一磁场磁感线
- 格式:ppt
- 大小:11.29 MB
- 文档页数:7
1.磁场磁感线学习目标:1.[物理观念]知道磁场、磁感线的概念,了解安培定则,知道一切磁相互作用都是通过磁场实现的。
2.[科学思维]掌握磁感线的特点,会用安培定则判断几种常见磁场的磁感线的方向,能解决有关的问题。
3.[科学探究]通过实验探究几种常见磁场的磁感线方向与电流方向的关系,进一步理解安培定则。
4.[科学态度与责任]认识磁的应用对生产、生活和科学发展的作用,培养学生的学习兴趣和探索科学的精神。
一、我国古代对磁现象的认识及应用1.我国古代四大发明之一的指南针,也就是磁针。
2.任何磁体,不管形状如何都有两个位置磁性最强,称为磁体的两个极,一个叫N极,一个叫S极。
说明:同名磁极相互排斥,异名磁极相互吸引。
二、磁场与磁感线1.磁场(1)定义:磁体周围分布着磁场。
(2)特点:一切磁体相互作用都是通过磁场实现的。
(3)方向:小磁针N极受力的方向,就是该处磁场的方向。
2.磁感线(1)磁感线:人们用磁感线来形象地描述磁场的方向和强弱。
(2)磁感线的特点:①曲线上每一点的切线方向为该点的磁场方向。
②曲线的疏密表示磁场的强弱。
3.磁场是一种物质,磁体和电流在自己周围空间会产生磁场,而磁场的基本特性就是对处在它里面的磁体或电流有力的作用,这些作用是通过磁场来传递的。
注意:磁感线是一些假想的曲线,是闭合的曲线,没有起始和终止位置。
三、安培定则1.直线电流的磁场:用右手握住通电导线,让伸直的拇指所指的方向与电流方向一致;则弯曲的四指所指的方向就是磁感线环绕的方向。
2.环形电流的磁场:如果右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向是环形电流轴线上磁感线的方向。
说明:通电螺线管的磁场:右手握住螺线管,让弯曲的四指所指的方向跟螺线管电流方向一致,拇指所指的方向就是螺线管轴线上磁场的方向,或拇指指向螺线管的N极。
1.思考判断(正确的打“√”,错误的打“×”)(1)天然磁体和人造磁体都能吸引铁质物体。
《磁场磁感线》教学设计方案(第一课时)一、教学目标1. 理解磁场的概念,以及磁场对放入其中的小磁针有力的作用。
2. 掌握磁感线的概念,理解磁感线的意义,能够画出基本的磁感线。
3. 能够根据磁感线理解磁场的分布和变化。
4. 培养观察、分析、解决问题的能力。
二、教学重难点1. 教学重点:理解磁场和磁感线的概念,掌握基本的磁场分布和变化。
2. 教学难点:根据磁感线理解复杂的磁场分布和变化,以及通过观察分析解决实际问题。
三、教学准备1. 准备教学PPT,包含磁场和磁感线的图片、基本概念的解释等。
2. 准备小磁针,用于演示磁场对小磁针的作用。
3. 准备磁感线图片,用于解释磁感线的意义。
4. 准备一些复杂的磁场分布图,用于课堂讨论和讲解。
四、教学过程:1. 引入课题教师首先展示一些包含磁场的图片或视频,引导学生观察并思考磁场的特点和性质。
然后,教师介绍磁感线的概念,并解释其作用和意义。
2. 讲解磁感线教师详细介绍磁感线的概念、性质、画法等基础知识,并通过一些实例帮助学生理解。
同时,教师可以通过一些有趣的实验,如磁铁悬浮小铁球等,帮助学生更好地理解磁场的性质和磁感线的意义。
3. 探究实验教师组织学生进行一些探究实验,如磁铁在铁粉上的移动,观察铁粉的分布情况,从而更好地理解磁场的分布和性质。
同时,教师还可以引导学生探究磁场的方向、强度等物理量,帮助学生更好地理解磁场的基本概念和规律。
4. 课堂互动教师鼓励学生提出自己对磁感线的疑问和想法,引导学生思考和讨论磁场和磁感线的相关问题。
同时,教师还可以组织学生进行小组讨论,让学生互相交流和分享自己的学习经验和成果。
5. 课堂小结教师对本节课的内容进行总结,强调重点和难点,帮助学生更好地理解和掌握磁场和磁感线的相关知识。
同时,教师还可以引导学生思考磁场在现代科技中的应用和发展前景,激发学生的学习兴趣和探索欲望。
6. 布置作业教师根据本节课的内容和学生掌握情况,布置适量的作业和思考题,帮助学生进一步巩固和拓展所学知识。
1磁场磁感线[学习目标] 1.知道磁场的概念,知道磁体与磁体间、磁体与电流间、电流与电流间的作用是通过磁场发生的.2.理解磁感线的概念,知道磁感线的特点.3.理解安培定则,会用安培定则判断电流的磁场方向.一、电和磁的联系磁场1.磁极之间的相互作用:同名磁极相互________,异名磁极相互________.2.奥斯特实验:把导线放置在小磁针的________,通电时磁针发生了转动.实验意义:奥斯特实验发现了电流的________,即电流可以产生磁场,首次揭示了__________的联系.3.磁场:磁体与磁体之间、磁体与通电导体之间,以及通电导体与通电导体之间的相互作用,是通过________发生的,磁场是磁体或电流周围一种看不见、摸不着的客观存在的________.二、磁感线1.磁场的方向:物理学规定,在磁场中的某一点,小磁针静止时__________所指方向就是该点磁场的方向.2.磁感线(1)定义:在磁场中画出一些有方向的曲线,曲线上每一点的________________都跟这点磁场的方向一致,这样的曲线就叫作磁感线.(2)特点①磁感线的____________表示磁场的强弱.磁场强的地方,磁感线____________;磁场弱的地方,磁感线____________.②磁感线上某点的________________表示该点磁场的方向.三、安培定则1.直线电流的磁场安培定则:如图甲所示,用__________握住导线,让伸直的拇指所指的方向与电流方向一致,____________________所指的方向就是磁感线环绕的方向.直线电流周围的磁感线分布情况如图乙所示.2.环形电流的磁场安培定则:如图甲所示,让右手________________________________与环形电流的方向一致,________________________________就是环形导线轴线上磁场的方向.3.通电螺线管的磁场安培定则:如图所示,用右手握住螺线管,让弯曲的四指与______________________________一致,伸直的拇指所指的方向就是________________磁场的方向.判断下列说法的正误.(1)磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种客观存在的特殊物质.()(2)磁感线可以形象地描述各磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时N极所指的方向一致.()(3)磁感线可以用细铁屑来显示,因而是真实存在的.()(4)通电直导线周围磁场的磁感线是以导线为圆心的圆.()(5)磁体的磁场和电流的磁场本质上是一样的.()(6)环形电流的磁场相当于小磁针,通电螺线管的磁场相当于条形磁体.()一、磁场磁感线导学探究如图所示,通电导线放在蹄形磁体附近,悬挂导线的细线偏离竖直方向,说明通电导线受到力的作用,磁体对通电导线的作用力是如何产生的?知识深化1.磁场(1)磁场的客观性:磁场与电场一样,也是一种物质,是一种看不见而又客观存在的特殊物质.存在于磁体、通电导线、运动电荷、变化电场、地球的周围.(2)磁场的基本性质:对放入其中的磁极、通电导体、运动的电荷有力的作用,而且磁体与磁体、磁体与通电导体、通电导体与通电导体间的相互作用都是通过磁场发生的.2.磁感线(1)定义:磁感线是为了形象地描述磁场而人为假想的曲线,曲线上每一点的切线方向都跟这点磁场的方向一致.(2)特点:①在磁体外部,磁感线从N极发出,进入S极;在磁体内部由S极回到N极.②磁感线的疏密程度表示磁场的强弱,磁感线越密的地方磁场越强;磁场方向与过该点的磁感线的切线方向一致.③磁感线闭合而不相交,不相切,也不中断.④磁感线是人们为了形象描述磁场而假想的线,并不真实存在.(3)几种特殊磁体外部的磁感线分布(如图所示):3.地磁场及其磁感线(1)地磁场地球在地面附近空间产生的磁场,叫作地磁场,如图所示,地球实际上就是一个巨大的磁体,它也有两个磁极,分别是地磁南极和地磁北极.(2)对地磁场的理解虽然地磁两极与地理两极并不重合,但它们的位置相对来说差别不是很大,因此,一般我们认为:①地磁的北极在地理南极附近,地磁的南极在地理北极附近,地球的地理两极和地磁两极不重合,形成了磁偏角.②地磁场在水平方向总是从地磁南极指向北极,而竖直方向则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.③在赤道平面上,距离地球表面高度相等的点,磁场的强弱相同,且方向均与地面平行.例1(多选)下列有关磁场的说法,正确的是()A.磁体周围的空间存在看不见、摸不着的磁场B.磁极间的相互作用是通过磁场发生的C.磁场是有方向的,在条形磁体的磁场中的不同位置,其磁场方向一般不同D.在磁场中的某点,小磁针S极所受磁场力的方向与该点的磁场方向相同例2关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都跟小磁针在该点静止时N极所指的方向一致B.磁感线总是从磁体的N极出发,到S极终止C.磁感线分布图中没有画磁感线的地方,表明该处没有磁场D.磁感线可以用细铁屑来显示,因而是真实存在的二、安培定则导学探究1.演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置.将小磁针平行地放在直导线的上方或下方,请观察直导线通、断电时小磁针的偏转情况.观察到什么现象?通过这种现象可以得出什么结论呢?2.重做上面的实验,请观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化.观察到什么现象?这说明什么?知识深化用安培定则判断电流磁场的方向安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心的多组同心圆,越向外越稀疏,磁场越弱环形电流环内磁场比环外强,磁感线越向外越稀疏通电螺线管内部磁场为匀强磁场且比外部强,方向由S极指向N极,外部磁场类似条形磁体的磁场,方向由N极指向S极例3如图所示,a、b是直线电流的磁场截面图,c、d是环形电流的磁场截面图,e、f是螺线管电流的磁场的截面图.试在各图中补画出电流方向或磁感线方向.例4(多选)(2021·南宁市期末)如图所示,E、F分别表示蓄电池两极,P、Q分别表示螺线管两端.当闭合开关时,发现小磁针N极偏向螺线管Q端.下列判断正确的是()A.F为蓄电池正极B.螺线管P端为S极C.流过电阻R的电流方向向下D.管内磁场方向由Q指向P针对训练在如图所示的四幅图中,分别给出了导线中的电流方向或磁场中某处小磁针静止时N极的指向或磁感线方向.请画出对应的磁感线(标上方向)或电流方向.利用安培定则判定电流的磁场方向需注意的问题:(1)利用安培定则判断通电直导线的磁场方向时,大拇指指的是电流方向,四指指的方向为磁感线的环绕方向.(2)利用安培定则判断通电螺线管和环形电流的磁场方向时,四指指的是电流方向,大拇指指的方向是磁场方向.三、安培分子电流假说1.法国学者安培提出:在物质内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极.(如图所示)2.当铁棒中分子电流的取向大致相同时,铁棒对外显磁性;当铁棒中分子电流的取向变得杂乱无章时,铁棒对外不显磁性.例5(2021·抚州市临川一中期中)安培观察到通电螺线管的磁场和条形磁体的磁场很相似,提出了“分子电流”假说.他认为,在物质内部存在着一种环形电流——分子电流(分子电流实际上是由原子内部电子绕核运动形成的,如图所示),分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极.下列将分子电流(箭头表示电子运动方向)等效为小磁体的选项图中正确的是()。
磁场、磁感线、磁感应强度、磁通量教学内容:一. 磁场、磁感线1. 我国古代磁的应用有;(1)指南针:(2)磁石治病。
2. 磁极间的作用:同名磁极相互排斥,异名磁极相互吸引。
无论是磁极和磁极之间,还是磁极和电流之间都存在磁力。
磁场是一种看不见、摸不着,存在于电流或磁体周围的物质,它传递着磁体间的相互作用。
3. 磁场的来源有磁铁,电流等。
4. 磁场的性质:对放于它里面的磁铁或电流有磁场力的作用。
5. 磁场的方向:磁场中任意一点,小磁针在该点北极受力方向即小磁针静止时N极所指的方向,就是该点的磁场方向。
6. 磁感线:所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向。
7. 安培定则(也叫右手螺旋定则):(1)判定直导线中电流的方向与磁感线方向之间的关系时可表述为:用右手握住导线,让伸直的拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
(2)判定环形电流和通电螺线管的电流方向与磁感线方向之间的关系时表述为:让右手弯曲的四指所指的方向跟电流的方向一致,拇指所指的方向就是环形电流中轴线上磁感线的方向或螺线管内部磁感线的方向。
二. 典型磁场的磁感线分布1. 磁场的分布是立体空间的,要熟练掌握常见磁场的磁感线的立体图和纵、横截面图的画法(1)条形磁铁、同名磁极间、异名磁极间磁感线的分布情况,如图所示。
(a)条形磁铁的磁感线分布(b)同名磁极间的磁感线分布(c)异名磁极间的磁感线分布(2)直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱,画法如图所示。
立体图横截面图纵截面图(3)通电螺线管的磁场:两端分别是N极和S极,管内是匀强磁场,管外为非匀强磁场,画法如图所示。
立体图横截面图纵截面图(4)环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱,画法如图所示。
立体图横截面图纵截面图2. 如何由小磁针北极的指向,判断电流方向(或电源极性)?先根据已知条件画出一条或几条通过小磁针的磁感线,再运用安培定则根据磁感线方向判断出电流方向,从而判断出电源极性。
13.1磁场磁感应线一、教材分析《磁场磁感应线》是普通高中教科书物理必修第三册第十三章第1节的内容。
全文以“指南针”导入,按“电和磁的联系”、“磁场”、“磁感线”、“安培定则”等4个部分的顺序编写,对本节的深入分析为下面几节的学习打下良好的基础。
这样编写的目的是让学生从比较简单的磁体的磁场出发,通过和电进行对比,引入“如何从定性的角度用磁感线对磁场进行描述”。
通过用铁粉的分布认识磁体周围的磁场分布之后,能依次类推,顺畅地认识电流产生的磁场。
二、学情分析学习本节之前,学生在初中时已经对磁场概念有了初步的了解,又由于前面学习了电学的有关知识,因此在学习磁场知识时会比较容易的接受。
但是在学习用磁感线来描述磁场以及相关的几个特殊磁场的磁感线分布时会感到一定的困难,教材给了有关的插图,在“媒体资料”中,提供了相关的磁感线分布的三维动画,教师可以参考使用,有助于学生对磁感线空间形象的准确把握。
三、教学目标(一)物理观念1.了解磁场的产生和磁现象。
2.理解磁场的方向性,知道用磁感线反映磁场的方向。
3.掌握直线电流、环形电流和通电螺线管产生磁场的磁感线空间分布情况。
4.掌握安培定则,并能用安培定则熟练地判定电流、以及电流产生的磁场方向。
(二)科学思维体会物理模型在探索自然规律中的作用,(三)科学探究1.通过实验,认识磁场。
2.通过实验,知道条形磁铁、蹄形磁铁的磁场分布情况,并会用磁感线近似描绘它们的磁场。
3.通过实验,知道通电直导线、螺线管周围的磁感线分布情况。
(四)科学态度与责任体验科学知识在生活和科技中的应用,体会科学·技术·社会·环境的关系。
四、教学重点1.理解磁场的基本性质──力的作用和方向性。
2.掌握安培定则及常见几种磁场的磁感线分布。
五、教学难点磁场的空间分布与磁感线的对应联系。
六、教学流程七、教学过程(一)提出问题,引入新课向同学们展示图片,其中指南针、电磁炉、磁悬浮列车和银行卡都和磁现象有关系。
第1节磁场磁感线课程内容要求核心素养提炼1.认识电和磁的联系,知道磁场的概念.2.掌握用磁感线描述磁场的方法.3.掌握用安培定则判断三种电流磁场的方向.1.物理观念:磁场、磁感线、安培定则.2.科学思维:用安培定则判断磁场的方向.一、电和磁的联系1.磁体总存着两个磁极.同名磁极相互排斥,异名磁极相互吸引.2.1820年4月,丹麦物理学家奥斯特发现了电流的磁效应.二、磁场磁体与磁体之间、磁体与通电导体之间,以及通电导体与通电导体之间的相互作用,是通过磁场发生的.[判断](1)奥斯特实验说明了电流可以产生磁场.(√)(2)单独一个带电体可以只带正电荷,同样单独一个磁体可以只有N 极.(×)(3)磁场的基本性质是对磁极或电流有力的作用.(√)三、磁感线1.小磁针静止时N 极所指的方向规定为该点磁场的方向.2.沿磁场中的细铁屑画出一些曲线,使曲线上每一点的切线方向都跟这点磁场的方向一致,这样的曲线叫作磁感线.3.在磁体的两极,磁感线较密,表示磁场较强.四、安培定则甲1.通电直导线:用右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向.(如图甲)2.环形电流:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁场的方向.(如图乙)乙丙3.通电螺线管:右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,伸直的拇指所指的方向就是螺线管内部磁场的方向.(如图丙)[思考]通电的螺线管相当于一个条形磁铁,一端是N极,另一端是S极,把一个小磁针放入螺线管内部,小磁针的N极指向螺线管的哪端?提示小磁针N极的指向是N极受到磁场力的方向,N极受力的方向是该位置的磁感线的方向,在螺线管内部,磁感线方向由S极指向N极.所以小磁针的N极指向螺线管的N极.探究点一磁场和电与磁的联系奥斯特实验:南北方向的直导线放置在小磁针上方,给直导线通电.观察实验现象.(1)导线通电后观察到什么现象?(2)导线仍为南北方向,但让电流方向相反.你观察到磁针转动方向又如何?(3)实验现象说明了什么问题?提示(1)导线通电后发现小磁针转动了.(2)电流反向时,小磁针转动方向相反.(3)实验现象说明了通电导线周围存在磁场,磁场对小磁针有力的作用.奥斯特实验发现了电流的磁效应,揭示了电与磁的联系.1.磁场存在:磁体的周围存在磁场,通电导体周围也存在磁场.2.物质性:磁场虽然不是由分子、原子组成的,但是它是客观存在的,具有物质的属性,因此它是一种比较特殊的物质.3.方向性:磁场是有方向的,磁场中某一点磁场的方向,为小磁针位于该点时小磁针N极的受力方向或小磁针静止时N极所指的方向.4.磁场的性质:磁场对放入其中的磁体或通电导体会产生磁力的作用.一位同学设计实验以验证奥斯特实验的结论,以下操作及判断正确的是()A.让电流由东向西流过水平放置的直导线,直导线下方的小磁针N极指向南方B.让电流由东向西流过水平放置的直导线,直导线下方的小磁针N极指向北方C.让电流由北向南流过水平放置的直导线,直导线下方的小磁针N极指向东方D.让电流由北向南流过水平放置的直导线,直导线下方的小磁针N极指向西方C[受地磁场的影响,小磁针静止不动时指南北方向,当电流由东向西流过水平放置的直导线时,直导线下方的磁场与地磁场方向相反,则小磁针静止不动或轻拨一下后转动180°而静止,故选项A、B错误;当电流由北向南流过水平放置的直导线时,直导线下方的磁场方向由西向东,故小磁针的N极指向东方,选项C正确,选项D错误.] [题后总结]在导线不通电时,小磁针开始的指向是奥斯特实验成功的关键.[训练1]在做“奥斯特实验”时,下列操作中现象最明显的是()A.导线沿南北方向放置,使磁针在导线的延长线上B.导线沿东南方向放置,使磁针在导线的延长线上C.导线沿南北方向放置在磁针的正上方D.导线沿东西方向放置在磁针的正上方C[把导线沿南北方向放置在地磁场中处于静止状态的小磁针的正上方,通电时小磁针发生明显的偏转,是由于南北方向放置的电流的正下方的磁场恰好是东西方向.故选项C 正确,选项A、B、D错误.]探究点二磁感线和电流周围的磁场如图所示的通电螺线管内部有一小磁针,关于其内部小磁针静止时N极的指向,甲认为“螺线管的右端相当于N极,故小磁针静止时右端为S极”,乙认为“由于螺线管内部磁感线方向由左向右,小磁针静止时N极指向与磁场方向相同,故右端是N极”,你认为谁的看法正确?提示乙的看法正确.因“同名磁极相互排斥,异名磁极相互吸引”只适用于磁体外部的作用情况,而小磁针静止时N极的指向与磁场方向相同在任何情况下都适用.1.磁感线的特点(1)磁感线是为了形象地描述磁场而假想出来的有方向的曲线,并不是客观存在于磁场中的真实曲线.(2)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱.(3)磁感线上每一点的切线方向就是该点的磁场方向.(4)磁感线是闭合曲线,不相交,不相切,也不中断.(5)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极指向S极,在磁体内部由S极指向N极.2.三种常见的电流的磁感线安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心的多组同心圆,越向外越稀疏,磁场越弱环形电流内部磁场比环外强,磁感线越向外越稀疏通电螺线管内部为匀强磁场且比外部强,方向由S极指向N极;外部类似条形磁铁,方向由N极指向S极下列关于电场线和磁感线的说法正确的是()A.电场线越密的地方,同一电荷的电势能越大B.电场线方向一定与电荷受力方向相同C.磁感线起始于N极,终止于S极;电场线起始于正电荷,终止于负电荷D.磁感线是闭合曲线,而静电场中电场线不是闭合曲线D[选项A错误:电场线密的地方电场强度E大,电场强度E大的地方电势不一定高,同一电荷的电势能不一定大.选项B错误:电场线上每点的切线方向表示该点电场强度方向,正电荷的受力方向与电场线方向相同,负电荷的受力方向与电场线方向相反.选项C 错误,选项D正确:磁感线是闭合曲线,磁感线在磁体的外部从N极出发回到S极,内部从S极到N极;而静电场中电场线是从正电荷到负电荷,不是闭合曲线.]如图所示,a、b是直线电流的磁场,c是环形电流的磁场,d、e是螺线管电流的磁场,试在各图中补画出电流方向或磁感线方向.解析利用右手螺旋定则,已知电流的方向可判定磁场的方向,也可以通过磁场的方向来确定电流的方向.图a,已知磁场的方向为顺时针方向,则电流垂直纸面向里;图b,电流右侧的磁场方向向外,左侧的磁场方向向里,则电流的方向向下;图c,环形电流从左侧流入,从右侧流出,所以磁场的方向向下;图d,利用右手螺旋定则可以确定螺线管内的磁场的方向向右;图e,螺线管中上边的电流方向向外,下边的电流方向向里,利用右手螺旋定则可以确定螺线管内的磁场的方向向右.答案见解析图[题后总结]利用右手螺旋定则既可由电流的方向判定磁场方向,也能由磁场方向判断电流的方向和线圈的绕法.对于一个通电螺线管,只要知道电流的方向、线圈的绕法、螺线管的N、S极这三个因素中的任意两个,我们就可以根据安培定则判断出另一个.[训练2]关于磁场和磁感线,下列说法正确的是()A.磁场看不见、摸不到,但在磁体周围确实存在着磁场;而磁感线是一种假想曲线,是不存在的B.磁场对放入其中的磁体产生力的作用,当其中没放入磁体时,则无力的作用,也就不存在磁场C.在磁场中画出的磁感线处存在磁场,在磁感线间的空白处不存在磁场D.磁体周围的磁感线是从磁体北极出来,回到南极,所以磁体内部不存在磁场,也画不出来A[磁场是客观存在的物质,磁感线是假想曲线,故选项A正确;磁体周围的磁场中,无论是否放有其他磁体,这个磁场都是客观存在的,故选项B错误;磁感线描述的是磁场的分布情况,它的疏密程度反映着磁场的强弱,密集处磁场强,稀疏处磁场弱,并不是说有磁感线通过的地方就有磁场,没有磁感线通过的地方就没有磁场,故选项C错误;磁感线是闭合曲线,磁体外部有磁场,能画出磁感线,磁体内部也有磁场,也能画出相应的磁感线,故选项D错误.][训练3]如图所示,竖直放置的长直导线通有恒定电流,侧旁小磁针N极的最终指向为()A.平行纸面向右B.平行纸面向左C.垂直纸面向里D.垂直纸面向外D[根据安培定则可知通电直导线右边的磁场垂直纸面向外,小磁针N极受到的磁场力向外,S极向里,则最终N极垂直纸面向外,选项D正确.]。
第一节磁场磁感线磁场是物质固有的一种物理特性,可以通过磁感线来描述和表示。
磁感线是指在磁场中,磁力作用的方向和强度的线条,用来描绘磁场的空间分布。
磁场的概念磁场是由磁体或电流所产生的一种物理现象。
当电流通过导线时,会在导线周围产生磁场。
磁体也可以产生磁场。
磁场的特性可以通过磁感线来描述。
磁感线的特点磁感线是用于描绘磁场的强度和方向的线条。
它们有以下几个特点:1.磁感线的方向表示磁场的方向,箭头指向磁场的强磁性物质的运动方向。
2.磁感线趋向于在磁场中形成闭合的路径,不会相交。
3.磁感线的密集程度表示了磁场的强弱,密集的磁感线表示磁场强度大,反之则弱。
磁感线的分布磁感线的分布取决于磁体或电流的几何形状和磁场的特性。
以下是一些常见的磁感线分布方式:磁单极子磁单极子是一种理论上存在但实际上难以实现的磁场分布形式。
它是指磁感线从一个点或一定区域起始,无限延伸到另一个点或区域。
然而,在实际情况下,磁体通常会有两极,即磁南极和磁北极。
磁偶极子磁偶极子是指磁体中存在磁南北极之间磁感线的闭合路径。
在磁偶极子中,磁感线从磁南极出发,形成一个弧形的路径,最后返回到磁北极。
磁偶极子是磁体最常见的磁感线分布方式。
磁体周围磁感线分布当磁体形状较为复杂或存在多个磁体时,磁感线的分布会受到相互影响。
在这种情况下,磁感线的形状和密度可能会发生变化,形成更为复杂的磁场分布。
如何观察和表示磁感线观察和表示磁感线是研究磁场和研究磁性材料的重要方法。
以下是一些常见的方法:1.铁粉法:将细小的铁粉放置在磁场中,铁粉会受到磁力的作用,排列成磁感线的形状,从而观察和表示磁感线的分布。
2.磁子法:使用磁子,可以在磁场中轻松观察和表示磁感线的分布。
磁子是一种带有箭头的磁性物体,箭头指向磁场的方向。
3.磁力线计:磁力线计是一种专门用于测量和表示磁场的仪器。
它可以直接测出磁感线的分布情况。
磁感线的应用磁感线的研究和应用广泛存在于日常生活和科技领域。
以下是一些常见的应用:1.磁力线在磁共振成像(MRI)中的应用,通过检测磁感线的分布可以获得人体内部的结构信息。