练习 一个家庭中有若干个小孩,假定生
男生女是等可能的,令
A =“一个家庭中有男孩又有女孩”
B =“一个家庭最多有一个女孩”
(1)家庭中有两个小孩, (2)家庭中有三个小孩。
对上述2种情况,讨论事件
A, B 的独立性。
(1) {( B, B),( B, G),(G, B),(G, G)}
(2) {( B, B, B),( B, B, G),( B, G, B),(G, B, B), (G, G, B),(G, B, G),( B, G, G),(G, G, G)}
今任选一个袋子然后再从选到的袋子中任取一个球问取到红球的概率为多上述分析的实质是把一个复杂事件分解为若干个互不相容的简单事件再将概率的加法公式和乘法定理结合起来这就产生了全概率公式
课堂练习: 化简事件
( AB
AC
C ) AC
解 原式 AB C
AC ABC AC
( A B)C
AC BC AC
P ( AB ) 1 6 P( A | B) 3 P( B) 3 6 2)从加入条件后改变了的情况去算
1
掷骰子
1 P(A|B)= 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
问题 : 分别考虑
P ( A)与P A B 哪个大?
A B, B A, AB
条件概率是概率(P30)
首先,不难验证条三条公理:
(1) 非负性 P( A | B) 0 (2) 正规性 P( | B) 1
(3) 完全可加性 若A1, A2 ,, An ,两两互斥, P( B) 0, 则
由此得
P( An | B) P( An | B)