高考经典物理模型:传送带模型(一)
- 格式:doc
- 大小:215.00 KB
- 文档页数:9
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
第10讲传送带模型一.水平传送带模型已知传送带长为L,速度为v,与物块间的动摩擦因数为μ,则物块相对传送带滑动时的加速度大小a=μg。
项目图示滑块可能的运动情况情景1v0=0时,物块加速到v的位移x=v22μg(1)一直加速若x≥L即v≥2μgL时,物块一直加速到右端。
(2)先加速后匀速若x<L即v<2μgL时,物块先加速后匀速;情景2如图甲,当v0≠0,v0与v同向时,(1)v0>v时,一直减速,或先减速再匀速当v0>v时,物块减速到v的位移x=v20-v22μg,若x<L,即v0>v> v20-2μgL,物块先减速后匀速;若x≥L,即v≤ v20-2μgL,物块一直减速到右端。
(2)当v=v0时,物块相对传送带静止随传送带匀速运动到右端。
(3)v0<v时,或先加速再匀速,或一直加速当v0<v时,物块加速到v的位移x=v2-v202μg,若x<L,即v0<v< v20+2μgL,物块先加速后匀速;若x≥L,即v≥ v20+2μgL,物块一直加速到右端。
情景3如图乙,v0≠0,v0与v反向,物块向右减速到零的位移x =v202μg(1)传送带较短时,滑块一直减速达到左端若x≥L,即v0≥2μgL,物块一直减速到右端;(2)传送带较长时,滑块还要被传送带传回右端。
即x<L,即v0<2μgL,则物块先向右减速到零,再向左加速(或加速到v后匀速运动)直至离开传送带。
若v0>v,返回时速度为v,若v0<v,返回时速度为v0二. 倾斜传送带模型物块在倾斜传送带上又可分为向上传送和向下传送两种情况,物块相对传送带速度为零时,通过比较μmgcosθ与mgsinθ的大小关系来确定物块是否会相对传送带下滑,μ>tanθ时相对静止,μ<tanθ时相对下滑。
项目图示滑块可能的运动情况情景1(一)若0≤v0<v且μ>tanθ(1)一直加速传送带比较短时,物块一直以a=μgcosθ-gsinθ向上匀加速运动。
高一物理传送带模型讲解高一物理中的传送带模型是一个常见的物理模型,用于解释物体在传送带上的运动。
下面我将从多个角度全面地讲解这个模型。
首先,传送带模型是基于传送带的运动原理而建立的。
传送带是一种可以将物体从一处运送到另一处的设备,通常由带状材料构成,可以连续地运动。
传送带模型假设传送带是匀速运动的,即传送带上的物体以恒定的速度运动。
其次,传送带模型可以用来解释物体在传送带上的运动规律。
当物体放置在传送带上时,由于传送带的运动,物体也会随之运动。
根据传送带模型,物体在传送带上的速度与传送带的速度相同,方向也相同。
这意味着物体相对于地面的速度是传送带速度和物体自身速度的矢量和。
此外,传送带模型还可以用来解释物体在传送带上的加速度。
如果传送带的速度改变,物体在传送带上的加速度可以通过传送带速度的变化率来确定。
例如,如果传送带的速度逐渐增加,物体在传送带上的加速度将是正的;如果传送带的速度逐渐减小,物体在传送带上的加速度将是负的。
此外,传送带模型还可以用来解释物体在传送带上的摩擦力。
当物体放置在传送带上时,物体与传送带之间会存在摩擦力。
根据传送带模型,摩擦力的大小与物体和传送带之间的摩擦系数以及物体在传送带上的压力有关。
如果物体的压力增大或者摩擦系数增大,摩擦力也会增大。
总结起来,高一物理中的传送带模型是一个用于解释物体在传送带上运动的模型。
它可以帮助我们理解物体在传送带上的速度、加速度以及与传送带之间的摩擦力之间的关系。
通过理解传送带模型,我们可以更好地理解和分析与传送带相关的物理现象和问题。
希望以上对于高一物理传送带模型的讲解能够满足你的需求。
如果还有其他问题,请随时提出。
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
一、水平传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景21.可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景31可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速1、如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以s m v /10=的速度向右匀速运动。
现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,取2/10s m g =。
(1)求旅行包经过多长时间到达传送带的右端。
(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.3、(讲逆时针)如图所示,倾角为37°、长为L=16m 的传送带,转动速度为s m v /10=,在传送带顶端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。
传送带模型1.水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v,返回时速度为v;当v0<v,返回时速度为v02.倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速*情景3(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速*情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速①水平传送带问题:求解的关键在于正确分析出物体所受摩擦力.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.②倾斜传送带问题:求解的关键在于正确分析物体与传送带的相对运动情况,从而判断其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.小结:分析处理传送带问题时需要特别注意两点:一是对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向的分析;二是对物体与传送带共速时摩擦力的有无及方向的分析.对于传送带问题,一定要全面掌握上面提到的几类传送带模型,尤其注意要根据具体情况适时进行讨论,看一看受力与速度有没有转折点、突变点,做好运动过程的划分及相应动力学分析.3.传送带问题的解题思路模板[分析物体运动过程]例1:(多选)如图所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因素为μ,小木块速度随时间变化关系如图所示,v 0、t 0已知,则( )A .传送带一定逆时针转动B .00tan cos v gt μθθ=+C .传送带的速度大于v 0D .t 0后滑块的加速度为002sin v g t θ-[求相互运动时间,相互运动的位移] 例2:如图所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。
专题强化四动力学中两种典型物理模型学习目标1.会分析物体在传送带上的受力情况和运动情况,并会相关的计算。
2.理解什么是“板—块”模型,并会运用动力学的观点正确处理“板—块”模型问题。
模型一“传送带”模型1.水平传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速先加速后匀速v 0<v 时,一直加速v 0<v 时,先加速再匀速v 0>v 时,一直减速v 0>v 时,先减速再匀速滑动一直减速到右端滑块先减速到速度为0,后被传送带传回左端。
若v 0<v 返回到左端时速度为v 0,若v 0>v 返回到左端时速度为v2.倾斜传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速(一定满足关系g sin θ<μg cos θ)先加速后匀速一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速若μ<tan θ,先以a 1加速,后以a 2加速v 0<v 时,一直加速(加速度若μ≥tan θ,先加速后匀速;若μ<tan θ,先以a 1加速,后为g sin θ+μg cos θ)以a 2加速v 0>v 时,一直加速或减速(加速度大小为g sin θ-μg cos θ)或μg cos θ-g sin θ若μ≥tan θ,先减速后匀速;若μ<tan θ,一直加速(摩擦力方向一定沿斜面向上)g sin θ>μg cos θ,一直加速;g sin θ=μg cos θ,一直匀速g sin θ<μg cos θ,一直减速先减速到速度为0后反向加速:若v 0<v ,到原位置时速度大小为v 0(类竖直上抛运动);若v 0>v ,先反向加速后匀速,反回原位置时速度大小为v角度水平传送带模型例1(2023·山东济宁高三月考)如图1所示,水平固定放置的传送带在电机的作用下一直保持速度v =4m/s 顺时针转动,两轮轴心间距L =10m 。
一个物块(视为质点)以速度v 0=8m/s 从左轮的正上方水平向右滑上传送带,经过t =2s 物块离开传送带,重力加速度g 取10m/s 2。
高考经典物理模型:传送带模型一
传送带模型是研究物理中的一种模式,它主要用于描述物体如何以连续不断的速度传送。
在这个模型中,一个物体被放入一个传送带上,这个物体可以被传送到一个距离特定距离的位置,而物体在传送带上的速度保持不变。
传送带模型可以用来帮助人们理解物体运动的物理模型,特别是物体的加速度、速度和位置的变化。
它能够帮助人们更好地理解运动的性质。
传送带模型还可以用来检验物体的动能定律、牛顿定律等物理定律的有效性。
另外,传送带模型也常用于传热系统研究中,用来模拟传统传热系统。
传送带可以模拟传统传热系统中的加热空间,以及循环传热器中的传热行为。
传送带模型也可以用于研究不同传热环境的传热效率。
传送带模型是高考物理中最常用的一种模型,它可以帮助学生更好地理解物理定律以及物体的运动性质。
这个模型的简单性和可视性能够很好地展示物理定律,这对于物理学习有重要的意义。
传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L的传送带AB始终保持速度为v0的水平向右的速度运动。
今将一与皮带间动摩擦因数为μ的滑块C,轻放到A端,求C由A运动到B的时间t ABCAB解析:“轻放”的含意指初速为零,滑块C所受滑动摩擦力方向向右,在此力作用下C向右做匀加速运动,如果传送带够长,当C与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C可能由A一直加速到B。
滑块C的加速度为,设它能加速到为时向前运动的距离为。
若,C由A一直加速到B,由。
若,C由A加速到用时,前进的距离距离内以速度匀速运动C由A运动到B的时间。
[例2]如图所示,倾角为θ的传送带,以的恒定速度按图示方向匀速运动。
已知传送带上下两端相距L今将一与传送带间动摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端的时间t。
Aθ解析:当A的速度达到时是运动过程的转折点。
A初始下滑的加速度若能加速到,下滑位移(对地)为。
(1)若。
A从上端一直加速到下端。
(2)若,A下滑到速度为用时之后距离内摩擦力方向变为沿斜面向上。
又可能有两种情况。
(a)若,A达到后相对传送带停止滑动,以速度匀速,总时间(b)若,A达到后相对传送带向下滑,,到达末端速度用时总时间二、滑块初速为0,传送带做匀变速运动[例3]将一个粉笔头轻放在以2m/s的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m的划线。
高三物理知识点传送带模型高三物理知识点:传送带模型传送带模型是物理学中对运动的描述和解释的一种简化模型。
它常被用来说明物体在平稳运动状态下的变化规律和相关的物理概念。
本文将介绍传送带模型的基本原理和应用,以及与高考物理相关的知识点。
一、传送带模型的基本原理传送带模型基于以下假设:1. 假设传送带平稳运行,即传送带的速度保持不变;2. 假设系统在相对运动中处于稳态,即不受到外力的干扰;3. 假设传送带的运动与物体的运动具有良好的耦合性。
在传送带模型中,我们可以将物体视作一个质点,其运动状态由位置、速度和加速度等因素决定。
通过对物体所受的驱动力和阻力进行分析,可以得到物体在传送带上的运动规律。
二、传送带模型的应用1. 平抛运动:传送带模型可以用来解释物体在水平平面上的平抛运动。
在这种情况下,传送带的速度影响了物体的水平速度,而垂直方向的运动受到重力的影响。
根据传送带模型,物体的横向速度与传送带速度相等,而垂直速度受到重力加速度的影响。
这样,我们可以推导出物体在水平平面上的轨迹、飞行时间和最大高度等参数。
2. 斜抛运动:传送带模型也可以应用于物体在斜面上的抛体运动。
在这种情况下,传送带的速度和斜面的倾角会对物体的运动产生影响。
根据传送带模型,物体的速度可以分解为沿斜面和垂直斜面的分量。
这样,我们可以得到物体在斜面上的运动规律,包括滑动距离、飞行时间和最大高度等参数。
三、与高考物理相关的知识点传送带模型是理解和应用以下高考物理知识点的基础:1. 运动规律:通过传送带模型,我们可以更深入地理解运动物体的速度、加速度和运动规律。
包括匀速直线运动、匀加速直线运动等。
2. 平衡力分析:传送带模型可以帮助我们分析物体所受的平衡力和非平衡力。
比如,在平抛运动中,物体的横向速度受到传送带的平衡力,而垂直速度受到重力的非平衡力。
3. 牛顿定律:传送带模型也可以用来解释和应用牛顿定律。
在斜抛运动中,我们可以分析物体受到的斜面作用力和重力作用力,并根据牛顿定律推导运动方程。
高考经典物理模型:传
送带模型(一)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2
传送带模型(一)
——传送带与滑块
滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
一、滑块初速为0,传送带匀速运动
[例1]如图所示,长为L 的传送带AB 始终保持速度为v 0的水平向右的速度运动。
今将一与皮带间动
摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB
解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B。
3
A
θ
滑块C 的加速度为
,设它能加速到为 时向前运动的距离为。
若
,C 由A 一直加速到B ,由。
若
,C 由A 加速到
用时
,前进的距离
距离内以
速度匀速运动
C 由A 运动到B 的时间。
[例2]如图所示,倾角为θ的传送带,以
的恒定速度
按图示方向匀速运动。
已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上
端,求A 从上端运动到下端的时间t 。
解析:当A 的速度达到 时是运动过程的转折点。
A 初始下滑的加速
度
若能加速到
,下滑位移(对地)为。
(1)若。
A 从上端一直加速到下端。
(2)若,A下滑到速度为用时
之后距离内摩擦力方向变为沿斜面向上。
又可能有两种情况。
(a)若,A达到后相对传送带停止滑动,以速度匀速,
总时间
(b)若,A达到后相对传送带向下滑,
,到达末端速度
用时
总时间
二、滑块初速为0,传送带做匀变速运动
[例3]将一个粉笔头轻放在以2m/s的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为C
A B
4
5
4m 的划线。
若使该传送带仍以2m/s 的初速改做匀减速运动,加速度大小恒为1.5m/s 2,且在传送带开始做匀减速运动的同时,将另一粉笔头(与传送带的动摩擦因数和第一个相同)轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?
解析:在同一v-t 坐标图上作出两次划线粉笔头及传送带的速度图象,如图所示。
第一次划线。
传送带匀速,粉笔头匀加速运动,AB 和OB 分别代表它们的速度图线。
速度相等时(B 点),划线结束,图中
的面积代表第一次划线长度
,即B 点坐标为
(4,2),粉笔头的加速度。
第二次划线分两个AE 代表传送带的速度图线,它的加速度为
可算出E 点坐标为(4/3,0)。
OC 代表第一阶段粉笔头的速度
图线,C 点表示二者速度相同,
即C 点坐标为(1,
0.5)该阶段粉笔头相对传送带向后划线,划线长度。
等速后,粉笔头超前,所受滑动摩擦力反向,
开始减速运动, 由于传送带先减速到0,所以后来粉笔头一直匀减速至静止。
CF 代表它在第二阶段的速度图线。
可求出F 点坐标为(2,0)此阶段
t
v
0 0
v 1 t 1 t 2 t 3
传送带
粉笔头
6
粉笔头相对传送带向前划线,长度。
可见粉笔头相对传送带先向后划线1m ,又折回向前划线1/6m ,所以粉笔头在传送带动能留下1m 长的划线。
三、传送带匀速运动,滑块初速与传送带同向 [例4]如图所示,AB 是一段位于竖直平面内的光滑轨道,高度为h ,末端B 处的切线方向水平。
一个质量为m 的小物体P 从轨道顶端A 处由静止释放,滑到B 端后飞出,落到地面上的C 点,轨迹如
图中虚线BC 所示。
已知它落地时相对于B 点的水
平位移OC=l 。
现在轨道下方紧贴B 点安一水平传送带,传送带的右端与B 距离为l /2。
当传送带静止时,让P 再次从A 点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C 点。
当驱动轮转动带动传送带以速度v 匀速向右运动时(其它条件不变)。
P 的落点为D 。
不计空气阻力。
(1)求P 与传送带之间的动摩擦因数μ。
(2)求出O 、D 间距离S 随速度v 变化函数关系式
解析:这是一道滑块平抛与传送带结合起来的综合题。
(1)没有传送带时,物体离开B 点作平抛运动。
A
B
C
当B点下方的传送带静止时,物体离开传送带右端作平抛运动,时间仍为t,有
由以上各式得
由动能定理,物体在传送带动滑动时,有。
(2)当传送带的速度时,物体将会在传送带上作一段匀变速运动。
若尚未到达传送带右端,速度即与传送带速度相同,此后物体将做匀速运动,而后以速度v离开传送带。
v的最大值为物体在传送带动一直加速而达到的速度。
把μ代入得
若。
物体将以离开传送带,得O、D距离
S=
当,即时,物体从传送带飞出的速度为v,
7
综合上述结果S随v变化的函数关系式
求解本题的关键是分析清楚物体离开传送带的两个极值速度:在传送带上一直匀减速至右端的最小速度,及在传送带上一直匀加速至右端的最大速度。
以此把传送带速度v划分为三段。
才能正确得出S随v 的函数关系式。
四、传送带匀速运动,滑块初速与传送带速度方向相反
[例5]如图所示,一水平方向足够长的传送带以恒定的速度沿顺时针方向传动,传送带右端一与传送带等高的光滑水平面。
一物体以恒定的速率沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为。
则下列说法正确的是:
A、只有=时才有=
B、若>,则=
C、若<,则=
D、不管多大,总有=
解析:滑块向左运动时所受滑动摩擦力必然是向右。
返回时开始阶段滑块速度小于传送带速度,所受摩擦力仍向右,滑块向右加速。
若它能一直加速到右端,速度=,前提是传送带速度一直大于滑块速度,即
8。
若<,则返回加速过程中,到不了最右端滑块速度就与传送带速度相等了,之后以速度匀速到达右端,即<时,=,所以正确选项为B、C。
9。