数据挖掘考试题库
- 格式:docx
- 大小:39.98 KB
- 文档页数:16
数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。
答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。
避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。
2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。
答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。
它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。
3. 描述“特征选择”在数据挖掘中的作用。
答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。
通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。
#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。
答案:首先,我会使用聚类分析来识别不同的用户群体。
然后,通过关联规则挖掘来发现不同用户群体的购买模式。
接着,利用分类算法来预测用户可能感兴趣的产品。
1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
5.简述数据预处理方法和内容。
①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
数据库数据挖掘与分析考试试卷(答案见尾页)一、选择题1. 数据挖掘的主要目的是什么?A. 提取数据库中的数据B. 分析数据库中的数据以发现隐藏的模式和关联C. 存储和管理数据库中的数据D. 传输数据库中的数据2. 在数据挖掘中,以下哪个过程是用来发现数据项之间的有趣关系和关联的?A. 数据清理B. 数据集成C. 数据转换D. 数据挖掘3. 数据挖掘任务通常不包括以下哪项?A.分类B.聚类C.回归D. 数据库优化4. 关联规则学习是数据挖掘中的一个重要技术,它主要关注什么?A. 发现数据集中不同项之间的因果关系B. 发现数据集中频繁出现的模式和关联C. 建立数据模型以预测未来趋势D. 优化数据库查询性能5. 在聚类分析中,以下哪个选项不是常用的距离度量方法?A. 曼哈顿距离B. 欧氏距离C. 切比雪夫距离D. 余弦相似度6. 数据挖掘中经常使用哪种图表来展示聚类结果?A. 条形图B. 饼图C. 网络图D. 散点图7. 在数据挖掘中,以下哪个算法主要用于发现连续数值型数据中的异常值或离群点?A. K-均值算法B. DBSCANC. 谱聚类算法D. 决策树算法8. 数据挖掘中,以下哪个步骤不是数据预处理的一部分?A. 数据清洗B. 数据集成C. 数据转换D. 数据降维9. 在建立数据挖掘模型时,以下哪个步骤不是特征选择的一部分?A. 特征提取B. 特征选择C. 特征验证D. 特征排序10. 数据挖掘中,以下哪个工具不是常用的数据挖掘工具?A. SQLB. ExcelC. PythonD. R二、问答题2. 什么是SQL语言?请列举几种常见的SQL语句。
3. 什么是数据库的完整性约束?请举例说明。
4. 什么是数据库的设计原则?请列举几个常用的设计原则。
5. 什么是数据库的范式?请简要解释第一范式和第二范式。
6. 什么是数据库索引?请简述索引的作用和分类。
7. 什么是数据库的事务处理?请简述事务的定义和特性。
数据挖掘考试题一.选择题1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。
“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。
A 分类B 预测 C关联规则分析 D聚类4.关于K均值和DBSCAN的比较,以下说法不正确的是( )A.K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。
B.K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。
C.K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇’s Method说法错误的是:( )C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似6.下列关于层次聚类存在的问题说法正确的是:( )A.具有全局优化目标函数B.Group Average擅长处理球状的簇C.可以处理不同大小簇的能力D.Max对噪声点和离群点很敏感7.下列关于凝聚层次聚类的说法中,说法错误的事:( )A.一旦两个簇合并,该操作就不能撤销2m O8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( )TID项 集 12345{面包,牛奶} {面包,尿布,啤酒,鸡蛋} {牛奶,尿布,啤酒,可乐} {面包,牛奶,尿布,啤酒} {面包,牛奶,尿布,可乐}9.下列( )是属于分裂层次聚类的方法。
10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX 计算,第二步是哪两个簇合并:( )A.在{3}和{l,2}合并B.{3}和{4,5}合并C.{2,3}和{4,5}合并D. {2,3}和{4,5}形成簇和{3}合并二.填空题:1. 属性包括的四种类型: 、 、 、 。
数据挖掘与分析考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以3、决策树算法中,用于选择最佳分裂特征的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率4、以下哪个不是聚类算法?()A KMeans 算法B 层次聚类算法C 朴素贝叶斯算法D DBSCAN 算法5、数据挖掘中的关联规则挖掘,常用的算法是()A Apriori 算法B C45 算法C KNN 算法D SVM 算法6、以下哪种数据预处理方法可以用于将连续型特征转换为离散型特征?()A 标准化B 归一化C 分箱D 主成分分析7、在构建分类模型时,如果数据集存在类别不平衡问题,以下哪种方法可以解决?()A 过采样B 欠采样C 调整分类阈值D 以上方法都可以8、以下哪个指标常用于评估分类模型的性能?()A ROC 曲线下面积B 均方误差C 平均绝对误差D 决定系数9、对于高维数据,以下哪种方法可以进行降维?()A 因子分析B 线性判别分析C 主成分分析D 以上方法都可以10、以下关于数据挖掘的描述,错误的是()A 数据挖掘可以发现隐藏在数据中的模式和关系B 数据挖掘需要大量的数据C 数据挖掘的结果一定是准确无误的D 数据挖掘是一个反复迭代的过程二、填空题(每题 3 分,共 30 分)1、数据挖掘的一般流程包括:________、________、________、________、________和________。
2、分类算法中,常见的有________、________、________等。
3、聚类算法中,KMeans 算法的基本思想是:________。
4、关联规则挖掘中,常用的度量指标有________、________等。
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据挖掘知识竞赛题库及答案一、选择题1. 数据挖掘的目的是从大量的数据中发现有价值的信息和知识。
以下哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 预测D. 图像识别答案:D2. 在数据挖掘过程中,特征工程是指什么?A. 选择与目标变量相关的特征B. 对特征进行标准化处理C. 特征降维D. 以上都是答案:D3. K-近邻算法是一种基于什么的分类方法?A. 决策树B. 支持向量机C. 神经网络D. 实例匹配答案:D4. 在数据挖掘中,什么是衡量分类器性能的主要指标?A. 准确率B. 召回率C. F1值D. AUC值答案:D5. 在关联规则挖掘中,最小支持度是指什么?A. 出现在至少一半的事务中的项集B. 出现在至少一定比例的事务中的项集C. 出现在至少一个事务中的项集D. 出现在至少多数事务中的项集答案:B6. 以下哪种技术不属于聚类分析?A. K-均值B. 层次聚类C. 密度聚类D. 决策树聚类答案:D7. 在时间序列分析中,什么是时间序列的前向扩散?A. 过去的信息对当前信息的影响B. 当前的信息对过去信息的影响C. 未来的信息对当前信息的影响D. 当前的信息对未来信息的影响答案:C8. 在数据挖掘中,什么是基于模型的预测方法?A. 利用已有数据建立模型,对新数据进行预测B. 直接对原始数据进行预测C. 利用专家经验进行预测D. 利用机器学习算法进行预测答案:A9. 在数据挖掘中,什么是维度归一化?A. 将特征值缩放到一个固定范围B. 减少特征的数量C. 特征选择D. 特征提取答案:A10. 在数据挖掘中,什么是过拟合?A. 模型在训练集上的性能很好,但在测试集上的性能较差B. 模型在训练集上的性能较差,但在测试集上的性能很好C. 模型在训练集和测试集上的性能都很好D. 模型在训练集和测试集上的性能都较差答案:A二、填空题1. 数据挖掘的主要任务包括分类、聚类、预测和__________。
数据挖掘课程模拟考试题库一、选择题(每题 5 分,共 30 分)1、以下哪项不是数据挖掘的主要任务?()A 数据清洗B 分类C 聚类D 关联规则挖掘2、数据挖掘中的分类算法不包括()A 决策树B 朴素贝叶斯C 支持向量机D 主成分分析3、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以4、数据挖掘中的聚类算法中,KMeans 算法的基本思想是()A 基于密度的聚类B 基于层次的聚类C 基于划分的聚类D 基于模型的聚类5、以下哪项不是关联规则挖掘中的常用指标?()A 支持度B 置信度C 提升度D 准确率6、数据挖掘在以下哪个领域应用较少?()A 医疗保健B 市场营销C 天文学D 物理学二、填空题(每题 5 分,共 20 分)1、数据挖掘的流程通常包括、、、、和。
2、常见的数据预处理方法有、、、。
3、决策树算法在进行分裂时,通常依据来选择特征。
4、聚类分析中,评估聚类效果的指标通常有、。
三、简答题(每题 10 分,共 30 分)1、简述数据挖掘与数据分析的区别。
2、解释什么是过拟合,并说明如何避免过拟合。
3、请简要介绍 Apriori 算法的基本思想和步骤。
四、应用题(20 分)假设有一个电商网站的销售数据集,包含用户 ID、商品 ID、购买时间和购买金额等字段。
请使用关联规则挖掘算法,找出经常一起被购买的商品组合,并给出相应的支持度和置信度。
请详细描述你的分析过程和结果。
以下是对上述模拟考试题库的详细解析:选择题解析:1、数据清洗虽然是数据预处理的重要步骤,但不是数据挖掘的主要任务。
数据挖掘的主要任务包括分类、聚类、关联规则挖掘等。
所以选择 A 选项。
2、主成分分析主要用于数据降维,而不是分类算法。
决策树、朴素贝叶斯和支持向量机都是常见的分类算法。
所以选择 D 选项。
3、处理缺失值的方法有多种,直接删除包含缺失值的记录可能会导致数据量减少,影响分析结果;用平均值或中位数填充缺失值是常见的处理方式。
数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。
答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。
答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。
答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。
数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。
2. 描述什么是关联规则挖掘,并给出一个例子。
答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。
例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。
四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。
(2) 计算规则A => B的置信度。
答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。
(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。
五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。
答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。
- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。
- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。
一、填空题1.Web挖掘可分为、和3大类。
2.数据仓库需要统一数据源,包括统一、统一、统一和统一数据特征4个方面。
3.数据分割通常按时间、、、以及组合方法进行。
4.噪声数据处理的方法主要有、和。
5.数值归约的常用方法有、、、和对数模型等。
6.评价关联规则的2个主要指标是和。
7.多维数据集通常采用或雪花型架构,以表为中心,连接多个表。
8.决策树是用作为结点,用作为分支的树结构。
9.关联可分为简单关联、和。
10.B P神经网络的作用函数通常为区间的。
11.数据挖掘的过程主要包括确定业务对象、、、及知识同化等几个步骤。
12.数据挖掘技术主要涉及、和3个技术领域。
13.数据挖掘的主要功能包括、、、、趋势分析、孤立点分析和偏差分析7个方面。
14.人工神经网络具有和等特点,其结构模型包括、和自组织网络3种。
15.数据仓库数据的4个基本特征是、、非易失、随时间变化。
16.数据仓库的数据通常划分为、、和等几个级别。
17.数据预处理的主要内容(方法)包括、、和数据归约等。
18.平滑分箱数据的方法主要有、和。
19.数据挖掘发现知识的类型主要有广义知识、、、和偏差型知识五种。
20.O LAP的数据组织方式主要有和两种。
21.常见的OLAP多维数据分析包括、、和旋转等操作。
22.传统的决策支持系统是以和驱动,而新决策支持系统则是以、建立在和技术之上。
23.O LAP的数据组织方式主要有和2种。
24.S QL Server2000的OLAP组件叫,OLAP操作窗口叫。
25.B P神经网络由、以及一或多个结点组成。
26.遗传算法包括、、3个基本算子。
27.聚类分析的数据通常可分为区间标度变量、、、、序数型以及混合类型等。
28.聚类分析中最常用的距离计算公式有、、等。
29.基于划分的聚类算法有和。
30.C lementine的工作流通常由、和等节点连接而成。
31.简单地说,数据挖掘就是从中挖掘的过程。
32.数据挖掘相关的名称还有、、等。
二、判断题( )1.数据仓库的数据量越大,其应用价值也越大。
( )2.啤酒与尿布的故事是聚类分析的典型实例。
( )3.等深分箱法使每个箱子的记录个数相同。
( )4.数据仓库“粒度”越细,记录数越少。
( )5.数据立方体由3维构成,Z轴表示事实数据。
( )6.决策树方法通常用于关联规则挖掘。
( )7.ID3算法是决策树方法的早期代表。
( )8.C4.5是一种典型的关联规则挖掘算法。
( )9.回归分析通常用于挖掘关联规则。
( )10.人工神经网络特别适合解决多参数大复杂度问题。
( )11.概念关系分析是文本挖掘所独有的。
( )12.可信度是对关联规则的准确度的衡量。
( )13.孤立点在数据挖掘时总是被视为异常、无用数据而丢弃。
( )14.SQL Server 2000不提供关联规则挖掘算法。
( )15.Clementine是IBM公司的专业级数据挖掘软件。
( )16.决策树方法特别适合于处理数值型数据。
( )17.数据仓库的数据为历史数据,从来不需要更新。
( )18.等宽分箱法使每个箱子的取值区间相同。
( )19.数据立方体是广义知识发现的方法和技术之一。
( )20.数据立方体的其中一维用于记录事实数据。
( )21.决策树通常用于分类与预测。
( )22.Apriori算法是一种典型的关联规则挖掘算法。
( )23.支持度是衡量关联规则重要性的一个指标。
( )24.SQL Server 2000集成了OLAP,但不具有数据挖掘功能。
( )25.人工神经网络常用于分类与预测。
三、名词解释1.数据仓库:是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。
2.孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3.OLAP:OLAP是在OLTP的基础上发展起来的,以数据仓库为基础的数据分析处理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧重对分析人员和高层管理人员的决策支持。
4.粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
5.数据规范化:指将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0-1)以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6.关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。
7.数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8.OLTP:OLTP为联机事务处理的缩写,OLAP是联机分析处理的缩写。
前者是以数据库为基础的,面对的是操作人员和低层管理人员,对基本数据进行查询和增、删、改等处理。
9.ROLAP:是基于关系数据库存储方式的,在这种结构中,多维数据被映像成二维关系表,通常采用星型或雪花型架构,由一个事实表和多个维度表构成。
10.MOLAP:是基于类似于“超立方”块的OLAP存储结构,由许多经压缩的、类似于多维数组的对象构成,并带有高度压缩的索引及指针结构,通过直接偏移计算进行存取。
11.数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
12.广义知识:通过对大量数据的归纳、概括和抽象,提炼出带有普遍性的、概括性的描述统计的知识。
13.预测型知识:是根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。
14.偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离常规的异常现象,如标准类外的特例,数据聚类外的离群值等。
15.遗传算法:是一种优化搜索算法,它首先产生一个初始可行解群体,然后对这个群体通过模拟生物进化的选择、交叉、变异等遗传操作遗传到下一代群体,并最终达到全局最优。
16.聚类:是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
17.决策树:是用样本的属性作为结点,用属性的取值作为分支的树结构。
它是分类规则挖掘的典型方法,可用于对新样本进行分类。
18.相异度矩阵:是聚类分析中用于表示各对象之间相异度的一种矩阵,n个对象的相异度矩阵是一个nn维的单模矩阵,其对角线元素均为0,对角线两侧元素的值相同。
19.频繁项集:指满足最小支持度的项集,是挖掘关联规则的基本条件之一。
20.支持度:规则A→B的支持度指的是所有事件中A与B同地发生的的概率,即P(A∪B),是AB同时发生的次数与事件总次数之比。
支持度是对关联规则重要性的衡量。
21.可信度:规则A→B的可信度指的是包含A项集的同时也包含B项集的条件概率P(B|A),是AB同时发生的次数与A发生的所有次数之比。
可信度是对关联规则的准确度的衡量。
22.关联规则:同时满足最小支持度阈值和最小可信度阈值的规则称之为关联规则。
四、综合题1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓数据仓库?为什么要建立数据仓库?数据仓库是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。
建立数据仓库的目的有3个:一是为了解决企业决策分析中的系统响应问题,数据仓库能提供比传统事务数据库更快的大规模决策分析的响应速度。
二是解决决策分析对数据的特殊需求问题。
决策分析需要全面的、正确的集成数据,这是传统事务数据库不能直接提供的。
三是解决决策分析对数据的特殊操作要求。
决策分析是面向专业用户而非一般业务员,需要使用专业的分析工具,对分析结果还要以商业智能的方式进行表现,这是事务数据库不能提供的。
3.列举操作型数据与分析型数据的主要区别。
4.OLTP即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。
OLAP即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。
OLTP和OLAP的主要区别如下表:5.粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构6.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
7.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
8.简述数据预处理方法和内容。
①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
需要注意不同数据源的数据匹配问题、数值冲突问题和冗余问题等。
③数据变换:将原始数据转换成为适合数据挖掘的形式。
包括对数据的汇总、聚集、概化、规范化,还可能需要进行属性的重构。
④数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
9.简述数据清理的基本内容。
①尽可能赋予属性名和属性值明确的含义;②统一多数据源的属性值编码;③去除无用的惟一属性或键值(如自动增长的id);④去除重复属性(在某些分析中,年龄和出生日期可能就是重复的属性,但在某些时候它们可能又是同时需要的)⑤去除可忽略字段(大部分为空值的属性一般是没有什么价值的,如果不去除可能造成错误的数据挖掘结果)⑥合理选择关联字段(对于多个关联性较强的属性,重复无益,只需选择其中的部分用于数据挖掘即可,如价格、数据、金额)⑦去掉数据中的噪音、填充空值、丢失值和处理不一致数据。