第2章初等数学方法建模共69页文档
- 格式:ppt
- 大小:1.49 MB
- 文档页数:69
第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。
需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。
进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。
§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。
那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。
当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。
首先给出一种自然的想法,也就是通常所执行的方法。
即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。
当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。
这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。
但是这个分配方案是存在弊病的,它有明显的不合理性。
例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。
第二章 初等数学方法建模现实世界中有很多问题,它的机理较简单,用静态,线性或逻辑的方法即可建立模型,使用初等的数学方法,即可求解,我们称之为初等数学模型。
本章主要介绍有关自然数,比例关系,状态转移,及量刚分析等建模例子,这些问题的巧妙的分析处理方法,可使读者达到举一反三,开拓思路,提高分析, 解决实际问题的能力。
第一节 有关自然数的几个模型1.1鸽笼原理鸽笼原理又称为抽屉原理,把N 个苹果放入)(N n n < 个抽屉里,则必有一个抽屉中至少有2个苹果。
问题1:如果有N 个人,其中每个人至多认识这群人中的)(N n n <个人(不包括自己),则至少有两个人所认识的人数相等。
分析:我们按认识人的个数,将N 个人分为n ,2,1,0 类,其中)0(n k k ≤≤类,表示认识k 个人,这样形成 1+n 个“鸽笼”。
若 1-<N n ,则N 个人分成不超过1-N 类,必有两人属于一类,也即有两个人所认识的人数相等;若1-=N n ,此时注意到0类和N 类必有一个为空集,所以不空的“鸽笼”至多为1-N 个,也有结论成立问题2:在一个边长为1的正三角形内最多能找到几个点,而使这些点彼此间的距离大于5.0.分析:边长为1的正三角形 ABC ∆,分别以C B A ,,为中心,5.0为半径圆弧,将三角形分为四个部分(如图1-1 ),则四部分中任一部分内两点距离都小于5.0 ,由鸽笼原理知道,在三角形内最多能找四个点,使彼此间距离大于5.0 ,且确实可找到如C B A ,,及三角形中心四个点。
图1—1问题3:能否在88⨯的方格表ABCD 的各个空格中,分别填写3,2,1这三个数中的任一个,使得每行,每列及对角线BD AC ,的各个数的和都不相同?为什么?分析:若从考虑填法的种类入手,情况太复杂;这里我们注意到,方格表中行,列及对角线的总数为18个;而用3,2,1填入表格,每行,列及对角线都是8个数,8个数的和最小为8,最大为24,共有171824=+-种;利用鸽笼原理,18个“鸽”放入17个“鸽笼”,必有两个在一个“鸽笼”,也即必有两个和相同。
第二章 初等数学模型本章重点是:雨中行走问题、动物的身长与体重、实物交换、代表名额的分配与森林救火模型的建立过程和所使用的方法复习要求1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵。
2.进一步理解数学模型的作用与特点。
类比法是建立数学模型的一个常见而有力的方法.作法是把问题归结或转化为我们熟知的模型上去给以类似的解决:这个问题与我们熟悉的什么问题类似?如果有类似的问题曾被解决过,我们的建模工作便可省去许多麻烦.实际上,许多来自不同领域的问题在数学模型上看确实具有相类似的甚至相同的结构.利用几何图示法建模.有不少实际问题的解决只要从几何上给予解释和说明就足以了,这时,我们只需建立其图模型即可,我们称这种建模方法为图示法.这种方法既简单又直观,且其应用面很宽.1.雨中行走问题雨中行走问题的结论是:(1)如果雨是迎着你前进的方向落下,即20πθ≤≤,那么全身被淋的雨水总量为⎪⎭⎫ ⎝⎛++=++=+=h v hr dr pwD v r h dr v pwD C C C θθθθcos sin )]cos (sin [21 这时的最优行走策略是以尽可能大的速度向前跑.(2)如果雨是从你的背后落下,即πθπ≤≤2. 令απθ+=2,则20πα<<. 那么全身被淋的雨水总量为 ⎪⎭⎫ ⎝⎛+-=h v rh rd Dpw v C ααθsin cos ),( 这时你应该控制在雨中行走的速度,使得它恰好等于雨滴下落速度的水平分量.从建模结果看,“为了少些淋雨,应该快跑”,这个一般的“常识”被基本上否定,那么根据何在?由此提出了建模目的:减少雨淋程度. 而为减少雨淋程度,便自然提出“被淋在身上的雨水量”这个目标函数C ,而C =C (v ),于是问题便归结为确定速度v ,使C (v )最小——本模型的关键建模步骤便得以确定.有了确定的建模目的,自然引出与C (v )有关的量的设定与简化假设. 一般地,开始时不要面面俱到地把所有相关量都涉及到,往往只需考虑几个主要量,甚至暂时舍弃某个主要量,以求尽快建立模型.尤其对初学者,这样做有助于建模信心的增强.自不必说建模过程往往如此,更有模型尚有的进一步修改和推广的主要步骤.而一旦建立起简单模型后,其进一步的改善也相对容易多了.这就是本模型只所以建立了两个模型的原因,是符合人们的认识规律的.另外,为了检验所建模型的合理性,建模后用较为符合实际的几组数据对模型加以检验是重要的,它既是对所建模型是否基本符合实际的检测,也是进一步完善模型的需要.例1 在某海滨城市附近海面有一台风.据监测,当前台风中心位于城市O (如图2-1)的东偏南)102(cos =θθ方向300km 的海面P 处,并以20km /h 的速度向西偏北︒45方向移动.台风侵袭的范围为圆形区域,当前半径为60km ,并以10km /h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?问题分析与假设1. 根据问题解决目的:问几小时后该城市开始受到台风的侵 袭,以及台风侵袭的范围为圆形的假设,只要求出以台风中心p(动点)为圆心的圆的半径r ,这个圆的半径划过的区域自然是侵袭范围.2. 台风中心是动的,移动方向为向西偏北︒45,速度为20km /h ,而当前半径为60km ,并以10km /h 的速度不断增大,即半径的增加速度为t t r 1060)(+=,t 为时间.于是只要6010+≤t p o ,便是城 图2-1市O 受到侵袭的开始.模型I 如图2-2建立坐标系:以O 为原点,正东方向为x 轴正向.在时刻t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(222t r y y x x ≤-+-其中r (t )=10t +60. 图2-2若在t 时刻城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即 ,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 整理可得 ,0288362≤+-t t由此解得 12≤t ≤24,即12小时后该城市开始受到台风的侵袭.模型II 设在时刻t (h )台风中心为P (如图2-2),此时台风侵袭的圆形半径为10t +60,因此,若在时刻t 城市O 受到台风侵袭,应有6010+≤t P O由余弦定理知.cos 2222P OP PO P P PO P P P O ∠⋅⋅-+=注意到 t P P OP 20,300==,542210212210245sin sin 45cos cos )45cos(cos 2=⨯-+⨯=︒⋅+︒⋅=︒-=∠θθθP OP故 .30096002054300202300)20(222222+-=⨯⨯⨯-+=t t t t P O因此 .)6010(3009600202222+≤+-t t t即 0288362≤+-t t 解得 .2412≤≤t2.动物的身长与体重问题在生猪收购站或屠宰场工作的人们,有时希望由生猪的身长估计它的体重.试建立数学模型讨论四足动物的躯干的长度(不含头、尾)与它的体重的关系,(1)问题分析众所周知,不同种类的动物,其生理构造不尽相同,如果对此问题陷入对生物学复杂生理结构的研究,就很难得到我们所要求的具有应用价值的数学模型并导致问题的复杂化.因此,我们舍弃具体动物的生理结构讨论,仅借助力学的某些已知结果,采用类比方法建立四足动物的身长和体重关系的数学模型.类比法是依据两个对象的已知的相似性,把其中一个对象的已知的特殊性质迁移到另一对象上去,从而获得另一个对象的性质的一种方法. 它是一种寻求解题思路、猜测问题答案或结论的发现的方法,而不是一种论证的方法,它是建立数学模型的一种常见的、重要的方法.类比法的作用是启迪思维,帮助我们寻求解题的思路.,而它对建模者的要求是具有广博的知识,只有这样才能将你所研究的问题与某些已知的问题、某些已知的模型建立起联系.(2)模型假设与求解我们知道对于生猪,其体重越大、躯干越长,其脊椎下陷越大,这与弹性梁类似.为了简化问题,我们把动物的躯干看作圆柱体,设其长度为l 、直径为d 、断面面积为S (如图2—3). 将这种圆柱体的躯干类比作一根支撑在四肢上的弹性梁,这样就可以借助力学的某些结果研究动物的身长与体重的关系.设动物在自身体重(记为f )的作用下,躯干的最大下垂度为b ,即弹性梁的最大弯曲. 根据对弹性梁的研究,可以知道23Sdfl b ∝. 又由于∝f Sl (体积),于是23d l l b ∝. b 是动物躯干的绝对下垂度,b /l 是动物躯干的相对下垂度.b /l 太大,四肢将无法支撑动物的躯干,b /l 图2—3太小,四肢的材料和尺寸超过了支撑躯干的需要,无疑是一种浪费,因此,从生物学角度可以假定,经过长期进化,对于每一种动物而言,b /l 已经达到其最适宜的数值,换句话说,b /l 应视为与动物尺寸无关的常数,而只与动物的种类有关.因此23d l ∝,又由于2,d S Sl f ∝∝,故44,kl f l f =∝从而.即四足动物的体重与躯干长度的四次方成正比.这样,对于某种四足动物(如:生猪),根据统计数据确定上述比例系数k 后,就可以依据上述模型,由躯干的长度估计出动物的体重了.(3)模型评注在上述模型中,将动物的躯干类比作弹性梁是一个大胆的假设,其假设的合理性,模型的可信度应该用实际数据进行仔细检验.但这种思考问题、建立数学模型的方法是值得借鉴的.在上述问题中,如果不熟悉弹性梁、弹性力学的有关知识,就不可能把动物躯干类比作弹性梁,就不可能想到将动物躯干长度和体重的关系这样一个看来无从下手的问题,转化为已经有明确研究成果的弹性梁在自重作用下的挠曲问题.例2 在中学数学中,通过类比推测或联想而发现新命题、新解法并不少见.诸如,由分数的性质类似地推测分式的性质;由直线与圆的位置关系推测圆与圆的位置关系;由一次函数、一次方程、一次不等式的某些性质和解法,推测二次函数、二次方程、二次不等式的某些类似的性质与解法等.情形1 已知:ABC ∆中,︒=∠90C ,AC =BC =1,BD 是AC边上的中线,E 点在AB 边上,且BD ED ⊥.求DEA ∆的面积.如图2-4,引BA CF ⊥,易证24/1=∆DEA S类比 若去掉情形1中直角这一特性,是否会产生类似命题呢?由此想到 图2-4情形2 已知ABC ∆中(图2-5),A B C ∠=∠=∠44,BD 是AC 边上的中线,E 点在AB 上,且C AED ∠=∠,1=∆ABC S ,求AED S ∆.类似情形1的证法,易证得12/1=∆AED S ;当2/1=∆ABC S 时,24/1=∆AED S ,与情形1结果相同. 图2-5类比 若保留情形1中的直角条件,去掉等腰三角形这一特殊性,可以类似地得到.情形3 已知ABC ∆中︒=∠90C ,AC =2BC =2,BD 是AC 边上中线,AB CF ⊥交BD 于H ,求CBH S ∆.同样可证6/1=∆CBH S .这里,若在情形3中令AC =2BC =1,也有24/1=∆ADE S ,与情形1结论相同;情形3是由情形1类比而来,最自然的想法是求ADE S ∆,为了增加变换方式获得新命题,本情形求的是CBH S ∆.3.实物交换问题实物交换是人类发展史上一种重要的交换方式,在当今的社会生活中也是屡见不鲜的,这种实物交换问题可以出现在个人之间或国家之间的各种类型的贸易市场上. 例如:甲乙二人共进午餐,甲带了很多面包,乙有香肠若干,二人希望相互交换一部分,达到双方满意的结果.显然,交换的结果取决于双方对两种物品的偏爱程度和需要程度,而对于偏爱程度很难给出确切的定量关系.因此可以采用图示的方法建立实物交换的数学模型,确定实物交换的最佳交换方案.下面依据等价交换准则确定最佳交换方案. 等价交换准则是指两种物品用同一种货币衡量其价值,进行等价交换.不失一般性,设交换前甲占有数量为x 0的物品X ,乙占有数量为y 0的物品Y ;交换后甲所占有的物品X ,Y 的数量分别记为x ,y ;单位数量的物品X ,Y 的价值(价格)设为p 1,p 2.由等价交换准则,x ,y 满足方程,0,0,)(00201y y x x y p x x p ≤≤≤≤=-容易证明,在此直线上的点进行交换均满足等价交换准则。