实验七 SIMULINK仿真实验
- 格式:doc
- 大小:114.50 KB
- 文档页数:5
实验七SIMULINK 仿真集成环境一、实验目的熟悉SIMULINK 的模型窗口、熟练掌握SIMULINK 模型的创建,熟练掌握常用模块的操作及其连接。
二、实验内容(1) SIMULINK 模型的创建和运行。
(2) 一阶系统仿真。
三、实验步骤1.Simulink 模型的创建和运行(1) 创建模型。
①在MATLAB 的命令窗口中输入simulink 语句,或者单击MATLAB 工具条上的SIMULINK 图标,SIMULINK 模块库浏览器。
②在MATLAB 菜单或库浏览器菜单中选择File|New|Model,或者单击库浏览器的图标,即可新建一个“untitle”的空白模型窗口。
③打开“Sources”模块库,选择“Sine Wave”模块,将其拖到模型窗口,再重复一次;打开“Math Operations”模块库选取“Product”模块;打开“Sinks”模块库选取“Scope”模块。
(2) 设置模块参数。
①修改模块注释。
单击模块的注释处,出现虚线的编辑框,在编辑框中修改注释。
②双击下边“Sine Wave”模块,弹出参数对话框,将“Frequency”设置为100;双击“Scope”模块,弹出示波器窗口,然后单击示波器图标,弹出参数对话框,修改示波器的通道数“Number of axes”为3。
③如图A4 所示,用信号线连接模块。
(3) 启动仿真①单击工具栏上的图标或者选择Simulation|Start 菜单项,启动仿真;然后双击“Scope”模块弹出示波器窗口,可以看到波形图。
②修改仿真步长。
在模型窗口的Simulation 菜单下选择“Configuration Parameters”命令,把“Max step size”设置为0.01;启动仿真,观察波形是不是比原来光滑。
③再次修改“Max step size”为0.001;设置仿真终止时间为10s;启动仿真,单击示波器工具栏中的按钮,可以自动调整显示范围,可以看到波形的起点不是零点,这是因为步长改小后,数据量增大,超出了示波器的缓冲。
Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。
将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)=0.r'(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0:0.1:10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。
实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。
2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。
3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。
实验七 基于Simulink 的电力电子系统仿真实验目的:• 熟悉Simulink 的工作环境;• 掌握Simulink 电力系统工具箱的使用;•掌握在Simulink 的工作环境中建立电力电子系统的仿真模型。
实验内容降压斩波(Buck)电路是最基本的DC-DC 变换电路之一。
本实验以Buck 电路为例,介绍如何对电力电子电路进行Simulink 仿真。
如图所示为Buck 电路原理图及其工作模式。
元件和仿真参数设置如下:V E 300=,Ω=20R ,H e L 43-=,F C μ470=,开关频率为20kHz ,开关信号占空比D=50%。
oU iU +-oU U +-T 导通oU U +-T 关断降压斩波电路(Buck)原理图Buck 电路原理图及其工作模式要求:1 在Simulink 中建立Buck 电路模型,并进行仿真,同时观察开关脉冲、电感的电压和电流、二极管的电压和电流、电容的电流和负载电压等信号;2 对占空比D 为25%和70%的条件下分别进行仿真,分析比较仿真结果;3 调换Buck 电路中器件的位置,实现升压斩波(Boost)电路的仿真。
实验过程仿真波形1开关信号占空比为50% 2开关信号占空比为25%3开关信号占空比为70%调换元件位置,实现升压斩波仿真R LCoU iU +-+-TD实验结论:经仿真分析可得对于降压斩波电路(buck )负载电压与开关信号占空比满足;对于升压斩波电路(boost)负载电压与开关频率的关系满足。
这次实验,我更加熟悉了Simulink的工作环境,深刻了解了Mtlab仿真的强大和实用性,也明白了一些使用的技巧,同时掌握了在Simulink的工作环境中建立电力电子系统的仿真模型.通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。
simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。
本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。
二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。
通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。
三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。
2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。
3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。
4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。
四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。
通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。
仿真结果显示,系统经过调整参数后,得到了较好的控制效果。
输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。
通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。
五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。
了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。
这对于我们今后的工程设计和研究具有重要的意义。
六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。
2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。
SimuLink 仿真二阶微分方程的求解专业:信息****** 1031020118****** 1031020124****** 1031020217指导老师:***日期:2012—12—25题目:二阶微分方程的求解一、实验目的1、熟悉Simulink 基本用法。
2、了解simulink 的一些模块的意义。
3、掌握模块的选取、复制、删除操作。
4、学会simulink 模块的连接以及模块参数的设置。
二、实验仪器1、计算机2、MATLAB 软件环境三、实验内容1、求解二阶微分方程x(t)0.4x(t)0.9x(t)0.7u(t)++=的方程解,其中u(t)是脉冲信号。
需要使用Simulink 求解x(t)。
2 、求解二阶微分方程x(t)0.2x(t)0.4x(t)0.2u(t)++=,其中u(t)是脉冲信号。
需要使用Simulink 求解x(t)。
3、求解二阶微分方程x(t)0.5x(t)0.8x(t)0.9u(t)++=的解x(t);其中初值为 ,并且 是一个余弦信号。
四、实验过程1、求解二阶微分方程x(t)0.4x(t)0.9x(t)0.7u(t)++=的方程解,其中u(t)是脉冲信号。
需要使用Simulink 求解x(t)。
1.1)用matlab 求解此二阶微分方程:在matlab 中输入程序: syms t y;u=sin(t); uu=0.7*u;y=dsolve(['D2y+0.4*Dy+0.9*y=',char(uu)]);程序运行结果:y =exp(-1/5*t)*sin(1/10*86^(1/2)*t)*C2+exp(-1/5*t)*cos(1/10*86^(1/2)*t)*C1-7/17*sin(t)-28/17*cos(t) 1.2)利用simulink 求解此二阶微分方程x(0)1x(0)3=⎧⎨=⎩u(t)cos(t)=1.21使用simulink创建微分方程:创建m文件:function Ts=yuejiewqqt=0:.1:20;y=heaviside(t);Ts=[t',y'];用Simulink做所得模块:1.22设置模块属性:设置模块pulse的模块属性:设置模块add的模块属性:1.23 运行simuliksimulink结果运行图:2、求解二阶微分方程x(t)0.2x(t)0.4x(t)0.2u(t)++=,其中u(t)是脉冲信号。
实验七通信系统的SIMULINK仿真实验七通信系统的SIMULINK仿真一、实验目的1、了解和掌握如何用SIMULINK 软件仿真一个通信系统;2、通过仿真加深对AM、DSB调制、解调方式的理解;3、掌握滤波器、信号模块的参数设置。
二、实验设备MATLAB软件、计算机三、实验原理1、普通调幅调制系统原理图m(t)+×BPFsAM(t)A0cos?ct2、普通调幅解调系统原理图(1)相干解调法z(t)xsAM(t)BPFLPFso(t)cos?ct(2)非相干检测法sAM(t)BPFLEDLPFso(t)3、DSB调制与解调系统原理图 (1) 调制系统原理图+×m(t) ―― BPF s ASDSB(t)A0cos?ct(2)相干解调法(t)BPFz(t)xLPFso(t)cos?ctSDSB(t)四、实验内容1、根据AM调制与解调原理,用MATLAB中的SIMULINK软件建立一个仿真电路,如下图所示:AM仿真模块图AM仿真模型是由3个信号发生器(一个调制信号2个载波信号)两个相乘器;一个低通滤波器和几个示波器组成。
整个模型分别由两个部分组成调制部分和解调部分。
解调方式采用同步检波,即先把调幅波信号和相干载波信号相乘,然后通过低通滤波器滤出解调信号波形。
可设图中sinewave2为调制信号,频率为30Hz,sinewave为载波信号,频率为200Hz。
2、根据DSB调制与解调原理,用MATLAB中的SIMULINK软件建立一个仿真电路,如下图所示:DSB仿真模块图调制信号的频率为50Hz,载波的频率为400Hz。
解调部分仍采用同步检波,低通滤波器截止频率为60Hz,阶数为4。
3、根据上述原理设计一个AM和DSB系统,进行仿真,观察并记录调制信号、载波信号、解调信号的波形。
感谢您的阅读,祝您生活愉快。
simulink的电力系统仿真实验原理电力系统仿真实验原理:电力系统仿真实验是利用Simulink软件对电力系统进行建模、仿真和分析的过程。
该实验主要包括如下几个步骤:1. 建立电力系统模型:在Simulink环境中,根据实际电力系统的结构和特性,利用各种电力元件如发电机、变压器、传输线路、负荷等构建电力系统模型。
可以根据具体需要设置不同的电路参数和拓扑结构,以便对各种电力系统问题进行仿真分析。
2. 设定仿真参数:根据实验要求,设定仿真的时域范围、仿真步长以及模型的输入和输出要求。
例如,可以设定仿真时间为几百毫秒或几秒钟,仿真步长为毫秒级别,以获取系统各个节点的电压、电流等参数。
3. 添加模型控制器:根据需要,可以在模型中添加各种控制器如PID控制器、调速器等,以实现对电力系统的调节和控制。
控制器的参数可以根据实验要求进行设定和调整,以达到理想的控制效果。
4. 进行仿真实验:单击Simulink软件中的"运行"按钮,系统便开始进行仿真计算。
Simulink根据所设定的仿真参数和模型的输入,采用数值计算方法对电力系统进行仿真计算,并输出各个节点的电压、电流等参数。
仿真的过程也可以通过实时仿真功能进行可视化展示。
5. 分析仿真结果:根据仿真结果,可以对电力系统的运行情况进行分析和评估。
例如,可以分析系统的稳定性、安全性、损耗情况等。
如果仿真结果与实际情况存在差异,可以进一步调整电力系统模型和仿真参数,以提高仿真的准确性。
通过Simulink软件的电力系统仿真实验,可以有效地分析和解决实际电力系统中的问题。
同时,仿真实验也为电力系统的运行和优化提供了可靠的依据,减少了实验成本和风险。
simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。
二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。
在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。
2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。
用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。
然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。
最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。
3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。
首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。
然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。
最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。
4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。
例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。
模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。
二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。
通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。
三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。
2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。
(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。
3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。
4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。
四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。
五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。
模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。
《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。
(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。
2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。
后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。
2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。
2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。
解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
Simulink系统仿真实验作业第一次作业1.用函数语句对图1所示系统1)求其闭环传递函数2)判断系统是否稳定3)画出其单位阶跃响应曲线,并在曲线上得到超调量、稳定时间、稳态值等参数。
图1解:1)求其闭环传递函数程序如下:clc;clear all;close all;%第一步,把所有用到环节的分子分母罗列表示出来num1=[1];den1=[1];num2=[4];den2=[1];num3=[1];den3=[1 0];num4=[1];den4=[1 1];num5=[2];den5=[1 8];num6=[0.2];den6=[1];num7=[2];den7=[1];num8=[1];den8=[2 1];%第二步,将所有前向通道表示出来s1=tf(num1,den1);s2=tf(num2,den2);s3=tf(num3,den3);s4=tf(num4,den4);s5=tf(num5,den5);s6=tf(num6,den6);s7=tf(num7,den7);s8=tf(num8,den8);s=append(s1,s2,s3,s4,s5,s6,s7,s8);%第三步,对Q式进行连接Q=[2 1 -7;3 2 -8;4 3 6;5 4 0;6 5 0;7 5 0;8 4 0]; %Q式连接方法ss=connect(s,Q,1,5);%第四步,显示闭环传递函数ss运行结果:Transfer function:8 s + 4--------------------------------------s^4 + 9.5 s^3 + 12.1 s^2 + 20.3 s + 122)判断系统是否稳定程序如下:clear all;clcnum=[1 1 2 2 3 5];den=1;%第一步,求系统特征方程s=tf(num,den);%第二步,求系统特征方程的根si=roots(num);%第三步,求出特征根矩阵的大小[m n]=size(roots(num));%第四步,求特征根虚部gen=imag(si)l=0;%第五步,判断是否有虚部大于0;否则g=0for i=1:m*nif(gen(i)>0)l=l+1;endendif(l>0)disp('系统不稳定')end运行结果:gen =1.1656-1.16561.3375-1.3375系统不稳定3)画出其单位阶跃响应曲线,并在曲线上得到超调量、稳定时间、稳态值等参数。
simulink实验报告Simulink实验报告引言:Simulink是一种功能强大的图形化建模和仿真环境,广泛应用于控制系统设计、信号处理和通信系统等领域。
本实验报告将介绍Simulink的基本概念和使用方法,并通过一个具体的示例来展示Simulink的应用。
一、Simulink简介Simulink是MathWorks公司开发的一款基于模块化的仿真工具,它可以与MATLAB紧密集成,为系统建模和仿真提供了强大的支持。
相比于传统的编程方法,Simulink使用图形化界面,使得系统建模更加直观和易于理解。
Simulink 提供了丰富的模块库,用户可以通过拖拽和连接不同的模块来构建系统模型,并进行仿真和分析。
二、Simulink的基本概念1. 模块库:Simulink提供了各种各样的模块库,包括数学运算、信号处理、控制系统等。
用户可以从库中选择所需的模块,将其拖拽到工作区,并进行连接和参数配置。
2. 模块:模块是Simulink中的基本单元,它代表了系统中的一个功能模块或组件。
每个模块都有输入和输出端口,用户可以通过连接不同的模块来构建系统模型。
3. 信号:信号是模块之间传递的数据,可以是连续的或离散的。
Simulink支持多种信号类型,如模拟信号、数字信号、布尔信号等。
4. 仿真:Simulink提供了强大的仿真功能,用户可以通过设置仿真参数和模型参数,对系统进行仿真和分析。
仿真结果可以以图表、曲线等形式展示,帮助用户理解系统的行为和性能。
三、Simulink的应用示例:PID控制器设计以PID控制器设计为例,演示Simulink的应用过程。
1. 建立模型首先,我们需要建立一个PID控制器的模型。
在Simulink的模块库中,我们可以找到PID控制器的模块,并将其拖拽到工作区。
然后,我们需要连接输入信号、输出信号和反馈信号,并设置PID控制器的参数。
2. 设置仿真参数在进行仿真之前,我们需要设置仿真参数。
Simulink仿真实验报告1. 引言本报告旨在对Simulink仿真实验进行全面、详细、完整且深入地探讨。
Simulink 是一种基于模型的设计和仿真环境,广泛应用于工程领域。
本实验通过使用Simulink进行系统建模和仿真,以验证系统的性能和可行性。
2. 实验目的本实验的主要目的是熟悉Simulink的基本操作和功能,并通过实际案例来了解系统建模和仿真的过程。
具体目标如下: 1. 掌握Simulink的界面和基本操作; 2. 学习如何建立系统模型; 3. 了解如何进行仿真和分析。
3. 实验步骤3.1 Simulink介绍Simulink是一种图形化的建模和仿真环境,可以用于设计和分析各种系统。
它提供了丰富的工具箱和模块,使得系统建模变得更加简单和直观。
3.2 Simulink界面Simulink的界面由多个窗口组成,包括模型窗口、库浏览器、信号浏览器等。
模型窗口是主要的工作区域,用于建立和编辑系统模型。
3.3 系统建模在Simulink中,系统模型由各种模块和连接线组成。
模块可以是数学运算、信号源、控制器等。
通过拖拽和连接这些模块,可以建立系统的结构。
3.4 仿真设置在进行仿真前,需要设置仿真参数,如仿真时间、步长等。
这些参数会影响仿真的准确性和效率。
3.5 仿真分析仿真完成后,可以对系统的性能进行分析。
Simulink提供了丰富的工具和图表,可以用于绘制系统的输出响应、频谱分析等。
4. 实验案例本实验选取了一个简单的控制系统作为案例,用于说明Simulink的应用过程。
4.1 系统描述控制系统包括一个输入信号、一个控制器和一个输出信号。
输入信号经过控制器后,通过输出信号进行输出。
4.2 模型建立在Simulink的模型窗口中,通过拖拽和连接模块,可以建立控制系统的模型。
首先添加输入信号模块,然后添加控制器模块,最后添加输出信号模块。
4.3 仿真设置设置仿真参数,如仿真时间为10秒,步长为0.01秒。
simulink仿真实验报告Simulink 仿真实验报告引言:Simulink 是一种常用的建模和仿真工具,它可以帮助工程师们在设计和开发过程中进行系统级建模和仿真。
本文将通过一个实际的仿真实验来展示 Simulink 的应用。
一、实验背景在现代工程领域中,系统的建模和仿真是非常重要的一步。
通过仿真实验,我们可以在实际制造之前对系统进行测试和优化,节省了时间和成本。
本实验的目标是使用 Simulink 对一个电机驱动系统进行建模和仿真,以验证其性能和稳定性。
二、实验步骤1. 系统建模在 Simulink 中,我们首先需要将电机驱动系统进行建模。
我们可以使用Simulink 提供的各种组件来构建系统模型,例如传感器、控制器、电机等。
在本实验中,我们将使用 PID 控制器来控制电机的转速。
2. 参数设置在建模过程中,我们需要设置各个组件的参数。
例如,我们需要设置 PID 控制器的比例、积分和微分系数,以及电机的转动惯量和阻尼系数等。
这些参数的设置将直接影响系统的性能。
3. 仿真运行在模型建立和参数设置完成后,我们可以进行仿真运行。
通过设置仿真时间和输入信号,我们可以观察系统在不同条件下的响应情况。
例如,我们可以通过改变输入信号的频率和幅度来测试系统的稳定性和鲁棒性。
4. 结果分析仿真运行完成后,我们可以分析仿真结果。
通过观察输出信号的波形和频谱,我们可以评估系统的性能和稳定性。
例如,我们可以计算系统的响应时间、超调量和稳态误差等指标,以评估系统的控制效果。
三、实验结果在本实验中,我们成功建立了一个电机驱动系统的 Simulink 模型,并进行了仿真运行。
通过观察仿真结果,我们发现系统在不同输入信号条件下的响应情况。
在一些情况下,系统的响应时间较短,稳态误差较小,表现出良好的控制效果。
然而,在一些极端情况下,系统可能出现超调或不稳定的现象,需要进一步优化参数和控制策略。
四、实验总结通过本次仿真实验,我们深入了解了 Simulink 的应用和优势。
实验七数字滤波器结构及Simulink 仿真实现一、实验目的(1)熟悉数字滤波器的基本结构和数字滤波器的计算机仿真方法;(2)熟悉利用Matlab 实现数字滤波器几种结构间的相互转换;(3)熟悉Simulink 模块的基本操作和仿真模型的建立。
二、实验内容本实验所用的某一实际心电信号的采用序列:(){4,2,0,4,6,4,2,4,6,6,4,4,6,6,2,6,12,8,0,16,38,60,84,90,66,32,4,2,4,8,12,12,10,6,6,6,4,0,0,0,0,0,2,4,0,0,0,2,2,0,0,2,2,2,2,0}x n =--------------------------------该信号序列共56点。
1. 给定一个6阶数字低通滤波器系统函数41234561234567.2910(161520156)()1 3.1836 4.6223 3.7795 1.81360.480.0544z z z z z z H z z z z z z z -------------⨯++++++=-+-+-+ 将其转换为(二阶节)级联型结构和并联型结构,给出对应的系统函数表达形式。
clear all;x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];b=[1,6,15,20,15,6,1]*7.09*10^-4;a=[1,-3.1836,4.6223,-3.7795,1.8136,-0.48,0.0544];Y=filter(b,a,x);N=56;n=0:N-1;subplot(2,1,1);plot(n,x);subplot(2,1,2);plot(n,Y);2.建立上述滤波器的(二阶节)级联型结构的Simulink仿真模型,观察该仿真模型对实际心电信号的滤波效果,比较原信号与滤波后信号的波形。
simulink仿真实验报告Simulink是一种基于MATLAB的图形化建模和仿真环境,用于建立和仿真各种复杂系统。
通过在Simulink中设计和配置系统的模型,可以进行系统的仿真并分析其性能。
Simulink在工程领域有着广泛的应用,特别是在控制系统设计、信号处理和通信系统等方面。
在进行Simulink仿真实验时,需要进行实验设计、建立系统模型、配置参数、运行仿真以及分析结果等步骤。
以下为一份Simulink仿真实验报告中可能包含的相关参考内容。
1. 实验目的与背景:简要介绍所要仿真的系统、实验目的及应用背景。
2. 实验设计:详细描述实验设计的步骤和方法,包括建立系统模型的原理、假设和建模方法。
3. 系统建模:详细说明建立系统模型的过程,可以包括系统的输入输出定义、关键参数的选择、系统方程的建立等内容。
4. 系统参数配置:描述对系统模型进行参数配置的方法和过程,包括各个参数的取值、单位和意义等。
5. 仿真运行:详细描述仿真运行的设置和过程,包括仿真时间设置、仿真模式选择、初始化条件等。
6. 仿真结果分析:对仿真结果进行详细分析和解释,可以包括输出曲线、系统响应特性、系统性能指标的计算等。
7. 结果讨论与分析:对实验结果进行讨论和分析,比较不同参数配置的结果差异,提出改进和优化的建议。
8. 实验总结:总结实验过程中的经验和教训,总结实验结果和结论。
9. 参考文献:列出在实验报告中引用的相关参考文献,包括书籍、期刊论文、技术报告等。
总之,Simulink仿真实验报告应该包含实验目的与背景、实验设计、系统建模、系统参数配置、仿真运行、仿真结果分析、结果讨论与分析、实验总结以及参考文献等内容。
这样的报告能够清晰地展示实验过程和结果,使得读者能够全面了解实验的目的、方法和结论。
实验七 SIMULINK 仿真实验
一、实验目的
1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。
2.掌握Simulink 中子系统模块的建立与封装技术。
3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。
二、实验设备及条件
计算机一台(带有MATLAB6.5以上的软件环境)。
三、实验内容
1.建立下图5-1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。
图5-1 正弦波产生及观测模型
2.利用simulink 仿真来实现摄氏温度到华氏温度的转化:325
9c f +=
T T (c T 范
围在-10℃~100℃),参考模型为图5-2。
图5-2 摄氏温度到华氏温度的转化的参考模型
3.利用Simulink 仿真下列曲线,取πω2=。
t
t t t t t x ωωωωωω9sin 917sin 7
15sin 5
13sin 3
1sin )(+
+
+
+
=。
仿真参考模型如下图5-3,Sine Wave5模块参数设置如下图5-4,请仿真其结果。
图5-3 ()
的仿真参考模型图图5-4 Sine Wave5模块参数设置图
x t
4.如图5-5所示是分频器仿真框图,其组成仅有三台设备:脉冲发生器,分频器和示波器。
分频器送出一个到达脉冲,第一路cnt(计数),它的数值表示在本分频周期记录到多少个脉冲;第二路是hit(到达),就是分频后的脉冲输出,仿真出结果来。
图5-5 分频器仿真框图
5. Simulink 综合演示实验 ---悬吊式起重机动力学仿真
悬吊式起重机结构简图 1. 悬吊式起重机动力学方程
式中,mt 、mp 、I 、c 、l 、F 、x 、θ 分别为起重机的小车质量、吊重、吊重惯量、等价粘性摩擦系数、钢丝绳长(不计绳重),小车驱动力、小车位移以及钢丝绳的摆角。
由(2)、(3)式去掉P ,则有
2. 悬吊式起重机动力学Simulink 仿真 为便于建模,将起重机动力学方程改写为:
由以上二式可建立如图所示的起重机Simulink 模型 :
图中:lmp=mpl
()
)
1(sin 2
2θl x dt
d m x c F x
m p t ---= ()
)
2(cos 2
2θl dt
d m g m P p p =-)
3(sin cos )sin (2
2θ
θθθ I Pl l x dt
d l
m p =--小车水平方吊绳垂直方小车的力矩
())
5(cos sin 2θθθx
l m gl m
l m I p p
p
=++()
)
4(sin 2
2θl x dt
d m x c F x
m p t ---= ()p
t p m m l m x
c F x +-+-=θθθθsin cos 2 ()2
sin cos l m I g x
l m p p +-=θθθ
p
t m m +=
11k 2
2k l
m I l m p p +=
在运行仿真模型前,须先计算出k1、k2和lmp 。
设mt =50kg ,mp=270kg ,l=4m ,c=20N/m ⋅s ,在MATLAB 指令窗输入以下指令
l=4; c=20; mp=270; mt=50;
I=mp*l^2; %计算吊重转动惯量 lmp=l*mp; k1=1/(mt+mp); k2=mp*l/(I+mp*l^2);
设置仿真时间为200s ,启动Simulink 仿真,则由小车位移示波器和吊重摆角
示波器,可观察到系统在初始状态x(0)=0, ,θ(0)=0.01rad/s, 作用下x 、θ 的变化过程曲线:
0)0(=x 0
)0(=θ
悬吊式起重机小车位移
悬吊式起重机吊重摆角。