酸化压裂
- 格式:doc
- 大小:44.00 KB
- 文档页数:3
压裂酸化介绍范文压裂酸化是一种常用于深层油气井的增产技术。
本文将从压裂酸化的定义、原理、工艺步骤、应用领域以及优缺点等方面进行详细介绍。
一、定义压裂酸化是通过注入一定比例的酸液进入油气井内,使岩石中存在的含石英砂等物质溶解,从而扩大油气井的有效产能的一种技术方法。
二、原理压裂酸化的原理主要有两个方面,分别是酸液的溶解作用和压裂作用。
1.酸液的溶解作用油气井地层中的石英砂、方解石等物质可以被酸液溶解,使岩石裂缝更加明显,从而扩大油气的渗流通道,提高井产能。
2.压裂作用通过注入高压液体或气体,在井筒内形成压力,使地层产生裂缝,进而通过岩石裂缝的连接,以提高油气井的产能。
三、工艺步骤压裂酸化工艺主要分为准备阶段、加酸阶段、压裂阶段和清洗阶段。
1.准备阶段包括井筒清洗、封堵固井和原油采集等步骤,确保井筒没有杂质和固化物,以及采集样品进行分析。
2.加酸阶段将酸液以一定浓度和流速注入井筒,与地层中的石英砂等物质发生反应,溶解岩石裂缝,扩大产能。
3.压裂阶段通过注入高压液体或气体,使地层形成裂缝,提高油气的渗流通道和产能。
4.清洗阶段通过注入清洗液进入井筒,清洗井筒和油管,清除沉积物和杂质。
四、应用领域压裂酸化主要适用于深层、低渗透、高阻力和低产油气井,可以显著提高油气的产量,改善井底流动条件。
五、优缺点1.优点:(1)可以有效扩大产能,提高油气的采收率;(2)适用于深层、低渗透的油气井,改善井底流动条件;(3)操作简单,工艺成熟,成本相对较低。
2.缺点:(1)存在一定的环境污染风险,酸液可能对地下水和周边环境产生影响;(2)对设备和井筒可能造成损坏,增加生产成本;(3)需要进行大量的工程设计和技术控制,操作不当可能导致不稳定的地质条件。
六、结论压裂酸化是一种常用的增产技术,通过注入酸液溶解岩石裂缝和施加压力形成裂缝,可以显著提高油气井的产能和采收率。
然而,其应用依然面临环境污染风险和设备损坏的问题,需要加强技术控制和环境保护措施。
油藏及压裂酸化知识320、孔隙度:岩石的孔隙体积与岩石外观体积的比值。
321、渗透率:在一定压差条件下,岩石能使流体通过的性能叫岩石的渗透性,岩石渗透性的好坏以渗透率数值表示,流体通过孔隙介质时服从达西公式。
322、绝对渗透率:岩石中只有一种流体通过时,求的得渗透率值称绝对渗透率。
通常则以气体渗透率为代表。
323、有效渗透率:岩石中有两种或三种流体,岩石对其中每一相的渗透率称有效渗透率或相渗透率。
324、相对渗透率:有效渗透率与绝对渗透率的比值称相对渗透率。
325、达西定律:描述一定流体通过多孔介质单位截面积渗流,其速度与沿渗流方向上的压力梯度成正比的定律。
326、油层物性主要是指油层岩石的孔隙性和渗透性能,这两种物性决定了储层所含油气的产能。
327、饱和度:孔隙体积中某相流体所占有的百分数。
328、束缚水饱和度:油层中不参与流动的水的饱和度,称为束缚水饱和度。
329、残余油饱和度:在一定开采方式下,不能被采出而残留在油层中的油的饱和度。
330、润湿性:当固体表面存在不相容的流体时某相流体优先附着到固体表面的趋势。
也称为选择性润湿。
331、亲水性:油层岩石对所储水相的润湿亲和能力大于对所储油相的润湿亲和能力时为亲水性。
332、润湿反转:指岩石表面在一定条件下亲水性和亲油性相互转化的现象。
333、孔隙:砂岩中由三个或三个以上的颗粒(胶结物)包围的空间称为孔隙。
334、喉道:砂岩中孔隙(孔腔)之间的连接部分称为喉道,其几何尺寸要明显小于孔隙。
喉道的大小以累积频率图表示,图上相应于50%的喉道值称喉道中值。
335、渗透率突进系数:层内最大渗透率与平均渗透率的比值,也称非均质系数。
336、胶结物:指成岩期在岩石颗粒之间起粘结作用的化学沉淀物。
有钙质,硅质,铁质,泥质及可溶盐等。
337、常规岩心分析:分为部分分析和全分析。
部分分析是使用新鲜或者经过保护处理的岩样只进行孔隙度和空气渗透率的测定。
全分析是使用新鲜或者经过保护处理的岩样进行空气渗透率、孔隙度、粒度、碳酸盐含量以及油、气、水饱和度的测定。
原理→方案→设备→工艺→现场1、压裂过程:利用高压液体(压裂液)在井底生产层造成裂缝或扩展原始裂纹,再用支撑剂(砂子或其它固体颗粒)充填,以形成高渗透区域。
2、酸化过程:向井底注入酸液,以解除井底堵塞或溶去一部分地层岩石颗粒,从而提高油层渗透率。
近年来在裂缝性灰岩中发展了一种酸化-压裂联合处理的有效方法。
这种方法实质上是压裂,只不过用酸液代替了压裂液,不加支撑剂。
经过酸化-压裂处理后,可得到导流能力强,裂缝能力强的通道,增产效果好。
实践证明,进行压裂或酸化后,油、气井产量可增加几倍至十几倍。
酸化溶解物:基质矿物、堵塞物使用的主要酸液:盐酸、磷酸、硝酸或硝酸和盐酸压裂液及其原理有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。
压裂的实质是利用高压泵组,将具有一定粘度的液体高速注入地层。
当泵的注入速度大于地层的吸收速度时,地层就会产生破裂或使原来的微小缝隙张开,形成较大的裂缝。
随着液体的不断注入,已形成的裂缝向内延伸。
为了防止停泵以后,裂缝在上部岩层的饿重力下重新闭和,要在注入的液体中加入支撑剂,使支撑剂充填在压开的饿裂缝中,以支撑缝面。
根据压裂液在压裂过程中不同阶段的作用,可分为前置液,携砂液和顶替液。
1. 前置液:前置液的作用是破裂地层,造成一定几何尺寸的裂缝,以备后面的携砂液进入。
在温度较高的地层里,还可以起到一定的降温作用。
2. 携砂液:携砂液的作用是用来将地面的支撑剂带入裂缝,并携至裂缝中的预定位置,同时还有延伸裂缝、冷却地层的作用。
3. 顶替液:顶替液的作用是将携砂液送到预定位置,将井筒中的全部携砂液替入裂缝中。
4.支撑剂:支撑剂是指用压裂液带入裂缝,在压力释放后用以支撑裂缝的物质。
5.破坏剂:破坏剂包括破胶剂、破乳剂、降粘剂等。
破胶剂是用来破坏冻胶交联结构的。
破乳剂用于破坏乳状液的稳定性,降粘剂用于减少稠化液的粘度。
6.减阻剂:减阻剂是通过减少紊流,减少流动时的能量损失来减少压裂液的流动摩阻。
分析酸化压裂技术在油气田开发中的应用
酸化压裂技术是一种常用的油气田开发技术,通过注入高压酸液将油气层岩石打碎并形成裂缝,方便油气流动,从而提高油气产量。
酸化压裂技术广泛应用于页岩气、致密油等非常规油气田的开发,也被用于常规油气藏的提高采收率。
1. 提高裂缝网络:酸化压裂技术能够将注入的酸液在油气层岩石中发生化学反应,溶解岩石中的矿物质和水溶性物质,形成裂缝和孔隙,从而扩大油气层的有效渗透面积和裂缝网络,改善油气的流动性。
2. 提高产能:通过酸化压裂技术,可以将油气层打碎并形成裂缝,增加油气的渗透性和渗透率,从而提高油气的产能。
裂缝网络的增加可以提高原油及天然气的渗流面积,增加流体的储集和流动性。
3. 释放残余油气:在常规油气藏中,酸化压裂技术可以被用来释放油气藏中的残余油气,即通过打开已经几乎干涸的油气藏来提高残余油气的采收率。
这对于老旧油气田的开发来说具有重要意义。
4. 降低井底流体阻力:油气藏开发中,岩石的孔隙和裂缝是油气流动的通道,而水和气泡的存在会降低孔隙和裂缝的连通性,从而降低井底流体的流动能力。
酸化压裂技术能够通过扩大孔隙和裂缝来削弱水和气泡的阻力作用,提高井底流体的导流能力。
5. 加强水驱和气驱效果:在油气田开发中,常常需要利用水驱或气驱来推动原油或天然气的流动,提高采收率。
酸化压裂技术可以扩大油气层的有效渗透面积,改善渗水和渗气能力,从而增强水驱和气驱的效果。
压裂和酸化的作用压裂和酸化是石油、天然气开采中常用的两种工艺,它们都是通过改变储层岩石的物理性质来提高油气的产出效率。
下面将详细介绍这两种工艺的作用。
压裂技术是一种通过施加高压液体将岩石打裂的方法,使储层中的油气能够更容易地流向井口,并提高油气的开采比例。
压裂技术常用于低渗透率的储层,因为高渗透率的储层本身不需要进行压裂。
下面是压裂技术的作用及过程:1. 增加储层渗透率:压裂技术可以通过打裂储层石块来创造一个大面积的裂缝网络,从而增加孔隙的连通性,使油气更容易流动,提高储层的渗透率。
2. 增加储层的有效面积:裂缝网络可以扩大储层的有效面积,增加与井眼接触的储层面积,从而提高储层的采收率。
3. 扩大油气的流动路径:通过压裂技术,可以将裂缝网络延伸到远离井眼的区域,形成较大的流动路径,使油气流动的距离更长,提高采收率。
4. 提高井眼周围的产能:通过压裂技术,可以在井眼周围打裂石块,增加与井眼接触的储层面积,提高周围储层的产能。
酸化技术是一种通过注入酸性溶液来腐蚀岩石并且改变储层的性质的方法。
酸化技术常用于含有碳酸盐岩或砂岩的储层,因为这些岩石容易受到酸性溶液的侵蚀。
下面是酸化技术的作用及过程:1. 去除岩石堵塞物:酸溶液可以溶解掉阻塞孔隙的颗粒物质,如沉积物、油泥等,使原本堵塞的孔隙重新打开,提高渗透率。
2. 溶解岩石构造:酸溶液可以腐蚀岩石中的碳酸盐矿物,如方解石、白云石等,形成孔隙,增加渗透率,从而使油气更容易流动。
3. 扩大孔隙结构:酸溶液可以通过溶解岩石中的一些更脆性的矿物质,如黏土矿物、石英等,扩大孔隙结构,提高流体的渗透性。
4. 咬合岩石表面:酸性溶液中的阳离子可以与岩石表面的负离子形成化学键,从而咬合住岩石表面的颗粒,防止颗粒脱落,提高储层的稳定性。
通过压裂和酸化技术,可以有效提高油气田的开采效率。
这两种工艺可以根据不同的储层类型和地质特征进行优化设计,并与其他增产技术相结合,以实现更高的产出效果。
第二节酸化压裂技术一、教学目的了解酸化压裂的原理,掌握酸液的滤失,酸液的损耗,能够计算酸岩复相反应有效作用距离,了解前置液酸压设计方法。
二、教学重点、难点教学重点1、酸化压裂原理2、酸液的损耗3、前置液酸压设计方法教学难点1、酸液的滤失2、酸岩复相反应有效作用距离三、教法说明课堂讲授并辅助以多媒体课件展示相关的数据和图表四、教学内容本节主要介绍四个方面的问题:一、酸液的滤失二、酸液的损耗三、酸岩复相反应有效作用距离四、前置液酸压设计方法酸化压裂:用酸液作为压裂液,不加支撑剂的压裂。
作用原理:(1) 靠水力作用形成裂缝;(2) 靠酸液的溶蚀作用把裂缝的壁面溶蚀成凹凸不平的表面,停泵卸压后,裂缝壁面不能完全闭合,具有较高的导流能力,可达到提高地层渗透性的目的。
酸压与水力压裂相比:相同点:基本原理和目的相同。
不同点:实现其导流性的方式不同。
酸压效果:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧以及不均匀刻蚀程度量对底层岩石矿物的溶解导流能力:取决于酸液裂缝内的流速控制酸盐反应速度酸液的滤失特性裂缝有效长度 (一)酸液的滤失滤失主要受酸液的粘度控制控制酸液的滤失常用的方法和措施:(1)固相防滤失剂刺梧桐胶质:在酸中膨胀并形成鼓起的小颗粒,在裂缝壁面形成桥塞,阻止酸蚀孔道的发展,降低滤失面积。
硅粉:添满或桥塞酸蚀孔道和天然裂缝。
粒径大小不等的油溶树脂:大颗粒桥塞大的孔隙;亲油的树脂形成更小的颗粒,变形后堵塞大颗粒的孔隙,从而有效地降低酸液的滤失。
(2)前置液酸压优点:①采用前置液破裂地层形成裂缝,并在裂缝壁面形成滤饼,可以降低活性酸的滤失;②冷却井筒和地层,减缓酸液对油管的腐蚀,降低酸岩反应速度,增大酸液有效作用距离。
(3)胶化酸以某些表面活性剂作酸液的稠化剂,能够形成类似于链状结构的胶束稠化酸。
优点:①受剪切后胶束链能很快重新形成,稳定性好;②粘度大,在形成废酸前能有效地防止酸液的滤失。
(4)乳化酸和泡沫酸(二)酸液的损耗影响酸沿碳酸盐岩地层裂缝行进距离的因素:酸液的类型、酸液浓度、注入速度、地层温度、裂缝宽度及地层矿物成分等注入速率增加,穿透距离增加图7-6 注入速率对酸穿透距离影响裂缝宽度增加,穿透距离增加温度增加,穿透距离减小浓度增加,穿透距离增加(三)酸岩复相反应有效作用距离图7-7 裂缝宽度对酸穿透距离影响图7-8 温度及酸浓度与酸穿透距离关系残酸:当酸浓度降低到一定浓度时,酸液基本上失去溶蚀能力。
酸化压裂是强化采油(EOR)的一种措施,是油气井增产、注入井增注的一项有效的技术措施。
其原理是通过酸液对岩石胶结物或地层孔隙、裂缝内堵塞物等的溶解和溶蚀作用,恢复或提高地层孔隙和裂缝的渗透性。
酸化按照工艺不同可分为酸洗、基质酸化和压裂酸化(也称酸压)。
酸洗是将少量酸液注入井筒内,清除井筒孔眼中酸溶性颗粒和钻屑及垢等,并疏通射孔孔眼。
基质酸化是在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近较大范围内油层的渗透性。
酸压(酸化压裂)是在高于岩石破裂压力下将酸注入地层,在地层内形成裂缝,通过酸液对裂缝壁面物质的不均匀溶蚀形成高导流能力的裂缝。
酸化施工使用诸如水泥车、泵车一类的施工车辆,将酸性水溶液(如,盐酸、氢氟酸、有机酸)注入地层。
注入的酸液会溶解地层岩石或胶结物,从而增加地层渗透率,使油气的产出、驱替水注入更加方便。
在酸化施工中,为了提高酸化效果,可以采用聚合物稠化酸注入、有机缓速酸注入、变粘酸酸化、粘弹性表面活性剂酸化等新工艺。
石油压裂支撑陶粒原理石油天然气深井开采时,高闭合压力低渗透性矿床经压裂处理后,使含油气岩层裂开,油气从裂缝形成的通道中汇集而出。
用高铝支撑材料随同高压溶液进入地层充填在岩层裂隙中,起到支撑裂隙不因应力释放而闭合的作用,从而保持高导流能力,使油气畅通,增加产量。
实践证明,使用高铝支撑剂压裂的油井可提高产量30-50%,还能延长油气井服务年限,是石油、天然气低渗透油气井开采、施工的关键材料。
产品应用于深井压裂施工时,将其填充到低渗透矿床的岩层裂隙中,进行高闭合压裂处理,使含油气岩层裂开,起到支撑裂隙不因应力释放而闭合,从而保持油气的高导流能力,不但能增加油气产量,而且更能延长油气井服务年限。
分析酸化压裂技术在油气田开发中的应用酸化压裂技术是一种在油气田开发中广泛应用的技术,通过注入酸液和高压力水力压裂技术,可以有效地提高油气田产量和采收率。
本文将从酸化压裂技术的原理、应用案例和未来发展趋势等方面进行分析和探讨。
一、酸化压裂技术的原理酸化压裂技术是将酸液注入到油气储层中,通过对地层进行酸化处理,改善储层渗透率,增加储层孔隙度,从而提高油气产量。
酸化压裂技术还可以有效地解决地层中的矿物垢、泥浆残留物等问题,保证井底流体的畅通。
在酸化压裂过程中,首先需要利用水力压裂技术将高压液体注入到井下地层,使地层岩石发生裂缝,然后再注入酸液进行酸化处理。
这种连续注入的方式可以保证酸液充分进入储层中,改善地层渗透率,提高油气采收率。
1. 美国页岩气开发近年来,美国页岩气开发取得了突破性进展,酸化压裂技术成为了提高页岩气产量和采收率的重要手段。
通过对页岩气储层进行酸化处理,可以有效地改善储层渗透率,增加天然气产量。
2. 中国致密油开发中国的致密油地质条件复杂,油气开发难度大。
酸化压裂技术在中国致密油开发中得到了广泛应用,通过对致密油储层进行酸化处理,提高了油气产量和采收率,为我国油气田开发做出了重要贡献。
以上案例表明,酸化压裂技术在油气田开发中具有重要的应用价值,可以提高产量和采收率,推动油气田的可持续发展。
1. 技术改进随着科技的不断进步,酸化压裂技术也在不断改进,提高了施工效率和施工质量。
未来,随着材料科学、岩石力学等领域的不断发展,酸化压裂技术将会变得更加高效、环保。
2. 稳定供应酸化压裂技术对酸液的供应要求较高,未来需要建立稳定的酸液供应体系,保证油气田开发的顺利进行。
还需要不断优化酸化液的成分配比,提高酸液的使用效率。
3. 环保问题酸化压裂技术会产生大量废酸液和废水,对环境造成一定影响。
未来,需要加强废酸液和废水的处理和回收利用,保护周围环境。
酸化压裂技术在油气田开发中具有重要的应用前景。
随着技术的不断完善和发展,酸化压裂技术将会在油气田开发中发挥越来越重要的作用,为推动能源产业的可持续发展做出贡献。
酸化、压裂技术第一章酸化工艺技术一、酸化工艺1、酸化类型酸化工艺按施工规模可分为酸洗,基质酸化和压裂酸化。
⑴酸洗是一种清除井筒中的酸溶性结垢或疏通射孔眼的工艺。
它是将少量酸注入预定井段,在无外力搅拌的情况下溶蚀结垢物或地层矿物。
有时也可通过正反循环使酸不断沿孔眼或储层壁面流动,以增大活性酸到井壁面的传递速度,加速溶解过程。
⑵基质酸化是一种在低于储层岩石破裂压力下将酸液注入储层中孔隙空间的工艺,其目的是使酸大体沿径向渗入储层,溶解孔隙空间的颗粒及堵塞物,扩大孔隙空间,从而恢复或提高储层渗透率,成功的基质酸化往往能够在不增加水、气采出量的情况下提高产能。
⑶酸压是在高于储层岩石破裂压力下将前置液或酸液挤入储层(前者称为前置液酸压,后者称为一般酸压)。
酸压适用于碳酸盐岩储层。
①处理碳酸岩储层的酸化称为碳酸盐酸化。
这种储层的酸化可进行酸洗,基质酸化和酸洗。
②处理砂岩储层的酸化称为砂岩酸化。
这类地层的酸化通常只进行酸洗和基质酸化,不进行酸压。
2、影响酸岩反应速度的因素盐酸与碳酸盐反应速度很快,导致活性酸有效作用范围小。
减缓酸岩反应速度是酸化工艺的主要课题。
⑴酸岩反应的试验方法:①静态反应试验:这是五十年代通用的方法,它是在恒温、恒压和一定面容比的条件下进行酸岩反应试验。
模拟了地层压力,温度条件,没有反映酸液在地层中的流动状况。
因此,这种方法目前只用来对比优选酸液配方及其添加剂,所以数据不能用于酸压设计。
②裂缝流动反应模拟试验:六十年代初提出一种试验方法,模拟了酸液在岩石裂缝中的流动反应。
用储层露头岩石制成岩缝,在恒温、恒压和定排量下让酸经过岩缝作流动反应,出口取样分析酸液浓度,计算反应速度。
该方法较真实地模拟了酸液在裂缝中的流动反应情况。
试验数据可直接用于施工设计并指导酸化实践。
③旋转岩盘试验:六十年代末开始用于研究酸液与岩石的旋转反应。
用储层实际岩心制成岩盘粘于岩心托上,底面作为反应面。
在恒温恒压定转速下进行酸岩反应,定时取样分析酸液浓度,计算酸反应速度。