激光对固体材料的热效应..
- 格式:ppt
- 大小:1.53 MB
- 文档页数:1
半导体激光泵浦复合晶体固体激光器的热效应杨丽颖;李嘉强;张金玉;徐晓明;曹剑【摘要】为了验证复合晶体使用到半导体泵浦的固体激光器中与非复合晶体的区别,提高半导体泵浦的固体激光器的工作效率,开展了半导体激光泵浦YAP/Tm∶YAP复合晶体固体激光器的热效应的验证实验.采用有限元分析法,模拟了晶体温度及热应力的分布,并分析了热透镜长度的变化情况.结果发现,与非复合晶体相比,复合晶体的温度和热应力均有不同程度的下降,复合晶体工作时的最高温度降至其80%,热应力降至其70%.同时也验证了热透镜焦距不随非掺杂晶体长度的增大而改变,这也意味着复合晶体不能有效提高复合激光的光束质量,但是可以确保输出激光光束质量的稳定性.因此可以证实,使用复合晶体能够有效改善激光器的温度和力学特性,但不能优化固体激光器的光束质量.%In order to distinguish the characteristics of composite and traditional non-composite crystal used in the diode pumped solid state lasers (DPSSL)and improve the efficiency of DPSSL, the thermal effe ct of based on YAP/Tm∶YAP composite crystal was studied.The finite element method (FEM) was employed.The temperature and heat stress were simulated, and the relationship between the thermal lens and un-doped crystal length was analyzed.Experimental results indicate that the peak temperature and the thermal stress of YAP/Tm∶YAP composite crystal rod decrease to less than 80% and 70% comparing with the non-composite crystal.The length of thermal lens is still constant under the condition of the variation of un-doped crystal length, which verifies that using the composite crystal in the DPSSL can benefit for the laserproperties of temperature and mechanics.Nevertheless, the beam qualityof DPSSL can not be optimized using the composite crystal.【期刊名称】《发光学报》【年(卷),期】2017(038)006【总页数】5页(P742-746)【关键词】复合晶体;热效应;半导体泵浦固体激光器;有限元分析【作者】杨丽颖;李嘉强;张金玉;徐晓明;曹剑【作者单位】核工业理化工程研究院,天津 300180;核工业理化工程研究院,天津300180;核工业理化工程研究院,天津 300180;核工业理化工程研究院,天津300180;核工业理化工程研究院,天津 300180【正文语种】中文【中图分类】TN248.4半导体激光泵浦固体激光器(DPSSL)的热效应一直是影响其输出功率、光束质量和可靠性等工作特性的重要因素[1-7]。
端面激光晶体热效应比较及分析的开题报告一、研究背景及意义晶体激光是一种先进的光学探测技术,在现代光电领域具有广泛的应用。
随着科技的不断发展,针对晶体激光的研究也越来越深入。
其中,端面激光晶体热效应是研究的重要方向之一。
端面激光晶体热效应是指晶体激光工作时在晶体端面产生的热效应。
这种热效应会导致晶体材料中应力和变形的产生,因此对于晶体激光的性能和稳定性有着重要的影响。
目前,针对晶体激光的研究主要集中于热效应的检测和控制方面,因此对于端面激光晶体热效应的比较及分析具有重要的研究意义。
二、研究内容及方案1.研究内容本文将针对端面激光晶体热效应进行比较及分析,主要包括以下内容:(1)晶体激光的工作原理及热效应的产生机制分析。
(2)常见的端面激光晶体材料的热效应比较。
(3)端面激光晶体的热效应检测方法的研究和分析。
(4)针对端面激光晶体热效应的控制方法和技术的研究和分析。
(5)探讨端面激光晶体热效应对晶体激光性能的影响及其在实际应用中的作用。
2.研究方案(1)收集晶体激光的相关文献,了解晶体激光的工作原理及热效应的产生机制。
(2)对常见的端面激光晶体材料进行热效应的比较分析,比较不同材料在热效应方面的特点和优势。
(3)分析端面激光晶体热效应检测方法的特点和适用性,介绍并比较目前常见的检测方法。
(4)研究和分析端面激光晶体热效应的控制方法和技术,包括对晶体材料和环境的优化控制等方面。
(5)通过对端面激光晶体热效应对激光性能的影响分析,探讨其在实际应用中的作用及可能的应用前景。
三、研究预期结果1.深入研究端面激光晶体热效应的产生机理,对晶体激光的工作原理有更为深刻的理解。
2.比较不同晶体材料的热效应特点和优缺点,为晶体激光的应用提供理论基础。
3.研究和分析端面激光晶体热效应的检测和控制方法,为实际应用提供技术支持。
4.对端面激光晶体热效应对激光性能的影响进行深入探讨,为晶体激光应用的性能优化提供依据。
5.深化对晶体激光的研究,推动晶体激光在光电领域的应用和发展。
激光淬火知识点总结激光淬火的工艺原理激光淬火是利用激光束高能量的瞬时性加热,使材料表面迅速升温到过温度,然后通过冷却淬火,使表面层产生相变,从而获得高强度、高硬度和高耐磨性。
激光淬火的工艺原理包括以下几个方面:1. 光热效应:激光束对材料表面的能量聚焦,使材料表面温度迅速升高,达到相变温度以上,造成局部的超淬质组织。
2. 瞬时性:激光淬火的加热时间极短,热输入高能量密度,迅速升温和降温,形成高强度和高硬度表面。
3. 相变效应:激光加热后迅速冷却,形成奥氏体和马氏体的相变,产生高强度和高硬度的组织结构。
激光淬火的设备激光淬火的设备一般包括激光器、光学系统、工件夹持系统和工艺控制系统等部分。
激光器是激光淬火的关键设备,激光器的类型通常有固体激光器、气体激光器和半导体激光器等。
光学系统用于对激光进行聚焦和整形,使激光能量能够集中到工件表面,工艺控制系统用于对激光加工参数进行实时监控和调节,以实现激光淬火工艺的精确控制。
激光淬火的工艺控制激光淬火的工艺控制包括激光参数、工件预处理、冷却介质和淬火温度等方面。
激光参数包括激光功率、激光脉冲宽度、激光脉冲频率等,这些参数对激光加工过程中的温度分布和物相变化有重要影响。
工件预处理包括表面清洁和除氧化层等,保证激光在工件表面有效加热,冷却介质包括气体、液体或固体,用于对加热后的工件进行迅速冷却,以稳定组织结构和性能。
激光淬火的应用激光淬火广泛应用于工具、模具、轴承、齿轮、汽车零部件等金属材料的表面强化和改性处理,获得高硬度、高耐磨性和高疲劳强度的表面层,提高材料的使用寿命和性能。
同时,在航空航天、船舶制造和兵器装备等领域也得到了广泛的应用。
激光淬火的发展趋势随着制造业对材料性能要求的不断提高,激光淬火作为一种先进的表面强化处理技术,具有广阔的应用前景。
激光淬火的发展趋势主要包括以下几个方面:1. 高能激光源和光学系统的发展,提高激光淬火的加工效率和加工质量。
2. 激光参数的精确控制和优化设计,获得更高的淬火效果和性能提升。
脉冲激光参数在烧蚀固体材料过程中的影响作者:杨小琦张长水徐海斌叶宝娟来源:《硅谷》2009年第02期[摘要]介绍长脉冲激光和短脉冲激光与固体材料相互作用时的物理模型。
介绍激光作用过程中,脉宽、波长等激光参数对材料烧蚀阈值以及加工质量的影响。
[关键词]脉冲激光激光参数激光加工烧蚀阈值双温方程中图分类号:TN2文献标识码:A文章编号:1671-7597(2009)0120115-02一、引言自1960年第一台激光器问世起,激光技术就变现出了其强大的生命力,发展到现在几乎渗透到自然科学的各个领域。
随着激光技术的发展,激光与物质的相互作用不仅仅在纯物理研究领域里被人们普遍关注,而且在现代化生产和生活中也得到了广泛应用。
激光与物质的相互作用的主要物理现象之一就是其热效应。
这一过程跟多种因素有关,既与激光光源有关,又与作用材料及外部环境有关。
材料本身的热耦合系数、热常数、吸收系数、反射系数等都会对作用过程产生影响;激光光源的因素主要有脉宽、能量、功率密度、激光波长、重复率、光强分布等,其中任何一种因素都会对作用过程产生重要影响。
也正是激光参数的这种多样性给激光与物质相互作用这一研究领域增添了活力,进一步开拓激光的应用范围。
二、理论模型(一)长脉冲激光与物质相互作用的理论模型激光脉冲辐射到材料表面上,靶材就会吸收激光能量使自身温度升高,热量积累到一定程度就会对靶材造成破坏。
这种热转换主要由三种方式:电子热传导、声子热传导和辐射热传导。
长脉冲与物质相互作用的过程多用热传导方程来描述:式中K为热导率,P为材料密度,C为材料比热容,T为温度,t为时间变量,为每单位时间、单位体积传递热给固体材料的加热速率。
通常的假定条件如下:(1)被加热材料是各向同性物质;(2)材料的热物理参数与温度无关或取特定的平均值;(3)忽略热传导中的辐射和对流,只考虑材料表面的热传导。
(二)超短脉冲激光与物质相互作用模型随着激光技术的发展,出现了飞秒激光这种超短脉冲,其作用机理与传统的连续激光和长脉冲激光加工材料的机理不同,其激光场强非常高,是一个多光子吸收过程,非线性吸收是主要过程。
二极管泵浦固体热容激光器热效应探究引言:二极管泵浦固体热容激光器是一种基于固体材料的激光器,其主要特点是激光器晶体中的能级较高,具有较大的固体热容。
热效应是固体激光器中的一个重要问题,热效应会降低激光器的性能和输出功率稳定性。
因此,探究二极管泵浦固体热容激光器的热效应对激光器的优化设计和性能提升具有重要意义。
一、热效应的原理二极管泵浦固体热容激光器中的热效应是由于激光器晶体在光学泵浦过程中吸纳的部分能量被转化为热能而导致的。
晶体具有较大的热容,当光子能量被吸纳后,晶体温度会上升,从而导致晶体的热膨胀。
热膨胀会引起激光器光腔的尺寸变化,从而导致激光器输出功率的变化。
此外,激光腔的尺寸变化还会引起光腔模式的偏移,进一步影响激光器的性能。
二、热效应的影响1. 输出功率的变化:热效应会导致激光器的输出功率发生波动和变化。
当晶体温度提高时,激光器腔内的折射率也会发生变化,导致腔内光的传输特性发生改变,从而影响激光的输出功率。
此外,热膨胀还可能导致腔内激光模式的偏移,使得激光器的输出功率变得不稳定。
2. 光学泵浦效率的降低:在二极管泵浦固体热容激光器中,光子能量被吸纳后会被转化为热能,而不是完全转化为激光光子。
因此,晶体的温度提高会降低光学泵浦效率,导致激光器的发射效果不佳。
3. 激光腔的稳定性降低:由于热膨胀引起的激光腔尺寸变化,使得激光器的腔内模式产生偏移,导致激光输出功率的不稳定性增加。
这将给激光器的应用带来一些困扰,特殊是对于要求高稳定性的应用。
三、热效应的探究方法1. 温度测量:探究热效应的首要任务是对晶体温度进行准确测量。
目前常用的温度测量方法有红外热像仪和热电偶等。
通过对晶体表面的温度分布进行测量,可以了解热效应在激光器中的分布和变化状况。
2. 仿真模拟:借助计算机软件进行热效应的仿真模拟是一种常用的探究方法。
通过建立激光器的热传导方程和热光耦合方程,可以得到激光器晶体的温度分布和热效应对激光器性能的影响。
LD 端面泵浦激光晶体热效应分析李健1 孙尧1 李涛1 张帅一1 于果蕾11. 山东师范大学物理与电子科学学院,山东 济南 250014摘要:通过求解泊松热传导方程,得出了矩形截面Nd:YVO 4 ,Nd:GdVO 4和Nd:GdYVO 4激光晶体中心泵浦和偏心泵浦情况下,晶体泵浦端面的温度分布。
研究表明,偏心泵浦时,晶体泵浦端面最高温升较中心泵浦分别下下降了11.4%,13.5%,7.7%。
并且计算了Nd:YVO 4,Nd:GdVO 4和Nd:GdYVO 4激光晶体端面在达到热平衡时的热形变量,三种晶体的最大热形变量分别为2.6045m μ,0.536m μ,0.8549m μ。
关键词:Possion 方程,激光晶体,偏心泵浦,热形变一、 引言激光二级管(LD )泵浦的全固态激光器具有体积小、效率高、稳定性好和寿命长等优点,再国防、光电子产业、光通讯和医疗卫生等领域有着重要的应用。
激光晶体是全固态激光器中最重要的核心部分,在很大程度上它决定了激光器的输出特性,为了获得高效激光输出,在一定运转方式下选择合适的激光晶体是非常重要的。
在全固态激光器中,Nd:YVO 4和Nd:GdVO 4以其优良的物理、化学及激光特性,被广泛的应用在各类激光产品中[1][2]。
最近在Nd:YVO 4和Nd:GdVO 4的基础上,一种新的钒酸盐晶体Nd:Gd x Y 1x VO 4逐渐引起了人们的注意。
Nd:Gd x Y 1-x VO 4是由Y(Gd)部分地代替Nd:GdVO 4(Nd:YVO 4)中的Gd(Y)形成的新的钒酸盐晶体。
三种晶体具有相同的晶体结构,它们的吸收波长中心都在808nm 附近。
Nd:YVO 4晶体具有较高的吸收系数和受激发射截面,Nd:GdVO 4晶体则具有较高的热传导率[3]。
Nd:GdYVO 4具有和Nd:YVO 4,Nd:GdVO 4相同的晶体结构,但由于融合了两种晶体的特点,具有自身的优势[4]。
解析激光在材料加工中的效应激光已成为现代制造业中重要的加工工具之一,其应用范围包括切割、钻孔、焊接、雕刻等多个领域。
激光加工具有高精度、高效率、无接触等特点,以及能够对多种材料进行加工,因而在现代制造业中得到了广泛的应用。
本文就激光在材料加工中的效应进行一些解析和探讨。
激光是一种聚焦后具有高能量密度的光束,它对各种材料产生的影响主要包括三个方面:热效应、光化学和力学效应。
其中,热效应是最为显著的一个方面。
热效应是指激光辐射能量加热材料,从而使材料的温度升高,产生局部熔化、蒸发、膨胀等现象。
当激光束的功率密度高于材料的热导率时,激光束在材料内产生的热量难以扩散出去,导致局部熔化和汽化。
这种效应通常被用于材料的切割和钻孔。
光化学效应是由激光束照射后,在材料表面产生的光化学反应。
这种效应通常用于对有机污染物的清洗和材料表面的改性。
力学效应是指激光束辐射后,产生的动量的力量对材料作用,从而产生剪切、弯曲、拉伸等效应。
这种效应通常用于材料的表面处理和弯曲加工等。
不同的激光类型和波长对材料的效应也有所不同。
常用的激光类型包括:二氧化碳激光(CO2)、氮气激光(N2)、Nd:YAG激光、光纤激光等。
其中,CO2激光的波长为10.6微米,能够在金属、陶瓷和塑料等材料上进行切割和焊接加工,而Nd:YAG激光的波长为1.06微米,较CO2激光更易于在金属和非金属材料上进行加工,常用于焊接、钻孔和雕刻等。
另外,激光加工的效率也受到几个因素的影响,例如激光功率、激光脉冲时间、激光波长、材料特性等。
功率越大,材料加工效率越高,但是也可能导致材料的氧化、脆性增加等问题。
在增加功率的同时,适当调整激光脉冲时间和波长,能够更好地优化加工效果。
此外,材料的热导率和热膨胀系数等特性也会对激光加工的效率产生影响。
因此,在进行激光加工前,需要对材料的特性进行详细分析和研究,以确定最佳加工方案和参数。
需要注意的是,激光加工虽然具有高效、高精度等优点,但也有一些局限性。