离散数学第三章谓词逻辑习题答案
- 格式:ppt
- 大小:230.50 KB
- 文档页数:11
离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。
解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。
解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。
3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。
解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。
R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。
3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。
习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。
第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
3.1 习题参考答案1、写出下列集合的的表示式。
a)所有一元一次方程的解组成的集合。
A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。
B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。
C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。
D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π }e)能被5整除的整数集E={ x| x mod 5=0}----------------------------------------------------------------2、判定下列各题的正确与错误。
a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。
理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。
c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。
a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。
理由:a式中,{2}是一个集合,而在A中并无这样的元素。
因此不能说{2}属于A,当然如果说2∈A则是正确的。
对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。
离散数学第三章习题详细答案3.9解:符号化:p:a是奇数.q:a是偶数.r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:方法2(等值演算法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔((p∧r)∨¬p)∨((q∧¬r)∨¬q)⇔(r∨¬p)∨(¬r∨¬q)⇔¬p∨(r∨¬r)∨¬q⇔1即为成佛该式为重言式,则原结论恰当。
方法3(主析取范式法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔m0+m1+m2+m3+m4+m5+m6+m7所述该式为重言式,则结论推理小说恰当。
3.10.解:符号化:p:a就是负数.q:b就是负数.r:a、b之四维负前提:r→(p∧¬q)∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:方法2(主析取范式法)证明:(r→(p∧¬q)∨(¬p∧q))→(¬r→(¬p∧¬q))⇔¬(¬r∨(p∧¬q)∨(¬p∧q))∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只不含5个极小项,课件完整不是重言式,因此推理小说不恰当3.11.填充下面推理证明中没有写出的推理规则。
解:③:①②谓词三段论⑤:③④谓词三段论⑦:⑤⑥假言推理小说3.12.填充下面推理证明中没有写出的推理规则。
离散数学测验题(谓词逻辑部分)一、符号化下列命题。
(20分,每题10分)1. 任何两个不同的人都性格不相同。
解:设F(x):x是人,H(x,y), x与y相同丄(x,y): x与y性格相同则原命题对应的谓词公式为:-x(F(x)厂y(F(y) -H(x,yH 1L(x,y)))或-x-y(F(x) F(y) ~H(x,y) ‘-L(x,y))2. 尽管有些人爱吃西瓜,但并不是所有人都爱吃西瓜。
解:设M(x): x是人,C(x): x爱吃西瓜,则原命题可以表示为前后两个原子命题之间的合取,有些人爱吃西瓜”可以表示为:x M (x) C(x);不是所有人都爱吃西瓜”可以表示为--X M (x) 、C(x),或者x M(x) -C(x)则原命题对应的谓词公式为:x M (x) C(x) x M (x)-; C(x),或者x M(x) C(x) x M (x) -C(x)二、说明下列推理的有效性。
(45分,每题15分)1. 乌鸦是黑色的,天鹅不是黑色的;所以,天鹅不是乌鸦。
解:设B(x): x是乌鸦,M(x): x是天鹅,F(x): x黑色的。
则此推理可以表示为:-x B(x)—;F(x) , -x M (x) —;| F(x) = - x M(x)—;「B(x).证明:(1) -x ( M ( x ) —? F ( x )) P规则⑵ M ( y ) —? F ( y ) US(1)⑶-x ( B( x ) — F ( x )) P规则WB( y ) —F ( y US(3)(5)? F ( y ) —?y ) (4)假言易位⑹ M ( y ) -B?( y ) (2)(5)假言三段论⑺—x( M( x ) -B?( x )) UG(6),证毕。
利用反证法证明:12(I) 一- x M (x) ,—B(x),⑵ x M(x) B(x), (3)M(c)B(c),⑷ M(c),(5)B(c),⑹-x M (x) ‘ —F (x), ⑺M(c)》-F(c), (8) -F(c), (9) -x B(x) > F(x), (10) B(c) > F(c), (II) F(c), 与(8)矛盾,所以假设错误。
第三章 谓词逻辑习题3.11.解 ⑪个体:离散数学;谓词:…是一门计算机基础课程。
⑫个体:田亮;谓词:…是一名优秀的跳水运动员。
⑬个体:大学生;谓词:…要好好学习计算机课程;量词:所有。
⑭个体:推理;谓词:…是能够由计算机来完成的;量词:一切。
2. 解 ⑪设)(x F :x 是舞蹈演员;a :小芳。
命题符号化:)(a F 。
⑫设)(x F :x 是一位有名的哲学家;a :苏格拉底。
命题符号化:)(a F 。
⑬设)(x F :x 作完了他的作业家;a :张三。
命题符号化:)(a F 。
⑭设)(x F :x 身体很好;a :我。
命题符号化:)(a F 。
3.解 ⑪选取个体域为整数集合。
设)(x F :x 的平方是奇数;)(x G :x 是奇数。
命题符号化:)()(x G x F →。
⑫选取个体域为所有国家的集合。
设)(x F :x 在南半球;)(x G :x 在北半球。
命题符号化:)()(x xG x xF ∃∧∃。
⑬选取个体域为所有人的集合。
设)(x F :x 在中国居住;)(x G :x 是中国人。
命题符号化:))()((x G x F x ⌝→⌝⌝∀⑭选取个体域为所有人的集合。
设)(x M :x 是艺术家;)(x F :x 是导演;)(x G :x 是演员。
命题符号化:∃x (M (x )∧F (x )∧G (x ))。
⑮选取个体域为所有猫的集合。
设M (x ):x 是好猫;F (x ):x 捉耗子。
命题符号化:∃x ⌝M (x )∧∀x (F (x )→M (x ))。
4.解 ⑪①设)(x F :x 喜欢开汽车;)(x G :x 喜欢骑自行车。
命题符号化:)()(x xG x xF ∃∧∃。
②设)(x F :x 喜欢开汽车;)(x G :x 喜欢骑自行车;)(x M :x 是人。
命题符号化:))()(())()((x G x M x x F x M x ∧∃∧∧∃。
⑫①设)(x F :x 必须学好数学。
离散数学第三章第一篇:离散数学第三章第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r 结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r 结论:p∧q 证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)⑤ 置换⑦(q→t)⑥化简⑧q ②⑥ 假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q 结论:s→r 证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r)前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s 结论:⌝p 证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦ 合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第二篇:离散数学离散数学课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} ⊆ A。
1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]A.C;B.A;C.B;D.Ø。
1-3 设 S = {N,Z,Q,R},判断下列命题是否成立?(1)N ⊆ Q,Q ∈S,则 N ⊆ S[不成立](2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示?答:A = E;B = C;D = F1-5 用列元法表示下列集合(1)A = { x│x ∈N 且x2 ≤ 9 }(2)A = { x│x ∈N 且 3-x 〈 3 }答:(1)A = { 0,1,2,3 };(2)A = { 1,2,3,4,……} = Z+;第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且x≤ y }求:(1)domR =?;(2)ranR =?;(3)R 的性质。
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀(2))()(y x yQ y x xP ,,∃→∀ (3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →,其中x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;其中)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;其中)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀ (2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀(2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。