半导体物理课件-第八章-1
- 格式:ppt
- 大小:1.37 MB
- 文档页数:70
第8章 半导体表面与MIS 结构许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。
因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。
§8.1 半导体表面与表面态在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。
达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。
实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。
因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。
一、理想一维晶体表面模型及其解达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。
图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。
在此半无限周期场中,电子波函数满足的薛定谔方程为)0(20202≤=+-x E V dx d m φφφη (8-1))0()(2202≥=+-x E x V dx d m φφφη (8-2)式中V (x)为周期场势能函数,满足V (x +a )=V(x )。
对能量E <V 0的电子,求解方程(8-1)得出这些电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η-=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4)当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。
第八章半导体表面表面性质对半导体中的各种物理过程有着重要影响,因此对许多半导体器件的性能起着重要作用,特别是对薄层结构器件的性能甚至起着决定性的作用。
§8-1 表面态与表面空间电荷区1. 表面态:在半导体表面,晶体结构的周期性遭破坏,在禁带中形成局域状态的能级分布,这些状态称为表面态;当半导体表面与其周围媒质接触时,会吸附和沾污其他杂质,也可形成表面态;另外,表面上的化学反应形成氧化层等也是表面态的形成原因。
2.施主型表面态、受主型表面态和复合中心型表面态:当表面态起施主作用时称施主型表面态,起受主作用时称受主型表面态,起复合中心作用时则称复合中心型表面态。
3.表面电荷和表面空间电荷区:半导体表面具有的施主型表面态,可能是中性的,也可能向导带提供电子后具有正电性,此时半导体表面带正电荷。
反之,如果表面态为受主型时,半导体表面则可能带负电荷。
这些电荷称表面电荷,一般用Q ss表示。
表面电荷Q ss与表面态密度N s及表面态能级E s上的电子分布函数有关。
在热平衡条件下,半导体整体是电中性的。
表面电荷Q ss的存在使表面附近形成电场,从而导致表面附近的可动电荷重新分布,形成空间电荷Q sp,其数量与表面电荷相等,但带电符号相反,即有Q sp=-Q ss,以保持电中性条件。
表面空间电荷存在的区域称表面空间电荷区。
在半导体中,由于自由载流子的密度较小(和金属比),因此空间电荷区的宽度一般较大。
如:对表面能级密度为1011cm-2﹑载流子密度为1015cm-3的Ge,其空间电荷区的宽度约为10-4cm。
而对本征Ge,n i约为1013cm-3,其空间电荷区的宽度可达0.1cm。
半导体表面空间电荷区的存在,将使表面层的能带发生弯曲。
下面以具有受主型表面态能级E as的n型半导体为例,分析表面空间电荷区的形成。
如图8.1a所示,当电子占据受主型表面能级时,半导体表面产生负表面电荷,而在表面附近由于缺少电子而产生正表面空间电荷,从而在空间电荷区V表产生指向半导体表面的电场,引起表面区附近的能带向上弯曲。