热力学统计物理__玻耳兹曼统计
- 格式:ppt
- 大小:1.71 MB
- 文档页数:63
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
统计物理学中的玻尔兹曼方程分析统计物理学是一门研究宏观物质性质和微观粒子行为之间关联的学科。
而在统计物理学中,玻尔兹曼方程是一种重要的工具,用于描述多粒子系统的宏观状态。
本文将重点讨论玻尔兹曼方程的分析和应用。
玻尔兹曼方程最初由奥地利物理学家路德维希·玻尔兹曼于1872年引入,它描述了粒子的分布函数在时间和空间上的演化。
分布函数是一个在相空间中定义的函数,描述了不同位置和动量的粒子数目。
在热力学平衡下,粒子分布服从麦克斯韦-玻尔兹曼分布律,而玻尔兹曼方程则描述了系统从非平衡态演化到平衡态的过程。
玻尔兹曼方程的形式可以表示为:$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_x f = \left(\frac{\partialf}{\partial t}\right)_{\text{coll}}$$其中,$f$是分布函数,$\mathbf{v}$是粒子速度,$x$是位置,$\nabla_x$是位置梯度算符,$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$表示碰撞项。
这个方程的左侧描述了粒子在空间中的移动,右侧描述了由于碰撞引起的速度分布的变化。
在分析玻尔兹曼方程时,一种常用的方法是使用玻尔兹曼方程的一维简化形式,即Boltzmann equation in the relaxation time approximation (RTA),也称为Boltzmann equation with the BGK collision operator。
RTA假设碰撞实际上是一个粒子速度分布函数的指数衰减过程,通过引入碰撞时间常数,使方程更易求解。
玻尔兹曼方程的解决方案一般采用分布函数的累积方式,即将问题转化为求解分布函数的一组守恒方程。
这些守恒方程将分布函数的瞬态行为与宏观观测值联系起来,比如粒子数密度、动量和能量等。
玻尔兹曼统计分布玻尔兹曼统计分布是热力学和统计物理学中的一个重要概念,它描述了粒子在能级间的分布情况。
玻尔兹曼统计分布是基于玻尔兹曼分布定律得出的,该定律指出在热平衡状态下,粒子在各能级上的分布服从玻尔兹曼分布。
玻尔兹曼统计分布的推导是基于两个基本假设。
首先,假设粒子之间是无相互作用的,其能量仅由粒子的内能决定。
其次,假设粒子在不同能级上的分布是独立的,即一个粒子在某个能级上的分布不会影响其他粒子在相同能级上的分布。
基于这两个假设,我们可以得到玻尔兹曼统计分布的表达式。
玻尔兹曼统计分布可以用来描述各种不同的系统,例如理想气体、固体、液体等。
对于理想气体来说,玻尔兹曼统计分布可以用来计算不同能级上的粒子数。
根据统计物理学的基本原理,处于热平衡的理想气体中,各个能级上的粒子数与该能级对应的能量有关。
在玻尔兹曼统计分布中,粒子在某个能级上的分布概率与该能级的能量成负指数关系。
具体而言,粒子在第i个能级上的概率P(i)可以用玻尔兹曼因子e^(-E(i)/kT)表示,其中E(i)为第i个能级的能量,k为玻尔兹曼常数,T为系统的温度。
玻尔兹曼统计分布可以通过计算每个能级上的粒子数与总粒子数的比例来得到。
玻尔兹曼统计分布在理解和描述各种物理现象中起着重要作用。
例如,在研究固体的热容时,可以利用玻尔兹曼统计分布计算不同能级上的粒子数,并进一步计算总的内能和热容。
另外,玻尔兹曼统计分布也可以用来解释光谱线的强度分布、电子能级跃迁等现象。
玻尔兹曼统计分布是热力学和统计物理学中的一个重要概念,它描述了粒子在能级间的分布情况。
通过玻尔兹曼统计分布,我们可以计算不同能级上的粒子数,并进一步理解和解释各种物理现象。
玻尔兹曼统计分布在研究和应用中具有广泛的意义,对于理解物质的性质和行为具有重要的启示作用。
第一章概念1.系统:孤立系统、闭系、开系与其他物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1.系统的各种宏观性质都不随时间变化;2。
热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态.3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数.当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵.定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状.8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡.三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。