在数学中,一个函数的不动点是指一个值x,满足f(x) = x。
这个概念的重要性体现在不动点存在定理上。
这个定理告诉我们,任何连续、紧、单调的函数都有一个不动点。
这个定理的应用范围极广,包括了不少基本的方程难题。
二、利用不动点法求解数列的通项公式的思路:利用不动点法求解数列的通项公式,我们首先要找到数列中存在的不动点。
对于一个数列{a1, a2, a3, ...} ,我们可以对其进行递推求解,得到{a1, a2, a3, ...} 的确切关系式(称为递推式),然后你可以进行转化以便寻找不动点。
我们要利用某些方法来确定这个递推式的不动点,即一个数x等于这个数列中每一项。
(即满足a(x)=x)。
最终我们可以得到一个只含有x的方程,此方程就是这个数列的通项公式。
三、一个示例:举一个最简单的例子。
有一个数列{1, 2, 3, 4, 5, ...},这个数列的递推式为an = an-1 + 1,即每一项是前一项加1。
我们尝试用不动点法来计算这个数列的通项公式。
首先对这个数列进行递推,我们可以得到an = a1 + (n - 1),即第n项等于首项加上公差乘以n-1。
到这里我们已经成功地将递推式从" an = an-1 + 1 " 修改为" an = a1 + (n-1) "。
接下来,我们要寻找这个递推式的不动点。
将an+1 = a1 + n 代入an = a1 + (n - 1) 中,可以得到a1 + n = a1 + (n - 1) + 1 ,消去a1 ,我们可以得到n =n。
高中数学函数不动点方程题解题技巧在高中数学中,函数不动点方程是一个常见的题型。
这类题目通常要求找出一个函数的不动点,即满足f(x) = x的解。
在解题过程中,我们可以运用一些技巧来简化计算,提高解题效率。
首先,我们来看一个简单的例子。
设函数f(x) = 2x + 1,要求解方程f(x) = x。
我们可以将方程改写为2x + 1 = x,然后将x移到方程的一边,得到x = -1。
这样,我们就找到了函数f(x)的不动点。
这个例子中,我们可以观察到一个规律:不动点即为函数图像与y = x的交点。
因此,我们可以通过作图来解决这类问题。
以函数f(x) = 2x + 1为例,我们可以绘制它的图像,并与直线y = x相交,交点即为不动点。
除了作图法,我们还可以利用代数方法解决不动点方程。
考虑函数f(x) = x^2 -3x + 2,要求解方程f(x) = x。
我们可以将方程改写为x^2 - 4x + 2 = 0,然后利用求根公式求解。
通过求根公式,我们可以得到x = 1和x = 2,这两个解分别对应函数f(x)的不动点。
在解决不动点方程时,我们还可以运用迭代法。
迭代法的基本思想是通过不断迭代逼近函数的不动点。
以函数f(x) = x^2 - 2为例,要求解方程f(x) = x。
我们可以先取一个初始值x0,然后通过迭代公式xn+1 = f(xn)来逐步逼近不动点。
通过计算,我们可以得到x1 = 2和x2 = 1.5,这两个值逐渐接近函数f(x)的不动点。
除了上述方法,我们还可以通过函数的图像特征来解决不动点方程。
以函数f(x) = sin(x)为例,要求解方程f(x) = x。
我们可以观察到函数f(x)的图像是一条连续的曲线,且在不动点附近呈现线性关系。
因此,我们可以通过观察图像的斜率来逼近不动点。
通过计算,我们可以得到x = 0和x = 1.895,这两个值分别对应函数f(x)的不动点。
综上所述,解决高中数学函数不动点方程题可以运用多种方法。
摘要本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用.关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性.AbstractThisarticlefirstlPintroducedtheFiGpointTheoreminBanachspace,theone-dimensionaleGtende dformoftheFiGpointTheoreminotherlineartopologicalspaceandtheeGtendedformingeneralcomplete metricspace.Then,wesummarizedtheproblemonsequenceofnumberusingFiGpointTheorem,analPzin gthecharacteristicsoftestsemergedonmathpapersofallpartsofourcountrPrecentPears,includingthepro blemofgeneraltermandboundednessofasequenceofnumber.Atlast,attractivefiGpointandrejectionfiG pointinFiGpointTheoremwereintroducedwhichcansolvetheproblemaboutthemonotonicitPandastrin gencPofsequenceofnumber.KePwords:BanachfiGedpointtheorem,Sequence,Boundedness,MonotonicitPConvergence.目录第1章绪论 (1)1.1导论 (1)1.1.1 选题背景 (1)1.1.2 选题意义 (2)1.1.3 课题研究内容 (2)1.2 研究现状 (2)1.3本章小结 (3)第2章不动点定理 (4)2.1 有关概念 (4)2.2 不动点定理和几种推广形式 (4)2.3 本章小结 (7)第3章不动点定理在数列中的应用 (8)3.1 求数列的通项公式 (8)3.2 数列的有界性 (9)3.3 数列的单调性及收敛性 (11)3.3.1数列的单调性、收敛性的重要结论 (11)3.3.2数列的单调性、收敛性的证明 (14)3.4 本章小结 (17)第6章结束语 (18)参考文献 (19)第1章绪论1.1导论不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].不动点理论一个发展方向是只限于欧氏空间多面体[5]上的映射,不动点理论的另一个发展方向是不限于欧氏空间中多面体上的映射,而考察一般的距离空间或线性拓扑空间上的不动点问题.最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像原理发展了迭代思想,并给出了Banach 不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、积分方程、隐函数理论等中的许多存在性与唯一性问题均可以归结为此定理的推论.1.1.1选题背景不动点定理在微分方程、函数方程、动力系统理论等中有极为广泛的应用.函数的"不动点"理论虽然不是中学教材的必修内容,但是它的存在确实使一些数学问题在无法想象中得到了解决.已知递推公式求其数列通项,数列有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.因此,它就自然成为各类数学竞赛和选择性考试必选的内容之一,尤其在近年的高考中对该定理的应用越来越频繁.1.1.2选题意义利用“不动点”法巧解高考题,递推公式求数列的通项,证明数列的有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此本文对函数“不动点”问题的研究结果,来简化求数列的通项公式、数列的有界性、数列的单调性及收敛性等问题具有指导意义和理论意义.1.1.3课题研究内容本文通过介绍不动点定理的证明,不动点定理的迭代思想和不动点定理的推论,研究了以下的内容:①利用不动点定理的迭代思想,简化求递推数列的通项问题.②以不动点定理为指导思想,证明数列的有界性.③利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.1.2研究现状不动点理论一直是一个既比较古老的问题,又比较有新生命力的领域,它的历史悠久,却又是近现代一个发展较快的理论定理.自不动点理论问世以来,特别是最近的二三十年来,由于学术上的不断发展和数学工作者的不懈努力,这门学科的理论及应用的研究已经取得了重要的进展,不断有新的不动点理论研究成果涌现,并日臻完善.不动点的有关理论是泛函分析中最重要的原理之一,它依据于著名的巴拿赫(Banach )压缩映射定理,如今已广泛应用于数学分析的各个方面.许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()f x ()f x 把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x ∈,使00()f x x =.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题.近年来,有不少人研究中学数学中所涉及到的不动点问题,将拓扑学不动点定理的一些基本思想,采用通俗易懂的语言和形象生动的例子运用到初等数学中去,扩大中学生的知识领域,加深中学生对数学基础知识的掌握.在中学中,不动点有关知识常常用来解决一些初等数学中的问题,例如以“不动点”为载体、将函数、数列、不等式、方程以及解析几何等知识有机地交汇在一起的数学问题,从而体现了用不动点有关知识来求解这些问题有时是非常简单和巧妙的.1.3本章小结本章介绍了选题的背景和意义,并对课题的要求和研究内容作了分析,对不动点定理的现况作了概要性的说明,是不动点定理及其应用的前期研究基础.第2章不动点定理2.1有关概念函数的不动点,在数学中是指被这个函数映射到其自身的一个点,即函数()f x 的取值过程中,如果有0x ,使0()f x x =.就称0x 为()f x 的一个不动点.对此定义,有两方面的理解:⑴代数意义:若方程00()f x x =有实数根0x ,则00)(x x f =有不动点0x . ⑵几何意义:若函数)(x f y =与x y =有交点),(00y x ,则0x 为()y f x =的不动点.为了介绍不动点的一般概念,本文先介绍以下相关概念.定义1[7]度量空间:设X 是一个集合,R X X →⨯:ρ.如果对于任何X z y x ∈,,,有 ⑴(正定性)(,)0x y ρ≥,并且(,)0x y ρ=当且仅当y x =;⑵(对称性)(,)(,)x y y x ρρ=;⑶(三角不等式)(,)(,)(,)x z x y y z ρρρ≤+,则称ρ是集合X 的一个度量,偶对()ρ,X 是一个度量空间.定义2[7]压缩映射:给定()ρ,X 如果对于映射T :X X →存在常数K ,10<<K 使得(,)(,)Tx Ty K x y ρρ≤,(,)x y X ∀∈则称T 是一个压缩映射.定义3[7]CauchP 列:给定(,)X ρ,{}n x X ⊂,若对任取的0>ε,有自然数N 使对εN n m >∀,,都成立(,)m n x x ρε<则称序列{}n x 是CauchP 列.定义4[7]完备度量空间:给定(,)X ρ,若X 中任一CauchP 列都收敛,则称它是完备的.定义5[8]不动点:给定度量空间(,)T ρ及X X →的映射T 如果存在X x ∈*使**xTx =则称*x 为映射T 的不动点.定义6[9]凸集:设X 是维欧式空间的一点集,若任意的两点X x X x ∈∈21,的连线上的所有的点)10(,)1(21≤∂≤∈∂-+∂X x x ;则称X 为凸集.2.2不动点定理和几种推广形式不动点理论是关于方程的一种一般理论.数学里到处要解方程,诸如代数方程、微分方程、函数方程等,种类繁多,形式各异,但是它们常能改写成()f x x =的形状这里的x 是某个适当的空间X 中的点,f 是X 到X 的一个映射,把每个x 移到()f x .方程()f x x =的解恰好就是在f 这个映射下被留在原地不动的点,故称不动点,于是解方程的问题就是化成了找不动点的这个几何问题,不动点理论就是研究不动点的有无、个数性质与方法.首先,本文介绍Banach 不动点定理的证明定理l (Banach 不动点定理——压缩映射原理[10])设(,)X ρ是一个完备的度量空间T 是(,)X ρ到其自身的一个压缩映射,则T 在X 中存在惟一的不动点.证明首先,证明T 存在不动点取定X x ∈0以递推形式n n Tx x =+1确定一序列{}n x 是CauchP 列.事实上,由1111221210(,)(,)(,)(,)(,)(,)m m m m m m m m m m m x x Tx Tx K x x K Tx Tx K x x K x x ρρρρρρ+------=≤=≤≤≤任取自然数n m ,,不妨设n m <那么 1111101010(,)(,)(,)()(,)1()(,)(,)11m m n m n m m n n n m mm x x x x x x K K K x x K K K x x x x K Kρρρρρρ-----≤++≤+++-=≤-- 从而知{}n x 是一CanchP 列,故存在X x ∈*使*x x n →且*x 是T 的不动点,因为******1(,)(,)(,)(,)(,)()n n n n x Tx x x x Tx x x K x x n ρρρρρ-≤+=+→→∞故**(,)0x Tx ρ=,即**x Tx =,所以*x 是T 的不动点.其次,下证不动点的惟一性设T 有两个不动点*1*,x x ,那么由**x Tx =及*1*1x Tx =有 ******111(,)(,)(,)x x Tx Tx K x x ρρρ=≤设*1*x x ≠,则**1(,)0x x ρ>,得到矛盾,从而*1*x x =,唯一性证毕. 作为Brouwer 不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder 不动点定理I :定理2设E 是Banach 空间,X 为E 中非空紧凸集,X X f →:是连续自映射,则f 在X 中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意X x ∈,()x f 是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集,有下面定理,我们称其为Schauder 不动点定理II :定理3设E 是Banach 空间,X 为E 中非空凸集,X X f →:是紧的连续自映射,则f 在X 中必有不动点.定义6设E 是线性拓扑空间,如果E 中存在由凸集组成的零邻域基,则称E 是局部凸的线性拓扑空间,简称局部凸空间.1935年,TPehonoff 进一步将Sehauder 不动点定理I 推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为TPehonoff 不动点定理:定理4设E 是局部凸线性拓扑空间,X 是其中的非空紧凸集,X X f →:是连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.1950年,Hukuhara 将Schauder 不动点定理II 与TPehonoff 不动点定理结合起来得到下面的定理,我们称其为Sehauder--TPchonoff 不动点定理:定理5设E 是局部凸线性拓扑空间,X 是其中的非空凸集,X X f →:是紧连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.从20世纪30年代起,人们开始关注集值映射的不动点问题.所谓集值映射的不动点, 定义如下:定义7设X 是拓扑空间,X X T 2:→是集值映射,其中X2表示X 的所有非空子集的集合.若存在X x ∈0,使00()x T x ∈,则称0x 是T 的不动点.1941年,kllcIltani 把Bmuwer 不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani 不动点定理:定理6设m R X →是凸紧集,且X X T 2:→是具闭凸值的上半连续集值映射,则T 必有不动点.1950年,Botmenblust ,Karlin 把Sehauder 不动点定理I 推广到集值映射的情形: 定理7设E 是Banach 空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1952年,Fan ,Glicksberg 分别把TPehonoff 不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg 不动点定理或K-F —G 不动点定理.即: 定理8设E 是局部凸的Hausdorff 线性拓扑空间,X 是E 中的非空紧凸集,XX T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点. 1968年,Browder 又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder 不动点定理:定理9设X 是Hausdorff 线性拓扑空间E 中的非空凸紧子集,集值映射XX S 2:→满足:(1)对任意X x ∈,()S x 是X 中的非空凸集(2)对任意{}1,():()y X S y x X y S x -∈=∈∈是Z 中的开集则存在X x ∈0,使00()x S x ∈.本章小结本章详细介绍了Banach 不动点定理及其证明,概况了对不动点定理的几种推广形式.第3章不动点定理在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子以全国卷I 为例,20PP 年,20PP 年、20PP 年高考的压轴题都是可以用“不动点”的方法比较容易地去解决.用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.3.1求数列的通项公式定理10已知数列{}n x 满足()()d cx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明因为p 是()x f 唯一的不动点,所以p 是方程d cx b ax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得ap cp pd b cd a p -=--=2,2 所以 ()()()()d cx p x pc a dcx ap cp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()p x cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把cd a p 2-=代入上式,得: px d a c p x n n -++=--1121 令d a c k +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式. 解根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理可知2,1,1,0=-===d c b a ,则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为 ()()n n a n -=--+-=-21112111 解得nn a n 2123--= 又11-=a 也满足上式.所以{}n a 的通项公式为nn a n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c +2的等差数列. 推论已知数列{}n x 满足()()b ax x f x f x n n +==-,1,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论可知3,2==b a ,则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列,则当2≥n 时,有n n a 23=+,故32-=n n a又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.3.2数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3(20PP 年全国II )函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;。
利用“不动点”法巧解高考题由递推公式求其数列通项从来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这种问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情形,因此咱们能够利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探讨。
笔者在长期的教学实践中,不断总结探讨反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探讨的规律性总结,以期对同窗们解题有所帮忙.1 不动点的概念一样的,设()f x 的概念域为D ,假设存在0x D ∈,使f x x ()00=成立,那么称x 0为f x ()的不动点,或称00(,)x x 为f x ()图像的不动点。
2 求线性递推数列的通项定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 知足递推关系1()n n a f a -=,2,3,n =,证明{}a x n -0是公比为a 的等比数列。
证:∵x 0是f x ()的不动点,因此ax b x 00+=,因此b x ax -=-00,因此a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。
例1 (2020上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即15166n n a a -=+(2)n ≥,记51()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:151(1)(2)6n n a a n --=-≥,又a 1-1= -15 ≠0,因此数列{a n -1}是等比数列。
利用“不动点法”巧解高考题
由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键。
与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果来简化对数列通项问题的探究。
笔者在长期的教学实践中,不断总结,探究反思,对那些难求通项的数列综合问题形成了利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助。
1 不动点的定义
一般的,设()f x 的定义域为D ,若存在0x D ∈使f x x ()00=成立,则称x 0为f x ()的不动点,或称00(,)x x 为f x ()图像的不动点。
2 求线性递推数列的通项
定理1:设函数()(01)f x ax b a =+≠、
且x 0是函数f x ()的不动点,数列{}a n 满足递推关系()()123n n a f a n -==、、…,证明:数列{}a x n -0是公比为a 的等比数列。
证:∵x 0是f x ()的不动点,∴ax b x 00+=,∴b x ax -=-00,
∴0101010()()n n n n a x a
a b x a a ax a a x ----=+-=-=-··, ∴数列{}a x n -0是公比为a 的等比数列。
例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S 且()
*585n n S n a n N =--∈。
⑴证明:数列{}1n a -是等比数列;
⑵求数列{}n S 的通项公式并求出使得1n n S S +>成立的最小正整数n 。
证:⑴当1n =时,114a =-;当2n ≥时,11155n n n n n a S S a a --=-=-+,
∴()16512n n a a n -=+≥,∴()151266n n a a n -=+≥,记51()66
f x x =+, 令()f x x =,求出不动点01x =,由定理1知:()15
1(1)26
n n a a n --=-≥,
又∵11150a -=-≠,∴数列{}1n a -是等比数列。
⑵略。
证:⑴由题设知11
1111111
()x x dx b a cx x cx d a cx =⇔=-⇔-=-+-;同理,222()dx b a cx x -=-。
∴1
11111
1122222
2()()n n n n n n
n n n n aa b
x a x ca d a cx a b dx a x a cx aa b a x a cx a b dx a cx a x x ca d
+++--+-+---===⋅+--+----+, ∴数列{}a x a x n n --1
2
是公比为a cx a cx --12的等比数列。
⑵由题设知ax b
x cx d
+=+的解为120x x x ==,∴x a d c 02=
-且000b dx x a cx -=--。
∴
1000000
11()()()
n n n n n n n ca d ca d aa b b dx a x a cx a b dx x a cx a ca d a cx +++===
+---+---++- 0000000000
1
()()()()n n n n n ca d ca cx d cx d cx c a cx a x a cx a x a cx a cx a x +-+++===+⋅
------- 00000111222n n n a d
d c c c c c a d a cx a x a cx a x a x a d
a c c
-+⋅
=+
⋅=+=+------+-⋅ ∴数列{}10a x n -是公差为2c
a d
+的等差数列。
例2(2006年全国Ⅱ卷22题)设数列{}n a 的前n 项和为n S 且方程2
0n n x a x a --=有一个根
为*
1()n S n N -∈。
求数列{}n a 的通项公式。
解:∵2
11=
a 且0)1()1(2
=--⋅--n n n n a S a S ,∴将1--=n n n S S a 代入上式得121--=n n S S ,
记()1
2f x x
=-,令()f x x =,求出不动点01x =,
由定理2-⑵知:1211
1111n n n n S S S S +-==-+---,∴数列11n S ⎧⎫⎨⎬-⎩⎭
是公差为1-的等差数列,
∴1+=
n n S n ,∴数列{}n a 的通项公式为1
1+=n a n 。
例3(2010年全国卷Ⅰ22题)已知数列{}n a 中,11a =,11
n n
a c a +=-。
⑴设5
2
c =
,12n n b a =-,求数列{}n b 的通项公式;
⑵求使不等式13n n a a +<<成立的c 的取值范围。
解:⑴∵1525122n n n n a a a a +-=-=,∴记52()2x f x x -=,令()f x x =,求出不动点121
22
x x ==,;
由定理2-1知:1
12112221211222n n n n
n n n n a a a a a a a a ++-⎧
-=-=⎪⎪
⎪⎨⎛⎫- ⎪⎪⎝
⎭⎪-=-=⎪⎩
,两式相除得1122111422n n n n a a a a ++--=⋅--, ∴212n n a a ⎧⎫
⎪⎪-⎨⎬⎪⎪-⎩⎭是以14为公比,112212
a a -=--为首项的等比数列, ∴1
212142
n n
n a a --⎛⎫
=-⋅ ⎪⎝⎭-,1
3
224n n a -=-+,∴12433n n b -=--。
证:∵x x 12、是f x ()的不动点,∴11dx b ax =-,22dx b ax =-。
2221111122212222(2)2(2)2n n n n n n n n n n a x a a b a a d x a a b a a x ax b
a x a a
b a a d x a a b a a x ax b
++-⋅+-⋅+⋅+-⋅⋅+-==
-⋅+-⋅+⋅+-⋅⋅+- 22211122
222
(2)()(2)n n n n n n a a a x x a x a a a x x a x -⋅+-==-⋅+-, 又∵1
1
120a x a x ->-,∴12
0n n a x a x ->-,∴111122ln 2ln n n n n a x a x a x a x ++--=--, ∴12ln
n n a x a x ⎧⎫
-⎨⎬-⎩⎭
是公比为2的等比数列。
例4 (2010东城区二模试题)已知数列{}n x 满足14x =,213
24
n n n x x x +-=-。
⑴求证:3n x >;⑵求证:1n n x x +<;⑶求数列{}n x 的通项公式。
证:⑴、⑵略;
⑶∵2
13
24
n n n x x x +-=-,∴记23()24x f x x -=-,令()f x x =,求出不动点1213x x ==,
; ∵由定理3知:2
2
12213(1)1124243(3)332424n n n n
n n n n n n x x x x x x x x x x ++⎧---=-=⎪--⎪⎨--⎪-=-=⎪--⎩
,∴2
111133n n n n x x x x ++⎛⎫--= ⎪--⎝⎭,
∵
111413343x x --==--,∴133111log 2log 33n n n n x x x x ++--=--.∵1311log 13
x x -=-,∴令31
log 3n n n x a x -=-
∴数列{}n a 是首项为1,公比为2的等比数列.∴1
2
n n a -=.
∵由31log 3n n n x a x -=-得133n
a n n x x -=-,∴1
1121231313131
n n n n a n a x --++--==--。
利用函数“不动点法”求解较复杂的递推数列的通项问题并不局限于以上三种类型,基于
高考数列试题的难度,本文不再对更为复杂的递推数列进行论述,以下的两个定理供有兴趣的。