高能电子束射野剂量学
- 格式:ppt
- 大小:2.70 MB
- 文档页数:56
表1 课程学时分配表剂量学篇第1章外照射光子射野剂量学(6学时)教学目标1.人体模型和百分深度剂量比了解:组织替代材料间的转换,模体的分类,剂量准确性的要求;理解:组织替代材料的概念,模体及其各个类别的概念和特点;应用:组织替代材料的选择。
2.百分深度剂量分布应用:照射野及其相关的概念,百分深度剂量的定义和建成效应及其各个影响因素。
3.组织空气比了解:不同源皮距百分深度剂量的计算(组织空气比法),旋转治疗剂量计算和散射空气比;理解:组织空气比的概念及其影响因素,反散因子的概念和影响因素及其关系;应用:组织空气比与百分深度剂量的关系及其应用。
4.组织最大剂量比了解:原射线和散射线区别;理解:射野输出因子和模体散射因子的概念和作用,散射最大剂量比的概念;应用:组织模体比和组织最大剂量比的概念和意义。
5.等剂量分布与射野离轴比理解:等剂量曲线的概念,加速器X射线束射线质变化的规律;应用:等剂量曲线的特点及其影响因素,射野离轴比的概念和影响因素及其意义,束流权重和等剂量曲线的合成。
6.处方剂量计算了解:加速器和钴-60的剂量计算;理解:离轴点剂量计算-Day氏法及其本质;应用:处方剂量的概念和表示方法及其含义。
本章主要参考书1.肿瘤放疗物理学,胡逸民主编,原子能出版社,1999年9月出版,P149~2262.田志恒编,辐射剂量学(初版)(M),高等学校试用教材,1992年6月第一版,P197~P237讲稿:第1章外照射光子射野剂量学(6学时)外照射剂量学(external radiation dosimetry)研究以人体为主的各种客观受体外辐射源照射的剂量学问题。
对于医学照射、工业照射、各种照射实验和某些事故照射,可以利用受特定射束照射的体模来测量或者计算照射剂量。
这些测量和计算结果也是确定辐射防护水平照射剂量的基础资料。
第一节人体模型一、组织替代材料X(γ)射线、电子束及其他重粒子入射到人体并与组织发生相互作用,由于散射和吸收,能量和强度逐渐损失。
第七章 电子线照射剂量学高能电子线在现代肿瘤放射治疗中有着重要的地位,特别是对表浅肿瘤(深度小于5cm)的治疗,其射野设计的简明和剂量分布的优越使之几乎成为唯一的选择。
高能电子线因其剂量特性而能避免靶区后深部组织的照射,这是电子线优于高能X 线的地方,也是电子线最重要的剂量学特点。
据统计,在接受放射治疗的患者中,10~15%的患者在治疗过程中要应用高能电子线,主要用于治疗表浅或偏心的肿瘤和浸润的淋巴结。
高能电子线应用于肿瘤的放射治疗始于20世纪50年代初期,一开始由电子感应加速器产生,后来发展为由直线加速器产生。
现代医用直线加速器除提供两档高能X 线外,通常还提供能量范围在4~25 MeV 之间的数档高能电子线。
第一节 电子线中心轴深度剂量分布类似于X 线,对电子线我们最关心的也是深度剂量分布,和高能X 线的区别以及它自身的一些特点是在临床使用之前必须掌握的。
一、中心轴深度剂量曲线的基本特点高能电子线的中心轴深度剂量定义与高能X 线相同,归一化后称为百分深度剂量,用PDD 表示,形状显然有别于高能X 线,见图7-1,图中照射野大小均为10cm ×10cm ,SSD 为100cm 。
与高能X 线相比,高能电子线具有更高的表面剂量,一般都在75%~80%以上;随着深度的增加,很快在最大剂量深度max d 达到最大剂量点(表面至max d 段称为剂量建成区);在max d 后形成高剂量坪区;然后剂量迅速跌落(剂量跌落区);最后在曲线后部形成一条长长的低剂量韧致辐射“拖尾”(X 线污染区)。
这些剂量学特性使得高能电子线在治疗表浅的肿瘤或浸润的淋巴结时,具有高能X 线无可比拟的优势。
图7-1 高能电子线与高能X 线深度剂量曲线的比较高能电子线还有其它的一些特点:1、从加速器偏转磁铁出来的电子线可以被认为是单一能量的,在经过散射箔、监测电离室、X 射线准直器和电子线限光筒等装置时,与这些物质相互作用,一方面展宽了电子线的能量谱,另一方面产生了X 射线污染,在深度剂量曲线后部形成一条长长的低剂量韧致辐射“拖尾”;2、在电子线进入水模体的入射表面,定义表面平均能量0E ,数值小于偏转磁铁出来的电子线能量值;3、与高能X 线不同,电子线能量在水模体中随着深度增加越来越小;4、一般电子线的深度剂量曲线测量采用与高能X 线一致的标准源皮距概念,而事实上,电子线并非是由加速器治疗头中的一个实在的放射源辐射产生的,而是加速管中的一窄束电子线,经偏转磁铁穿过出射窗、散射箔、监测电离室及限束系统等扩展成一宽束电子线,似乎从某一位置(或点)发射出来,此位置(或点)称为电子线的“虚源”位置,依赖于电子线能量和电子线限光筒大小。
《放射物理学》教学大纲总学时:40 学分:2.5 教学对象:生物医学工程专业一、教学目的和要求肿瘤放射物理学是医学物理学的一个重要分支,是放射肿瘤学的重要基础,它将放射物理的基本概念和原理应用于肿瘤的放射治疗。
主要介绍与临床放射治疗密切相关的放射物理基础知识和基本理论、常用放疗设备、临床剂量学、放射治疗新技术(CRT、IMRT、立体定向等)的物理学原理及技术,探讨提高肿瘤剂量、降低正常组织所受剂量的物理方法和技术手段。
学习这部分内容主要以常用治疗机的特点、外照射剂量学、电子线剂量学、治疗计划设计原理为重点,以临床应用为目的,全面理解、融会贯通、牢固掌握。
二、先修课程核物理导论、核辐射探测三、教学内容和学时分配(一)绪论(1学时)1、教学内容肿瘤放射物理学在肿瘤放疗中的地位和作用;肿瘤放射物理学的研究内容和进展;医学物理工作者可能从事的工作性质;医学物理师需要的知识背景和技能。
2、教学要求熟练掌握:肿瘤放射物理学的研究内容和进展。
掌握:肿瘤放射物理学在肿瘤放疗中的地位和作用。
了解:医学物理工作者可能从事的工作性质;医学物理师需要的知识背景和技能。
(二) 电离辐射与物质的相互作用(2学时)1、教学内容带电粒子与物质的相互作用;X(γ)射线与物质的相互作用。
2、教学要求熟练掌握:电离辐射,碰撞阻止本领,辐射阻止本领;光子与物质相互作用的各种系数,各种相互作用的相对重要性;比较人体骨组织和软组织对临床常用X(γ)射线能量吸收的差别。
掌握:带电粒子与物质相互作用的主要方式;X(γ)射线与物质的相互作用的主要形式,各种相互作用的相对重要性;了解:质量碰撞阻止本领与重带电粒子的能量、电荷数、靶物质的电子密度之间的关系,与电子的能量、物质的电子密度之间的关系;质量辐射阻止本领与带电粒子质量、能量、单位质量物质中的原子数、物质原子的原子序数之间的关系。
原子的光电效应截面、康普顿效应截面、电子对效应截面与光子能量,原子序数之间的关系。