原生质体融合技术及其在微生物遗传育种上的应用
- 格式:pdf
- 大小:179.69 KB
- 文档页数:3
微生物工程指导1、什么是微生物工程?它是由哪四大技术结合发展起来?(1)微生物工程:利用微生物的特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系。
(2)传统发酵,DNA重组,细胞融合,分子修饰与改造2、微生物反应过程的特点(与化学工程相比)(1)优点:(与化学工程相比)①生产过程通常在常温常压下进行,操作条件温和②原料以碳水化合物为主,不含有毒物质。
③能高度选择性地进行复杂化合物在特定部位反应,如氧化、还原、官能团导入等。
④生产产品的生物体本身也是发酵产物,富含维生素、蛋白质、酶等有用物质;⑤通过微生物菌种改良,能够利用原有设备使生产飞跃上升。
(2)发酵过程中尚存在的问题:①底物不能完全转化成目的产物,副产物的产生不可避免,因而造成提取和精制困难②微生物反应是活细胞的反应,产物的获得除受环境因素影响外,也受细胞内因素的影响,且菌体易发生变异。
③原料是农副产品,虽然价廉,但质量波动较大。
④生产前准备工作量大,花费高,相对化学反应而言,反应器效率低。
⑤发酵废水常具有较高的BOD 和COD,需处理后排放。
3、微生物工程的发展经历哪几个阶段?(1)传统的微生物发酵技术——天然发酵(2)第一代微生物发酵技术——纯培养技术(3)第二代(近代)微生物发酵技术——深层培养技术(4)第三代发酵技术——微生物工程4、微生物工程产品类型有哪些?(1)微生物菌体的发酵(2)微生物酶发酵(3)微生物代谢产物发酵(4)微生物的生物转化(5)微生物特殊机能的利用5、作为发酵工业用的微生物菌种应符合哪些要求?(1)能在廉价原料制成的培养基上迅速生长,并形成所需的代谢产物,产量高。
(2)可以在易于控制的培养条件下迅速生长和发酵,且所需酶活力高。
(3)根据代谢控制的要求,选择单产高的营养缺陷型突变株或调节突变株或野生菌株。
(4)选育抗噬菌体能力强的菌株,使其不易感染噬菌体(5)菌种纯,不易变异退化,以保证发酵生产和产品质量的稳定性(6)菌种不是病原菌,不产生有害的生物活性物质和毒素,以保证安全6、微生物工程工业生产水平取决于哪些因素?(1)生产菌种的性能(2)发酵和提取工艺条件(3)生产设备7、微生物菌种分离与筛选工作程序分哪几步?样品采集→增殖培养→纯种分离→生产性能测定8、微生物菌种选育的方法有哪些?(1)自然选育(2)诱变育种(3)杂交育种(有性、准性)(4)原生质体融合育种(5)基因工程育种9、菌种保藏方法中,常用于产孢子和芽孢的保藏的方法是哪一个?现逐渐被哪一种方法取代?沙土管保藏法,现被真空冷冻干燥法取代10、微生物酶活性调节的方式有哪些?(1)共价修饰(2)变(别)构效应(3)缔合与解离(4)竞争性抑制11、酶合成调节的类型有哪些?(1)诱导(2)阻遏<末端产物阻遏,分解代谢产物阻遏>12、了解酶合成调节的分子机制(乳糖操纵子和色氨酸操纵子)13、了解分支生物合成途径的调节类型(1)同工酶调节:某一分支途径中的第一步反应可由多种酶催化,但这些酶受不同的终产物的反馈调节.(2)协同反馈调节: 需有一种以上终产物的过量存在方有明显的效果。
食用菌原生质体融合育种技术简介原生质体(protoplast)这个术语最早是由Hanstein 在1880年提出来的。
确切地说,食用菌原生质体是指细胞壁完全消除后余下的那部分包裹的裸露的细胞结构。
原生质体虽然失去了细胞壁存在时的原有细胞形态,变成了圆球体,但它仍然具有原生质膜和整体基因组,是一个具有生理功能的单位。
食用菌原生质体融合(protoplastfusion)是指通脱壁后的不同遗传类型的食用菌菌株原生质体,在融合剂的诱导下进行融合,最终达到部分或者整套基因组(核基因、线粒体基、胞质基因)的交换和重组,生产出新的食用菌品种和类型,也就是说,食用菌原生质体融合育种技术上是一种不通过有性生活史(sexualcycle)而达到遗传重组或有性杂交的育种手段。
近日,在佛山科技学院召开的“草菇原生质体融合育种研究”成果鉴定会上获悉,该院农学系利用现代生物工程原生质体融合育种技术,成功地选育出草菇新品种Vp—2、Vp—3。
专家们实地考察后认为,该研究成果数据可靠,技术新颖,品种表现良好,种性稳定,菌丝生长健壮,爬料速度快,抗杂能力强,子实体结实,基部紧凑,个体适中,兼备双亲优良性状,生物特性明显优于目前生产使用的当家品种。
鉴定专家一致认为,该研究成果居于国内领先水平。
据项目鉴定委员会主任、省微生物研究所研究员丘元盛介绍,该项目成果具有技术的前瞻性和研究的独创性:采用超声波处理结合溶壁酶酶解,很好地解决了草菇细胞壁裂解的难题,为原生质体融合育种提供了大量原生质体,完善了草菇原生质体制备和融合技术;创造性地利用不同草菇品种间存在拮抗作用进行融合子初筛,利用不同草菇种间分解脱脂牛奶、可溶性淀粉、聚半乳糖醛酸等物质的能力差异性,定量检测融合子与亲本间的酶分解能力,通过DNA随机多态性差异检测进而确定融合子,技术操作新颖,为食用菌育种开辟新途径;开创性采用液氮研磨与溶壁酶酶解相结合提取草菇菌丝DNA技术,获得高纯度遗传物质,圆满解决草菇等真菌DNA提取过程中破壁困难和纯度不高等技术难题,实现现代分子生物学水平格测融合子的技术性飞跃。
微生物原生质体融合育种技术及其应用摘要:工业微生物菌种选育在发酵工业中占有重要地位。
微生物原生质体融合(microbialprotoplast fusion)技术具有重组频率高、受结合型或致育型限制小以及遗传物质传递完整等优点,是微生物育种最常用的方法之一。
结合相关研究进展,分析了原生质体融合技术的组成,包括制备、再生、融合的影响因素以及融合子的筛选方法,重点评述了原生质体融合技术应用在微生物育种中的最新进展,以及微生物原生质体融合技术的发展前景。
关键词:微生物原生质体融合遗传育种基因组重组引言:微生物菌种是发酵工业中的一个关键因素,它决定了发酵过程的成败及某一发酵产品是否具有工业化价值。
自然界中的原始菌株大多不具有很高的工业化价值,因此需要对菌株进行选育和改良,以提高产品的质量,降低成本。
原生质体融合技术是起源于20世纪60年代的一项重要的菌种改良技术,是将亲株细胞分别去除细胞壁后进行融合,经基因组间的交换重组,获得融合子的过程。
与其他育种技术相比,原生质体融合技术具有重组频率高、受结合型或致育型限制小以及遗传物质传递完整且不需要完全了解作用机制等优点,因而被国内外微生物育种学者广泛应用。
1974年,匈牙利的Ferenczy成功将白地霉(Geotrichum candidum)营养缺陷型突变株的原生质体进行融合,使原生质体融合技术首次应用于微生物中。
接下来的几十年,该技术的基本实验方法逐步完善,现已作为一项十分有用的技术广泛应用于工业微生物菌种选育中。
本文就原生质体融合技术的过程及其应用于微生物育种方面的最新进展做了简要综述,并分析了目前存在的问题及未来的发展方向。
1 资料和方法:1.1 资料来源由第一作者在CNKI进行检索。
网址:/。
英文资料的检索时间范围为2007/2012;中文资料的检索时间范围为2007/2012。
英文检索词为“protoplast fusion、research、progressions”;中文检索词为“原生质体融合、应用、研究进展”。
原生质体融合育种摘要原生质体融合育种克服了远缘杂交不亲和的障碍,可以提高重组频率,使得遗传物质的交换、传递更完整,成为微生物育种的一种重要方式。
其过程包括原生质体制备和再生、原生质体融合以及融合体检出等步骤。
在每个步骤中均要考虑到其应注意的因素,从而提高原生质体育种的效率,达到快速育种的目的。
因原生质体融合育种的优势,其在多功能菌种选育、工程菌选育和工业生产育种等方面应用广泛。
关键词原生质体制备融合育种原生质体再生融合体检出引言传统的杂交育种具有一定的局限性,需要受到亲和力的影响,并且要求亲本有性的分化,而原生质体育种则克服了这些缺点。
当细菌细胞壁被剥离,剩下由原生质膜包围的原生质部分称为原生质体。
原生质体融合是指通过人为的方法,使遗传性状不同的两个细胞的原生质体进行融合,借以获得兼有双亲遗传性状的稳定重组子的过程。
[1]原生质体融合不受种属限制,能够完整的传递遗传物质,使得重组几率提高进而提高育种速度。
[1-2]育种步骤可分为五大步骤:直接亲本及其遗传标记的选择、双亲本原生质体制备和再生、亲本原生质体诱导融合、融合重组体分离、遗传标记分析和测定。
1.亲本遗传标记的选择进行原生质体融合的双亲本一般要携带遗传标记,以顺利地筛选到融合子。
常用营养缺陷型、抗性、荧光染色、温度敏感性、孢子颜色、菌落形态等作为标记。
其中营养缺陷型是常用而有效的选择手段。
[3]2.原生质体制备制备原生质体是融合育种的前提,为了制备原生质体,需要将包围细胞的细胞壁去除掉。
去壁的方法很多,主要有机械法、酶法和非酶法,现在使用较多的是酶法。
[4]2.1酶法制备原生质体的条件(1)菌体年龄微生物的生理状态决定了原生质体的形成,而菌龄明显影响了原生质体的形成率,菌龄过长不利于释放原生质体,过短则菌丝体容易破裂。
丝状真菌一般选择年轻的尖端生长点的菌丝;细菌与霉菌一般采用对数生长期,而放线菌以对数期到静止期的转换期为好。
[5](2)稳定剂原生质体由于失去了细胞壁因此对环境十分敏感,渗透压尤为重要。
生物高中生物选修1知识点总结一、绪论1. 生物技术的定义与分类生物技术是指利用生物学原理和方法,对生物体及其组分进行操作、改造和利用的技术。
生物技术主要包括基因工程、细胞工程、发酵工程和酶工程等。
2. 生物技术发展简史生物技术的发展经历了传统生物技术和现代生物技术两个阶段。
传统生物技术主要包括酿造、发酵等;现代生物技术则以基因工程、细胞工程等为核心。
二、基因工程1. 基因工程的原理与方法基因工程是通过分子生物学的方法,将目的基因从一个生物体转移到另一个生物体中,使之产生新的遗传特性。
基因工程的基本步骤包括:目的基因的获取、基因载体的选择与构建、受体细胞的转化、转化细胞的筛选与鉴定。
2. 基因表达载体的构建基因表达载体是基因工程中用于携带目的基因并将其导入受体细胞的工具。
常用的基因表达载体有质粒、噬菌体、病毒等。
3. 基因工程的应用基因工程在农业、医药、环保等领域具有广泛的应用。
例如:转基因作物、转基因动物、基因治疗等。
三、细胞工程1. 细胞工程的基本技术细胞工程是指利用细胞生物学原理和方法,对细胞进行操作、改造和利用的技术。
细胞工程的基本技术包括:细胞培养、细胞融合、细胞拆合等。
2. 动物细胞工程动物细胞工程主要包括动物细胞培养、细胞融合、细胞拆合等技术。
动物细胞工程在制备单克隆抗体、生产疫苗等方面具有重要作用。
3. 植物细胞工程植物细胞工程主要包括植物组织培养、原生质体融合等技术。
植物细胞工程在植物繁殖、遗传改良等方面具有广泛应用。
四、发酵工程1. 发酵工程的原理发酵工程是利用微生物的代谢活性,在生物反应器中进行大规模生产的技术。
发酵工程的原理主要包括:微生物的代谢、发酵条件优化、生物反应器设计等。
2. 发酵过程的主要参数发酵过程中,需要关注的主要参数有:温度、pH、溶氧、搅拌速度、发酵液浓度等。
3. 发酵工程的应用发酵工程在食品、饮料、医药、环保等领域具有广泛应用。
例如:啤酒生产、抗生素生产、生物燃料生产等。
微⽣物遗传育种名词解释(⼆)1、⾃然选育:从⾃然界直接分离和筛选菌种或在⽣产中利⽤⾃发突变选育优良菌株。
2、诱变育种:对出发菌株进⾏诱变,然后运⽤合理的程序与⽅法筛选符合要求的优良菌株。
3、代谢调控育种:利⽤现有的代谢调控知识,筛选特定突变型,改变代谢流量或流向,从⽽提⾼⽬的产物产量的⼀种育种技术。
4、重组育种;利⽤微⽣物间的遗传重组来改变其遗传物质组成及结构的⼯业微⽣物育种技术。
5、原⽣质体融合育种;通过⼈为⽅法,使遗传性状不同的两细胞的原⽣质体发⽣融合,从⽽实现遗传重组的⼯业微⽣物育种技术。
6、基因⼯程育种技术:在体外构建重组DNA分⼦并导⼊宿主内⾼效表达,从⽽获得重组微⽣物的育种技术。
7、突变:遗传物质核酸中的核苷酸序列发⽣了稳定的可遗传的变化。
8、突变体:带有突变基因的细胞或个体9、突变型:突变体的基因型或表型称为突变型,和其相对的原存在状态称为野⽣型。
10、⾃发突变(spontaneous mutagenesis):未经任何⼈为处理⽽⾃然发⽣的突变;11、诱发突变(induced mutagenesis):由⼈们有意识地利⽤物理或化学⼿段对⽣物体进⾏处理⽽引起的突变。
12、整倍体:含有完整的染⾊体组。
13、⾮整倍体:含有不完整状态的染⾊体组,⼀般是指⼆倍体中成对染⾊体成员的增加或减少。
14、部分⼆倍体:原核⽣物中由⼀整条染⾊体和外来染⾊体⽚段所构成的不完整⼆倍体。
增变基因(mutator gene):其基因突变会导致整个基因组的突变频率明显上升的⼀些基因。
15、前突变:诱变剂所造成的DNA分⼦某⼀位置的损伤16、光复活:指细菌在紫外线照射后⽴即⽤可见光照射,可以显著地增加细菌的存活率,降低突变率。
17、表型延迟phenotype lag:突变体表型改变落后于其基因型改变的现象。
18、分离性延迟segregational lag :突变基因由杂合状态到纯合状态所造成的表型迟延19、⽣理性延迟physiological lag :由于基因产物的“稀释”过程所造成的表型迟延野⽣型(wild type):从⾃然界分离到的任何微⽣物在其发⽣营养缺陷突变前的原始菌株;基因重组:由于不同DNA链的断裂和连接⽽产⽣DNA⽚段的交换和重新组合,形成新的DNA分⼦,进⽽形成新遗传个体的⽅式称为基因重组。