设计了一种简单、可靠、实用的超声波发射电路
- 格式:pdf
- 大小:91.21 KB
- 文档页数:4
中北大学课程设计说明书学生姓名:杨胜华学号:**********学院:信息与通信工程学院专业:电子信息科学与技术题目:超声波发射电路设计指导教师:程耀瑜职称: 教授李文强职称:讲师2011 年 1 月 7 日中北大学课程设计任务书2010/2011学年第一学期学院:信息与通信工程学院专业:电子信息科学与技术学生姓名:杨胜华学号:0805014137 课程设计题目:超声波发射电路设计起迄日期:12月26日~1月7日课程设计地点:中北大学指导教师:程耀瑜,李文强系主任:程耀瑜下达任务书日期: 2010 年 12 月 26 日目录一.绪论----------------------------------------------------------------1页1.1课程设计的目的及意义-------------------------------------1页1.2 超声波发射电路的设计思路------------------------------3页1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页2.1 课程的方案设计--------------------------------------------- 4页2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页3.1 触发脉冲产生电路------------------------------------------ 7页3.2发射脉冲产生电路------------------------------------------- 8页3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页绪论1.1课程设计的目的及意义1.1.1目的科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
4mhz超声波电路
4MHz超声波电路通常用于超声波传感器和超声波成像系统。
这样的电路通常包括超声波发射器和接收器,以及驱动和接收电路。
以下是一些可能包括在4MHz超声波电路中的元件和功能:
1. 超声波发射器,超声波发射器是用来产生4MHz的超声波信号的元件。
它可能是一个压电晶体或者超声波换能器,通过驱动电路产生超声波信号。
2. 超声波接收器,超声波接收器用来接收从目标物体反射回来的超声波信号。
它也可能是一个压电晶体或超声波换能器,将接收到的信号转换为电信号。
3. 驱动电路,驱动电路用来驱动超声波发射器,通常会包括适当的信号发生器和放大器,以确保发射器能够产生稳定的4MHz超声波信号。
4. 接收电路,接收电路用来放大和处理从超声波接收器接收到的信号,通常包括放大器、滤波器和解调器等元件,以确保准确地提取目标物体反射回来的超声波信号。
5. 控制电路,控制电路用来控制超声波发射和接收的时序,可能包括时钟电路和触发器等元件,以确保发射和接收的时序精确可靠。
在设计4MHz超声波电路时,需要考虑信号的稳定性、抗干扰能力、功耗和成本等因素。
同时,还需要考虑电路的布局和阻抗匹配等问题,以确保电路能够正常工作并达到预期的性能指标。
希望以上信息能够帮助到你。
基于multisim的超声波发射电路设计及仿真基于multisim的超声波发射电路设计及仿真【摘要】本⽂设计了⼀种低压供电的超声波发射电路,利⽤电感的特性,在开关管导通和关断过程中产⽣较⾼的感应电压,此感应电压⽤于激励超声波换能器,并使⽤multisim仿真软件进⾏仿真验证,并得出了正确的仿真结果。
【关键词】低压供电;超声波;发射电路;multisim0 引⾔随着科技的进步,以超声为载体的⽆损检测技术已经成功应⽤到各⾏各业。
超声波具有定向性好、能量集中、在传输过程中衰减较⼩,反射能⼒较强等特点,不受光线、被测物颜⾊等的影响,在恶劣环境下具有⼀定的适应能⼒。
本⽂着重介绍⼀种低压驱动的超声波发射电路,并利⽤multisim软件对电路进⾏仿真验证。
1发射电路原理图设计及仿真结果1.1电路设计图1 发射电路原理如上图,电路上电时,在MOS管Q1没有驱动信号的情况时,Q关断,R1阻值⾮常⼤,相当于开路。
当Q1的驱动信号为⾼电平时,12V 电压经过L1和R3以及Q1放电,同时对L1进⾏充电直⾄充电完成,当Q1驱动信号变为低电平时,由于电感的电流不能突变的特性,将在L1中产⽣较⾼的感应电动势。
此感应电动势通过匹配电阻R1和R2后被加在压电换能器上,驱动换能器发出超声波。
驱动信号的占空⽐要根据L1的电感值进⾏修正。
其中,输出电压的计算如下:⾸先,由V1、L1、R3组成的回路可有以下关系式,其中,i 为该回路的回路电流:i dt di 311R L V +=⼜如图可知,电路输出电压可近似等价于R3两端的电压,则有:i 3o R U =由此可推出:dtdi -11o L V U = 根据以上⽅程,再选择合适的电路参数,即可获得所需的输出电压。
1.2电路仿真结果电路仿真结果如下图:图2 超声波发射电路仿真结果图2:通道A为超声波发射电路的输出电压,电压波形接近脉冲信号,电压的峰峰值如Vp-p1约为200V左右,⾜以驱动⼤部分的压电换能器。
电子电路实验3 综合设计实验总结报告题目:班级:学号:姓名:成绩:日期:摘要为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。
本设计就是基于51系列单片机利用超声波的测距系统。
本作品硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
采用STC89C51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。
软件部分主要由主程序、超声波发生子程序、超声波接收中断程序及数码管显示子程序等部分组成。
单片机通过P1.0引脚经反相器来控制40KHz的超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计时器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离,并将距离在数码管上显示出来。
基于单片机的超声波测距系统电路设计简单,能够实时显示,精度高,操作简单易懂。
一.设计选题基于超声波的障碍物检测系统的设计实现二.设计任务及要求结合单片机最小系统和其他模块电路设计一个基于超声波的障碍物检测系统。
1.能够检测前方一米左右是否有障碍,并用指示灯或数码管显示出来。
2.用数码管显示障碍物的精确距离,精度10%以内,最小距离1.0米。
三.系统概述1.超声波测距原理声波是指频率超过20KHz的机械波,在其传播介质中被定义为纵波。
当声波受到尺寸大于其波长的目标物体阻挡时就会发生反射;反射波称为回声。
假如声波在介质中传播的速度是已知的,而且声波从声源到达目标然后返回声源的时间可以测量得到,从声波到目标的距离就可以精确地计算出来。
这就是本系统的测量原理。
这里声波传播的介质为空气,采用40KHz的不可见的超声波。
2.超声波传感器原理压电超声波转换器的功能:利用压电晶体谐振工作。
内部结构上图所示,它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动产生超声波,这时它就是一超声波发生器;如没加电压,当共振板接受到超声波时,将压迫压电振荡器作振动,将机械能转换为电信号,这时它就成为超声波接受转换器。
超声波发射和接收电路在本设计中,我们设计的发射和接收电路都是分别只有一个,通过继电器进行顺、逆流方向收发电路的切换,这样做既降低了成本,又消除了非对称性电路误差,且发射脉冲通过使用单独的继电器分别对发射和接收换能器进行控制,使换能器的发射和接收电路完全隔离,消除了发射信号对接收的影响。
4.2.1超声波发射电路接收信号的大小和好坏直接取决于发射传感器的发射信号,由于使用收发共用型超声换能器,所以除了选用性能优良的超声波传感器外,发射电路和前级信号接收电路至关重要,它决定着整个系统的灵敏度和精度.超声波测量最常用的换能器发射电路大体可分为三种类型:窄脉冲触发的宽带激励电路、调制脉冲谐振电路和单脉冲发射电路。
从早先国内进口的日本超声波流量计来看,基本都采用的是窄脉冲驱动电路.这种电路在设计上一般是用一个极快速的电子开关通过对储能元件的放电来实现,这些开关器件通常为晶闸管或大功率场效应管(MOSFET).由于需要输出激励信号的瞬时功率大,因此开关器件必须由直流高压供电,一般要达到几十到一百伏以上,这在电池供电的系统中无法实现;此外,开关瞬间会产生高压脉冲,对整个电路的抗干扰设计不利。
而脉冲谐振电路设计起来比较简单,其基本方法是用振荡电路产生一个高频振荡,经过幅值和功率放大后接至换能器,使换能器发出超声波,确保高频振荡的频率与换能器固有频率一致,则可获得超声发射的最佳效果。
谐振电路能够使用较低的电压产生较强的超声波发射,适合使用电池供电的系统,而且它能精确地控制发射信号,效率高.在本设计中,超声发射电路采用了连续脉冲发射电路,它由脉冲发生、放大电路构成,具体电路连接如图17所示。
单片机发出的方波信号经三极管放大和变压器升压,达到足够功率后推动换能器超声超声波,这里变压器的主要用途是升高脉冲电压和使振荡器的输出阻抗与负载(超声换能器)阻抗匹配,变压器与探头接成单端激励方式。
图17超声波发射电路4.3。
2 超声波接收电路发射换能器发出超声波信号后,信号经过流体传播到接收换能器,中间有杂 质和气泡等影响,强度不断减小,并且强度也不稳定。
基于stm32的超声波测距系统相比于传统的单片机,STM32单片机具有更高的时间测量分辨率,其主频与定时器频率高达72MHz,且该单片机在开启定时器的同时,会启动PWM通道驱动超声波发射器和通道捕捉回波信号,提高了测量的精度和准确性。
超声波测距是一种典型的非接触测量方式,在不同的传播介质中具有不同的传播速度其系统结构简单、成本低。
只有了解超声波测距的原理、了解STM32单片机才能设计出性能良好的STM32单片机的高精度超声波测距系统。
超声波测距的原理及检测方法超声波检测技术是基于非接触测量方式而逐渐发展起来的一门技术,这种非接触测量方式会经常出现在材料学、电子科学、测量学等学科当中。
超声波的产生是通过机械振动而得到,其传播速庶会随着传播介质的变化而变化。
超声波测距的实现主要是通过超声波的产生、传播与接收回波这三个主要过程。
目前,声波幅值检测法、渡越时间检测法和相位检测法是超声波测距的三种主要检测方法。
声波幅值检测法,容易受到传播介质的干扰,所以其测量精度较差。
渡越时间检测法,与其他两种检测方法相比,成本较低,测量范围较广,且实现简单,因此本文高精度超声波测距系统的设计决定采用渡越时间检测法。
相位检测法,在实际测量过程中,其测量精度要高于其他两种检测方法,但测量范围具有一定的局限性田。
STM32单片机的高精度超声波测距系统设计一、系统组成STM32单片机的高精度超声波测距系统的设计主要由STM32 单片机、超声波发射电路、接受电路、补偿电路和软件等构成。
该系统将STM32单片机作为整个系统的核心,通过协调各部分电路工作,进而实现高精度的超声波测距口。
二、系统硬件设计1.超声波发射电路超声波发射电路两个最主要的组成部分就是超声波探头和超声波激励电路。
超声波探头不仅是超声波发射电路的一个重要组成部分,更是整个超声波测距系统的重要组成部分。
它是超声波测距系统中用以发射或接受超声波信号的主要器件。
超声波激励电路的基本工作原理是首先利用相应的机理信号对一特定形式的电压进行处理之后,将其加载到超声波探头上,然后再通过超声波探头压电晶片将其自身所具有的电能转化为超声波信号图。
目录一.绪论----------------------------------------------------------------1页1.1课程设计的目的及意义-------------------------------------1页1.2 超声波发射电路的设计思路------------------------------3页1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页2.1 课程的方案设计--------------------------------------------- 4页2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页3.1 触发脉冲产生电路------------------------------------------ 7页3.2发射脉冲产生电路------------------------------------------- 8页3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页绪论1.1课程设计的目的及意义1.1.1目的科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
超声波多普勒效应测速仪一、题目分析本设计为本次实验设计大赛基础题,其设计的原理基于多普勒效应。
题目的任务为:设计与多普勒效应相关的实验,观测其物理现象,基于实验测量数据分析被测对象的物理过程(物理量)。
要求:(1)突出实验的物理原理;(2)体现作品的物理创新思想;(3)进行不确定度分析;(4)操作简易、可用于实验教学;(5)性价比高。
从题目命题来看,目的非常明确,就是设计一个实验使之能观测多普勒效应并能测定相关物理量。
实现这个基本点的基础上,要求体现作品的物理创新思想与实用性。
再者,实验装置成本低,性能好。
创新的一个基本认识是:通过创造或引入新的技术、知识、观念或创意创造出新的产品、服务、组织、制度等新事物并将其应用于社会,以实现其价值的过程。
价值包括其经济价值、社会价值、学术价值和艺术价值等。
这里要求设计能够体现物理创新思想,即意味着设计需要另辟蹊径,走一条新路子。
至少要避开实验室已有的传统的实验设计方案。
实用性明确:操作简易,可用于实验教学。
这就要求设计人性化,易于交互,原理明确,测量准确。
性价比指标则要求控制成本,在实现同样的功能前提下其成本更加低廉。
为此首先必须正确理解多普勒效应。
多普勒效应描述的是波源或观察者,或者两者同时相对于介质有相对运动时,观察者接收到的波的频率与波源的振动频率不同,即发生了频移。
由此可知,这一实验设计的基本任务必须立足几点:(1)波源选择。
多普勒效应是一切波动过程的共同特征,它适用的对象是波。
机械波与电磁波(光波)均可作为本次实验设计的分析对象。
水波、声波、光等都可以作为波源。
波源选择不同,其对应的检测方法不同,难度也不一样。
(2)设置合适的接收装置,便于观测和定量分析。
(3)测量对象。
利用多普勒效应可以测量物体的运动速度、液体的黏度[1]等。
本实验测量对象定为运动物体的速度。
二、方案论证根据题目分析,可选波源基本上是水波、声波与光波三种波源之一。
从直观性和形象性指标来看,水波多普勒现象最为直观,声波在听阈范围内较为直观,光波在必须借助仪器,直观性相对较弱。
目录一.绪论----------------------------------------------------------------1页1.1课程设计的目的及意义-------------------------------------1页1.2 超声波发射电路的设计思路------------------------------3页1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页2.1 课程的方案设计--------------------------------------------- 4页2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页3.1 触发脉冲产生电路------------------------------------------ 7页3.2发射脉冲产生电路------------------------------------------- 8页3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页绪论1.1课程设计的目的及意义1.1.1目的科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
超声波发射电路及接收电路图
超声波发射电路
发射电路如图3(a)所示。
发射电路将接收到的方波脉冲信号送入乙类推挽放大电路,用其输出信号驱动CMOS管,接着将其脉冲信号加到高频脉冲变压器进行功率放大,使幅值增加到100多伏,最后将放大的脉冲方波信号加到超声波换能器上产生频率为125 kHz的超声波并将其发射出去。
超声波接收电路
接收电路由OP37构成的两级运放电路,TL082构成的二阶带通滤波电路以及LM393构成的比较电路三部分组成。
因本系统频率较高,回波信号非常弱,为毫伏级,因此设计成两级放大电路,第一级放大100倍,第二级放大50倍,共放大5 000倍左右。
另外考虑到本系统要适应各种复杂的工作环境,因此设计了由TL082构成的高精度带通滤波电路,以供回波信号放大后进行进一步滤波,将滤波后的信号输入到LM393构成的比较器反相输入端,与基准电压相比较,并且对其比较输出电压进行限幅,将其电压接至D 触发器,比较器将经过放大后的交流信号整形出方波信号,将其接至FPGA,启动接收模块计数,达到脉冲串设定值时,关闭计时计数器停止计数。
本文来自: 原文网址:/sch/test/0086260.html
本文来自: 原文网址:/sch/test/0086260.html。
超声波电路原理范文
1.发射电路
超声波的发射通常通过压电换能器(PZT)来实现。
压电换能器是一
种将电能转化为机械能(振动)的器件。
当施加在压电换能器上的电压发
生变化时,压电换能器会产生机械振动,从而产生超声波。
发射电路的主
要功能是为压电换能器提供合适的驱动信号,通常采用谐振电路来实现。
2.接收电路
接收电路主要负责将接收到的超声波信号转化为电信号。
在超声波传
播过程中,声波遇到障碍物或界面时会产生反射,接收机构通过接收到的
声波反射信号来检测目标。
接收电路通常由接收换能器、前置放大器和滤
波器组成。
接收换能器可以将接受到的机械振动转化为电信号,前置放大
器可以将较弱的电信号放大,滤波器可以滤除噪声和杂散信号。
3.信号处理电路
信号处理电路主要负责对接收电路输出的电信号进行处理和分析。
信
号处理电路通常包括滤波、放大、整流、调制、解调等功能,可以去除不
需要的干扰信号,并将有效信号转化为数字信号进行进一步处理和分析。
信号处理电路的设计需要考虑超声波信号的特性和目标检测需求。
近年来,随着超声波技术在医学、工业、无损检测等领域的广泛应用,超声波电路的研究和发展也在不断深入。
人们通过对超声波信号的处理和
分析,实现了更高的探测精度和目标分辨率。
超声波电路的应用前景广阔,将继续发挥重要的作用。
>才智/200超声波发射电路与接收电路设计高忠义 谢玲 侯雅波 袁秀艳 高萍 白城职业技术学院 137000摘要:本设计主要采用555振荡器、RS 触发器、分频器、信号发生器、换能器等进行信号的发射,使用放大器、RS 触发器、分频器换能器等进行信号的接收。
关键词:超声波传感器;振荡器;分频器;触发器车总人数为290人,下车总人数为380人,9:00~10:00下车总人数为220人,上车总人数为190人,10:00~11:00下车总人数为190人,上车总人数为187人,11:00~12:00下车总人数为340人,上车总人数为265人,13:00~14:00下车总人数为210人,上车总人数为186人,14:00~15:00下车总人数为390人,上车总人数为270人,15:00~16:00下车总人数为190人,上车总人数为150人,16:00~17:00下车总人数为190人,上车总人数为120人,17:00~18:00下车总人数为340人,上车总人数为270人, 18:00~19:00下车总人数为260人,上车总人数为220人,19:00~20:00下车总人数为220人,上车总人数为190人,20:00~21:00下车总人数为200人,上车总人数为165人,可根据不同时段的人流量进行公交车合理调度。
如图2所示2路公交车各时间段乘客上下车情况。
图2 2路公交车各时间段乘客上下车情况在制定2路公交车发车时刻表时,考虑到公交公司的利益和公交调度方案的可行性,可将上午7:00~8:00时间段内尽量少发车,在11:00~12:00时间段的公交车由于乘客较多,可根据需要将其他时间段的公交车进行调整,以满足高峰时期乘客的出行需要,最大程度上实现了公交区位的优化,同时保证了公交公司的利益也保证了乘客的利益。
2公交线路平均站点间距的优化研究由于站点间距优化问题的复杂性,以及站距优化能带来很显著的经济和社会效益。
目前,国内外已经有许多关于公交站点间距优化的研究成果。
第三章超声波测距仪硬件电路的设计3.1超声波测距仪硬件电路硬件电路可分为单片机系统及显示电路、超声波发射电路和超声波检测接收电路三局部。
3.1.1单片机系统及显示电路本系统采用AT89S52来实现对超声波传感器的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。
超声波测距的硬件示意图如图3所示:单片机采用89552或其兼容系列。
采用12MHz高精度的晶振,已获得较稳定的时钟频率,减少测量误差。
单片机用口1.0端口输出超声波换能器所需的40KHz的方波信号,利用外中断0 口检测超声波接收电路输出的返回信号。
3.1.2显示的输出显示的种类很多,从液晶显示、发光二极管显示到CRT显示器等,都可以与微机连接。
其中单片机应用系统最常用的显示是发光二极管数码显示器〔简称 LED显示器〕。
液晶显示器简LCD。
LED显示器价廉,配置灵活,与单片接口方便,LCD可显示图形,但接口较复杂本钱也较高。
该电路使用7段LED构成字型“8〃,另外还有一个发光二极管显示符号及小数点。
这种显示器分共阳极和共阴极两种。
这里采用共阳极LED 显示块的发 光二极管阳极共接,如下列图3-1所示,当某个发光二极管的阴极为低电平时, 该发光二极管亮。
它的管脚配置如下列图3-2所示。
实际上要显示各种数字和字符,只需在各段二极管的阴极上加不同的电平, 就可以得到不同的代码。
这些用来控制LED 显示的不同电平代码称为字段码〔也 称段选码〕。
如下表为七段1日口的段选码。
表3-1七段1日口的段选码 显示字符共阳极段选码 dp gfedcba显示字符 共阳极段选码dp gfedcba0 C0H A 88H 1 F9H B 83H 2 A4H C C6H 3 B0H D A1H 4 99H E 86H 5 92H F 8EH 682HP8CHVCC图3-1图3-2come d c dp com7 F8H y 91H8 80H 8. 00H9 90H “灭〃FFH本系统显示电路采用简单实用的4位共阳LED数码管,位码用PNP三极管8550驱动。
[精华]40khz超声波发射电路40kHZ超声波发射电路40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。
F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。
电容C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用9V叠层电池。
测量F3输出频率应为40kHZ?2kHZ,否则应调节RP。
发射超声波信号大于8m。
40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。
T40-16是反馈耦合元件,对于电路来说又是输出换能器。
T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。
S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。
电路工作电压9V,工作电流约25mA。
发射超声波信号大于8m。
电路不需调试即可工作。
40kHZ超声波发射电路(3)40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。
电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40kHZ?2kHZ。
频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。
电感L1与电容C2调谐在40kHZ起作谐振作用。
本电路适应电压较宽(3~12V),且频率不变。
电感采用固定式,电感量5.1mH。
整机工作电流约25mA。
发射超声波信号大于8m。
40kHZ超声波发射电路(4)40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。
其中门YF1与门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。
设计了一种简单、可靠、实用的超声波发射电路
0 引言
目前,超声波发射电路设计方法众多,其供电直流电压一般较高,以产生几十到几百伏的超声脉冲激发电信号。
利用低的直流电压产生高的电压激发脉冲,不仅可以提高检测灵敏度,增加检测有效范围,提高检测信号的抗干扰能力,同时可以使得发射电路的体积减小,成本降低,便于仪器小型化。
超声波检测就是利用超声波在金属构件中传播和反射的原理,以探测构件内部缺陷的大小、性质、位置以及材质的某些物理性能的方法。
超声波检测也叫超声检测、超声波探伤,是无损检测的一种。
无损检测是在不损坏工件或原材料工作状态的前提下,对被检验不见的表面和内部质量进行检查的一种检测手段,NondestrucTIve TesTIng(缩写NDT)。
超声波的特点:
1、超声波声束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性。
2、超声波在介质中传播过程中,会发生衰减和散射。