七年级数学整式的加减法同步练习
- 格式:doc
- 大小:84.00 KB
- 文档页数:6
七年级数学上册《第二章:整式的加减》同步练习一、单选题1.已知a 2+2ab=-8,b 2+2ab=14,则a 2+4ab+b 2=( );a 2-b 2=( )A .22、-6B .-22、6C .6、-22D .-6、222.下列各式中,是8a 2b 的同类项的是( )A .4x 2yB .―9ab 2C .―a 2bD .5ab3.多项式4xy 2–3xy 3+12的次数为( )A .3B .4C .6D .74.下列式子中,是单项式的是( )A .2x y +B .–12x 3yz 2C .5xD .x –y5.下列计算正确的是( ).A .336a a a +=B .33a a -=C .()532a a =D .23a a a ⋅= 6.下列是按一定规律排列的一组数:12,16,112,120,…,1a ,190,1b,…(其中a ,b 为整数),则+a b 的值为( ). A .182B .172C .242D .200二、填空题7.单项式3212a b 的次数是_____. 8.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____.9.﹣2x 2y 4的系数是a ,次数是b ,则a +b =_____.10.观察下列单项式:-2x ,22x 2,-23x 3,24x 4…-25x 5,26x 6…请观察规律,写出第n 个式子________.11.若关于,x y 的多项式323225mx nxy x xy y ---++中不含三次项,则25m n +的值为_________三、解答题12.先化简,再求值:(1)22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x =﹣2,y =23(2)()()2222153342a b ac a c a b ac a c ---+-,其中a =﹣1,b =2,c =﹣2.13.计算:(1)3(-ab+2a)-(3a-b)+3ab ;(2)()221114222a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;(3)先化简,再求值:4x 2-{-3x 2-[5x-x 2-(2x 2-x)]+4x},其中x=12.14.化简并求值:2(a 2-ab)-3(23a 2-ab),其中a ,b 满足|a+2b|+(b-1)2=0.15.自习课上小明在准备完成题目:化简:(x 2+6x+8)-(6x+8x 2+2)发现系数“ ” 印刷不清楚、(1)他把“ ”猜成6,请你帮小明完成化简:(6x 2+6x+8)-(6x+8x 2+2); (2)小明同桌看到他化简的结果说:“你猜错了,我看到该题标准答案的结果是常数。
七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。
七年级数学整式的加减同步测试题及答案七年级数学整式的加减同步测试题及答案一. 选择1. 化简(-2x+y)+3(x-2y)等于( )A.-5x+5yB.-5x-yC.x-5yD.-x-y2. 多项式-a2-1与3a2-2a+1的和为( )A.2a2-2aB.4a2-2a+2C.4a2-2a-2D.2a2+2a3.在5a+(________)=5a-2a2-b中,括号内应填( ) A.2a2+b B.2a2-b C.-2a2+b D.-2a2-b4. 已知长方形的长为(2b-a),宽比长少b,则这个长方形的周长是( )A、3b-2aB、3b+2aC、6b-4aD、6b+4a5.A=x2-2x-3,b=2x2-3x+4,则A-B等于( )A. x2-x-1B. -x2+x+1C. 3x2-5x-7D. -x2+x-7二. 填空1. a2+7-2(10a-a2)=____________2.一个多项式减去a2-b2等于a2+b2+c2,则原多项式是 .3.已知某三角形的一条边长为m+n,另一条边长比这条边长大m-3,第三条边长等于2n-m,求这个三角形的周长为________4.七年级⑵班同学参加数学课外活动小组的有x人,参加合唱队的.有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学最多只能参加一项活动,则三个课外小组的人数共人.5.粗心的周华在做多项式a3+2a+3加一个单项式时,误做成了减法,得到结果为a3+3,则要加的单项式为_______,正确的结果应是_________.三. 计算1.求多项式3x2+y2-5xy与-4xy-y2+7x2的和2.计算:⑴(3a2+2a+1)-(2a2+3a-5)⑵已知A=x2-5x,B=x2-10x+5,求A+2B的值3.先化简,再求值(1)4(y+1)+4(1-x)-4(x+y),其中,x= ,y= 。
(2)4a2b-[3ab2-2(3a2b-1)],其中a=-0.1,b=1。
浙教版2024-2025学年七年级数学上册4.5整式的加减同步练习(基础版)班级:姓名:亲爱的同学们:练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。
运用所学知识解决本练习,祝你学习进步!一、选择题1.−(−2)=()A.2B.−2C.12D.−122.若−(−a)为正数,则a为()A.正数B.负数C.0D.不能确定3.去括号:-(a-b),结果正确的是()A.-a+b B.-a-b C.a+b D.a-b4.下列去括号正确的是()A.+2(a-b)=2a-b B.-2(a-b)=-2a-2bC.-2(a-b)=-2a+b D.-2(a-b)=-2a+2b5.若一个多项式减去a2−3b2等于a2+2b2,则这个多项式是()A.−2a2+b2B.2a2−b2C.a2−2b2D.−2a2−b26.下列计算正确的是()A.2x+3x=5x2B.7y+y=7y2C.x3+x3=2x3D.3x4−2x4=17.化简m−n−(m+n)的结果为()A.2m B.2n C.0D.−2n8.当x=2,y=-1时,代数式x+2y-(3x-4y)的值是( )A .-9B .9C .-10D .10 9.已知a -2b=3,则3(a -b )-(a+b )的值为( )A .-3B .-6C .3D .6 10.如果a −b =3,则式子2a −3b −a +2b −1的值为( )A .1B .2C .5D .7二、填空题11.化简:−(−6) = ; +(−6)= ; −(+0.73)= ; 12.化简:﹣(﹣m+n )= .13.一个多项式与−x 2−2x +10的和是3x −2,则这个多项式为 . 14.多项式6x 2+5y −xy 与多项式−8xy +3x 2−y 的差是 . 15.当x −y =3时,代数式2(x −y)2+3x −3y +1= . 16.当 x =−2 时,多项式 −x 3−4x 2−4 与 x 3+5x 2+3x +2 的和是 .三、解答题17.化简:(1)+(﹣0.5)(2)﹣(+10.1) (3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)] (6)﹣[﹣(﹣23)].18.去括号: (1)a ﹣(b+c ﹣3)= ;(2)x+(5﹣3y)=.19.化简(1)5x−3x2+4x2+6x;(2)4(a2+b2)−(3a2−5b2).20.化简(1)2a+b+(3a-2b)(2)3(2m2n−3mn2)−2(m2n−3mn2) 21.先化简,再求值:2x2−[5x−2(32x−3)−7x2],其中x=−2.22.先化简,再求值:(3a2+6a−1)−2(a2+2a−3).其中a=−2.23.已知:A+B=x2+6x−24,B=2x2+3x−7,求A−B.答案解析部分1.【答案】A2.【答案】A3.【答案】A4.【答案】D5.【答案】B6.【答案】C7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】6;-6;-0.7312.【答案】m-n13.【答案】x 2+5x −1214.【答案】3x 2+6y +7xy15.【答案】2816.【答案】-417.【答案】解:(1)+(﹣0.5)=﹣0.5;(2)﹣(+10.1)=﹣10.1;(3)+(+7)=7;(4)﹣(﹣20)=20;(5)+[﹣(﹣10)]=10;(6)﹣[﹣(﹣23)]=﹣23.18.【答案】(1)a﹣b﹣c+3(2)x+5﹣3y19.【答案】(1)解:原式=-3x2+4x2+5x+6x=x2+11x(2)原式=4a2+4b2-3a2+5b2=a2+9b220.【答案】(1)解:原式=2a+b+3a-2b=5a-b.(2)解:原式=6m2n-9mn2-2m2n+6mn2=4m2n-3mn2.21.【答案】解:原式=2x2−5x+2(32x−3)+7x2=9x2−5x+3x−6=9x2−2x−6,当x=−2时,原式=9x2−2x−6=9×(−2)2−2×(−2)−6=36+4−6=34.22.【答案】解:(3a2+6a−1)−2(a2+2a−3)=3a2+6a−1−2a2−4a+6=a2+2a+5∵a=−2∴原式=(−2)2+2×(−2)+5=4−4+5=5.23.【答案】解:由题意可得,A−B=A+B−2B=(x2+6x−24)−2(2x2+3x−7)=x2+6x−24−4x2−6x+14 =−3x2−10.。
七年级数学-整式的加减(代数式的值)同步练习一、选择题1.当x =12时,代数式15(x 2+1)的值为( ) A.15 B.14 C .1 D.352.若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 C.32 D.123.已知a ,b 互为相反数,c ,d 互为倒数,则代数式2(a +b )-3cd 的值为( )A .2B .-1C .-3D .04.代数式2x 2+3x +7的值是8,则代数式4x 2+6x -9的值是( )A .2B .-17C .-7D .75.当x =-2时,ax 3+bx -7的值为9,则当x =2时,ax 3+bx -7的值是( )A .-23B .-17C .23D .17二、填空题6.小英付给售货员y 元钱,买了a 支单价为15元/支的某种笔,找回b 元,则y =________,当a =3,b =5时,y 的值是________.7.按照如图K -27-1所示的操作步骤,若输入x 的值为-3,则输出的值为________.图18.已知|x -5|+|y +4|=0,则代数式(x +y )2018的值是________.三、解答题9.当a =12,b =-2时,求下列各式的值: (1)(a -b )2-(a +b )2; (2)a 2-2ab +b 2.10.定义一种新运算“※”,规定a※b=a+ab.(1)求6※(-5)的值;(2)求(-2)※(4※7)的值.11.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.1.B 2.B 3.C4.C .5. A6.15a +b 507. 228.1 .9.解:(1)原式=⎝ ⎛⎭⎪⎫12+22-⎝ ⎛⎭⎪⎫12-22=4. (2)原式=⎝ ⎛⎭⎪⎫122-2×12×(-2)+(-2)2=254. 10.解:(1)∵a※b=a +ab,∴6※(-5)=6+6×(-5)=-24.(2)∵a※b=a +ab,∴(-2)※(4※7)=(-2)※(4+4×7)=(-2)※32=-2+(-2)×32=-66.11.解:(1)(40x +3200) (36x +3600)(2)当x =30时,方案①需4400元,方案②需4680元,所以按方案①购买合算.(3)先按方案①购买20套西装,送20条领带;剩余10条领带按方案②购买,需360元,共需4360元.。
人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
2.2整式的加减同步练习一、选择题1.下列各组中的两项不是同类项的是A. 1和0B. 和C. 和D. 和2.下列去括号中,正确的是A. B.C. D.3.若单项式与是同类项,则的值是A. 2B. 1C.D.4.若的值与x的无关,则的值为A. 3B. 1C.D. 25.去括号后的结果为A. B. C. D.6.已知,,,则的值为A. 0B.C.D.7.如果是同类项,则等于A. B. 0 C. 2 D. 38.一个多项式加上等于,则这个多项式是A. B. C. D.9.下列各组式子中说法正确的是A. 3xy与是同类项B. 5xy与6yx是同类项C. 2x与是同类项D. 与是同类项10.化简等于A. B. 2a C. D.11.设,,则可化简为A. B. C. D.12.下列计算正确的有;;;;.A. 1个B. 2个C. 3个D. 4个二、填空题13.三个连续偶数中,中间的一个为2n,这三个数的和为______ .14.一个多项式与的和是,那么这个多项式是______ .15.单项式与是同类项,则______ .16.若与的和仍是单项式,则的值为______ .17.写出的一个同类项:______.18.当______ 时,与是同类项,它们合并后的结果为______ .19.已知代数式与的和是,则______ .20.的相反数是______,______,最大的负整数是______.21.如果m、n是两个不相等的实数,且满足,,那么代数式______ .22.若,,则的值为______.三、计算题23.先化简,再求值:,其中.24.先化简,再求值:,其中:,.25.化简:,并求当,时的值.26.若,求的值.27.先化简,再求值:,其中,.28.化简:29.有一道题目,是一个多项式减去,小强误当成了加法计算,结果得到,正确的结果应该是多少?四、解答题30.已知,,求的值,其中,.答案和解析【答案】1. B2. A3. C4. B5. B6. A7. B8. B9. B10. C11. B12. C13. 6n14.15. 216. 1617. 答案不唯一18. 2;19.20. ;;21. xx22.23. 解:原式,当时,原式.24. 解:原式,当,时,原式.25. 解:原式,当,时,原式.26. 解:原式,把代入得:原式.27. 解:原式,当,时,原式.28. 解:原式29. 解:这个多项式为:所以正确的结果为:.30. 解:,,,,原式,,把,代入得:.。
七年级数学上册《第六章整式的加减》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算2a-a的正确结果是( )A.-2a2B.1C.2D.a2.下列各式计算正确的是()A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mnD.3ab2﹣5b2a=﹣2ab23.下列各项中,计算结果正确的是( )A.5a+5b=10abB.a-(b+c-d)=a-b-c+dC.11m3-2m3=9D.a+2(b-c)=a+2b-c4.已知一个三角形的周长是3m-n,其中两边长的和为m+n-4,则这个三角形的第三边的长为( )A.2m-4B.2m-2n-4C.2m-2n+4D.4m-2n+45.已知P=-2a-1,Q=a+1且2P-Q=0,则a的值为( )A.2B.1C.-0.6D.-16.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是( )A.4x+yB.12x+2yC.8x+2yD.14x+6y7.若B是一个四次多项式,C是一个二次多项式,则“B﹣C”( )A.可能是七次多项式B.一定是大于七项的多项式C.可能是二次多项式D.一定是四次多项式8.已知a,b两数在数轴上对应的点的位置如图,则化简式子|a+b|﹣|a﹣2|+|b+2|的结果是( )A.2a+2bB.2b+3C.2a﹣3D.﹣1二、填空题9.学校餐厅有10a桶花生油,周一用去1.5a桶,周二用去3.5a桶,周三运进7a桶,现在还有_______桶花生油.10.两个多项式的和是5x2﹣4x+5,其中一个多项式是﹣x2+2x﹣4,则另一个多项式是 .11.减去-2m等于m2+3m+2的多项式是.12.多项式____________与m2+m-2的和是m2-2m;13.若多项式x2-3kxy-3y2+6xy-8不含xy项,则k= .14.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=.三、解答题15.化简:4xy﹣3y2﹣3x2+xy﹣3xy﹣2x2﹣4y2.16.化简:2a+2(a+1)﹣3(a﹣1);17.化简:﹣3(x2+2xy)+6(x2﹣xy)18.化简:3(2x2﹣y2)﹣2(3y2﹣2x2)19.若(x+2)2+|y﹣1|=0,求4xy﹣2(2x2+5xy﹣y2)+2(x2+3xy)的值.20.已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与13ab y的同类项,求2B﹣A的值.参考答案1.D2.D3.D4.C5.C6D.7.D.8.A.9.答案为:12a.10.答案为:6x2﹣6x+9.11.答案为:m2+m+212.答案为:-3m+213.答案为:2.14.答案为:0.15.解:原式=(4+1﹣3)xy+(﹣3﹣4)y2+(﹣3﹣2)x2=2xy﹣7y2﹣5x2.16.解:2a+2(a+1)﹣3(a﹣1)=2a+2a+2﹣3a+3=a+5.17.解:原式=﹣3x2﹣6xy+6x2﹣6xy=3x2﹣12xy.18.原式=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2;19.解:∵(x+2)2+|y﹣1|=0∴x=﹣2,y=1原式=4xy﹣4x2﹣10xy+2y2+2x2+6xy=2y2﹣2x2=2﹣8=﹣620.解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与13ab y的同类项∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2 当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.。
3.3.3整式的加减(3)(A)基础1、下列计算正确的是()A. 4a-2b=2abB. 2a2+3a3=5a3C. 3a2-a2=2D. 5x2y2-3x2y2=2x2y22若单项式3xy2与某个单项式合并后结果是5xy2,则这个单项式是()A.2xy2B.2C.8xy2D.2x2y3、当x=-2.y=2时,代数式x-y-2x+2y+1值是()A.7B.5C.3D.14、根据如图所示的计算程序,若输出的值y=-1,则输入的值x为()A.2 B.-4或1或-1 C.-4或1 D.-4或-15、三个连续奇数中,最小的一个是2n-1,则这三个连续奇数的和是6、若代数式162++9x的值为-x322-+-xx的值是1,则17、已知a,b互为相反数,c,d互为倒数,则代数式5(a+b)2025+10(cd)2024的值为8、先化简,再求值:(1)7x2-3x2-2x-2x2+5+6x,其中x=-2;(2)5a-26+3b-4a-1,其中a=-1,b=2;(3)2x 2-3xy +y 2-2xy -2x 2+5xy -2y +1,其中x =722 ,y =-1.9、已知21a 3+x b 8-y 与3a 4b 6是同类项,求3y 3-4x 3y -4y 3+2x 3y 的值.10、如图所示,长方形ABCD 中,AB 的长为a ,BC 的长为b .⑴请用含有a 、b 的代数式表示阴影部分的面积S ;⑵若a=2,b=5,求阴影部分的面积(结果保留π).(B )提高11、关于代数式2x 2+7xy +3y 2+x 2-kxy +5y 2,(1)当k 为何值时,代数式中不含xy 项?(2)在(1)的前提下,如果x =2,y =-1,代数式的值是多少?(3)在做第二个问题时,马小虎同学把y =-1,错看成y =1,可是他得到的最后结果却是正确的,你知道这是为什么吗?12、求多项式2(x -2y )2-(2x -y )+(x -2y )2-3(2x -y )的值,其中x =-1,y =21 .(提示:分别把x -2y ,2x -y 看作一个整体)。
4.2 整式的加减第 1 课时合并同类项A层知识点一同类项的概念1.下列各式中,与2a²b 为同类项的是 ( )A.-2a²bB.-2abC.2ab²D.2a²2.下面不是同类项的是 ( )A.2m 与 2nB.-2a³b与ba³C.−x²y²与6x²y²D.-2 与53.已知−x³y²与3y²xⁿ是同类项,则n 的值为( )A.2B.3C.5D.2 或3【变式题】(1)若5⁴x" 与5"x³是同类项,则n=(2)如果单项式3xᵐy与−5x³yⁿ是同类项,那么m+n= .4.在多项式0.8x²−0.8x−1+0.2x²−1.3x²−0.2x+3 的各项中,与 0.8x²是同类项的是 ,与一0.8x 是同类项的是,与-1是同类项的是 .知识点二合并同类项及其应用5.下列运算中,正确的是 ( )A.2a+3b=5abB.3a²−2a²=1C.4a²b−3ba²=a²bD.-a-2a-3a=06.若等式2a³+□=3a³成立,则“□”填写的单项式是 ( )A. aB. a²C. a³D.17.某工厂第一年生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为( )A.0.2aB. aC.1.2aD.2.2a8.把多项式2x²−5x+x³+4x+3x²合并同类项后,所得结果按x 的降幂排列为9.合并下列各式中的同类项:(1)3x+5x-4x;(2)3a²−2a+4a²−7a;(3)−12mn+5mn2−1+13mn−5n2m+1.10.小明用3天看完一本课外读物,第一天看了a 页,第二天看的比第一天多50 页,第三天看的比第二天少8 5 页.(1)用含 a 的式子表示这本书的页数;(2)当a=50时,这本书的页数是多少?B层11.若关于x的多项式mx³+x²+2x³−2不含三次项,则m 的值为( )A.2B.1C.-2D.-112.如果单项式−12x m+3y与2x⁴yⁿ⁺³(m,n为常数)的差是单项式,那么(m+n)²⁰²ˡ的值为( )A.--1B.0C.1D.2²⁰21【变式题】若ax²yᵇ与3xᶜ⁻¹y²合并的结果为0,则a-b+c=13.如图,左边三角形的面积为2m²−3m,右边三角形的面积为9+5m,空白部分的面积为m²,则图中阴影部分的面积为 .14.先合并同类项,再求式子的值:(1)32m2−2m−52m2+6m−5,其中m=2;(2)5x2y2+14xy−2x2y2−16xy−3x2y2,其中x=3,y=-4;(3)14(x−y)−0.3(x−y)+0.75(x−y)+310(x−y)−2(x−y)+7,其中x=y+3.15.七年级有三个班,这三个班在参加植树造林活动中,一班植了 x 棵树,二班植的树比一班的2倍少5棵,三班植的树比一班的13多10棵.(1)求这三个班共植树多少棵;(2)当x=60时,三个班共植树多少棵?C层16.有这样的一道题:“当x=14,y=2022时,求多项式7x³−6x³y+3x²y+3x³+6x³y−3x²y−10x³+3的值.”小聪同学说题目中给出的条件x=14,y=2022”是多余的,他的说法有道理吗?为什么?第 2 课时去括号A层知识点一去括号1.式子-a+(b-2)去括号的结果是 ( )A.-a-b-2B. a+b-2C.-a-b+2D.-a+b-22.将a—(b—c)去括号后,结果正确的是 ( )A. a-b-cB. a-b+cC. a+b+cD. a+b-c3.下列去括号正确的是 ( )A.--(a+b)=-a+bB.-2(a-2b)=-2a+4bC.-(-a-b)=-a+bD.-(2a-b)=-2a-b知识点二去括号化简4.化简-2a+(2a-1)的结果是 ( )A.-4a-1B.4a-1C.1D.-15.化简:(1)2a²−(a²+2)=;(2)(5a²+2a)−4(2+2a²)=.6.化简:(1)x+(-3y-2x);(−2a−b);(2)(a+2b)−12(3)3(x-3y)-2(y-2x)-x;(4)2a²+(6a²+2a−1)−(3−4a+4a²).知识点三去括号化简的应用7.一条线段长为6a+8b,将它剪成两段,其中一段长为2a+b,则另一段长为 ( )A.4a+5bB. a+bC.4a+7bD. a+7b8.三个连续奇数,最小的一个是2n+1(n为自然数),则这三个连续奇数的和为 ( )A.6n+6B.2n+9C.6n+9D.6n+39.笔记本的单价是x 元,圆珠笔的单价是 y 元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔,小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱.B层10.下列各式中,不能由a-b+c 通过变形得到的是 ( )A. a-(b-c)B. c-(b-a)C.(a-b)+cD. a-(b+c)11.已知一个数为三位数,十位数字是a,个位数字比a 小2,百位数字是a 的2倍,用多项式表示这个数正确的是 ( )A.21a-2B.211a-2C.200a-2D.3a-212.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,则所捂的一次二项式为 .+(m²−m−2)=m²−2m,剩下的地种植时令13.一个菜地共占地(6m+2n)亩,其中(3m+6n)亩种植白菜,种植黄瓜的地是种植白菜的地的13蔬菜,则种植时令蔬菜的地有亩.14.先化简,再求值:(1)(b+3a)-2(2-5b)-(1-2b-a),其中a=2,b=1;a2b+ab2)−[3a2b−2(1−ab--2ab²)],其中a 为最大的负整数,b为最小的正整数.(2)2ab+6(1215.已知A=2a²+3ab−2a−1,B=a²+ab+1.(1)求A-2B;(2)若(1)中的式子的值与a 的取值无关,求b 的值.16.为了在中小学生中进行爱国主义教育,我校七年级开展了“纪念一二·九”红领巾知识竞赛活动,并设立了一、二、三等奖.根据需要购买了100件奖品,其中二等奖的奖品件数比一等奖奖品的件数的3倍多10,各种奖品(1)请用含 x 的式子把表格补全;(2)求购买 100件奖品所需的总费用(用含 x的整式表示);(3)若一等奖奖品购买了 10件,求共需花费的钱数.第 3 课时 整式的加减A 层知识点一 整式的加减1.化简 2a+b-2(a-b)的结果为 ( )A.4aB.3bC.-bD.02.化简 2(x +12)−13(3x −6)的结果是 ( )A.3x+3B.3x-3C. x+3D. x-33.多项式 2x³−10x²+4x −1与多项式 3x³− 4x −5x²+3相加,合并后不含的项是 ( )A.三次项B.二次项C.一次项D.常数项4.计算:(1)2(x²−2x )−(x²−2x );(2)4(2x²−y²)−3(3y²−2x²);(3)−a²b +(3ab²−a²b )−2(2ab²−a²b ).5.如图,约定:下方箭头共同指向的整式等于上方两个整式之和.(1)求整式 N;(2)当x=-2时,求 N 的值.知识点二整式加减的应用6.某地居民生活用水收费标准如下:每月用水量不超过17 立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为 ( )A.20a 元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元7.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为千米/时.8.一个长方形一边长为7a—4b+5,另一边长为2b--a+1.(1)用含有a,b的式子表示这个长方形的周长;(2)若a,b满足3a-b=5,求它的周长.B层9.若多项式−ax²+x与多项式bx²−3x的差是一个单项式,则a 与b的关系是 ( )A. a+b=0B. a-b=0C. ab=1D. ab=-110.如果M=4x²−5x+12,N=2x²−5x+9,那么 M和N 的大小关系是 ( )A. M<NB. M=NC. M>ND.无法判断11.数 a,b 在数轴上的位置如图所示,化简:|2a-b|--|b-a|+|b|= .-2 b -1 0 a 1 212.若A=x²+3xy+y²,B=x²−3xy+y²,则A--[B+2B--(A+B)]化简后的结果为 (用含x,y 的式子表示).13.(1)化简:1—[6xy—2(4xy—2)—x²y]+ 4x²y;(2)先化简,再求值:−13(a3b−ab)+ab3−ab−b2−12b+13a3b,其中a=2,b=1.14.一辆大客车上原有乘客(3m-n)人,中途一半的乘客下车,又上来若干乘客,使车上共有乘客(8m--5n)人,问中途上车的乘客有多少人?当m=10,n=8时,中途上车的乘客有多少人?C层15.阅读理解:如果5a+3b=-4,求多项式2(a+b)+4(2a+b)的值.小颖同学提出了一种解法如下:原式=2a+2b+8a+db=1 0a+6b,把式子5a+3b=—4 两边同时乘以 2,得 10a+6b=—8.仿照小颖同学的解题方法,完成下面的问题:(1)如果−a²=a,那么a²+a+1=;(2)已知a-b=-3,求3(a-b)-5a+5b+5 的值;(3)已知a²+2ab=−2,ab−b²=−4求2a²+72ab+12b2的值.第 1 课时合并同类项1. A2. A3. B 【变式题】(1)3 (2)44.0.2x²,−1.3x²−0.2x35. C6. C7. D 88.x³+5x²−x9.解:(1)原式=4x. (2)原式=7a²−9a.(3)原式=−16mn.10.解:(1)这本书的页数为a+a+50+a+50-85=3a+15.(2)当a=50时,3a+15=3×50+15=165.答:当a=50时,这本书的页数是165.11. C 12. A 【变式题】—2 13.2m+914.解:(1)原式: =−m²+4m−5..当m=2时,原式=-1.(2)原式=112xy.当x=3,y=--4 时,原式=--1.(3)原式=-(x-y)+7.由x=y+3,得原式=--(y+3-y)+7=-3+7=4.15.解:(1)由题意得二班植树(2x—5)棵,三班植树(13x+10)棵x+2x−5+13x+10=(103x+5)(棵).答:三个班共植树(103x+5)棵.(2)当x=60 时, 103x+5=103×60+5=205.答:当x=60时,三个班共植树 205棵.16.解:小聪的说法有道理.理由如下:因为7x³−6x³y+3x²y+3x³+6x³y−3x²y−10x³+3=(7+3−10) x³+(6−6)x³y+(3−3)x²y+3=3,,所以无论 x,y 取何值,此多项式的值总等于3,即此多项式的值与x,y的取值无关.故小聪的说法有道理.第 2 课时去括号1. D2. B3. B4. D5.(1)a²-2( (2)−3a²+2a−86.解:(1)原式=-x-3y. (2)原式=2a+52b.(3)原式=6x-lly. (4)原式: =4a²+6a−4.7. C 8. C9.解:(1)由题意得 3x+6y+6x+3y=9x+9y.答:买这些笔记本和圆珠笔,小红和小明一共花费了(9x+9y)元.(2)由题意得(6x+3y)--(3x+6y)=3x-3y.因为每本笔记本比每支圆珠笔贵2元,即x--y=2,所以3x-3y=6.答:小明比小红多花费了6元钱.10. D 11. B 12.2—m13.(2m—6n) 解析:种植时令蔬菜的地的面积为6m+2n−[(3m+6n)+13(3m+6n)]=6m+2n-4m-8n=(2m—6n) (亩).14.解:(1)原式=b+3a--4+10b--1+2b+a=13b+4a--5.当a=2,b=1时,原式=13×1+4×2-5=13+8-5=16.(2)因为a 为最大的负整数,b为最小的正整数,所以 a=--1,b=1.原式=2ab+ 3a²b+6ab²−(3a²b−2+2ab+4ab²)=2ab+3a²b+6ab²−3a²b+2−2ab−4ab²=2ab²+2.当a=-1,b=1时,原式= 2×(−1)×1²+2=0.15.解:(1)因为A=2a²+3ab−2a−1,B=a²+ab+1,所以. A−2B=2a²+3ab−2a−1−2(a²+ab+1)=2a²+3ab−2a−1−2a²-2ab-2=ab-2a-3.(2)因为A-2B=(b-2)a-3,式子的值与a 的取值无关,所以b-2=0.所以b=2.16.解:(1)3x+10 90-4x(2)购买 100 件奖品的总费用为 22x +15(3x+10)+5(90-4x)=(47x+600)元.(3)当x=10时,总费用为 47×10+600=1070(元).答:共需花费1070元.第 3课时整式的加减1. B2. C3. C4.解:(1)原式=x²−2x.(2)原式=14x²−13y².(3)原式=−ab².5.解:(1)整式N=3x²+2x+1+(−4x²+2x−5)=3x²+2x+1−4x²+2x−5=−x²+4x−4.(2)当x=-2时,N=-4-8-4=-16.6. D7.3b8.解:(1)这个长方形的周长为2(7a--4b+5)+2(2b--a+1)=14a--8b+10+4b-2a+2=12a-4b+12.(2)因为3a--b=5,则4(3a--b)=12a-4b=20.所以该长方形的周长为 12a-4b+12=20+12=32.9. A 10. C 11. a-b 12.12xy13.解:(1)原式=1−(6xy−8xy+4−x²y)+4x²y=1−6xy+8xy−4+x²y+4x²y=2xy−3+5x²y,(2)原式=−13a3b+13ab+ab3−12ab+12b−12b+13a3b=−16ab+ab3.当a=2,b=1时,原式=−16×2×1+2×13=53.14.解: (8m−5n)−12(3m−n)=132m−92n.当m=10,n=8时, 132m−92n=132×10−92×8=65−36=29.答:中途上车的乘客有(132m−92n)人.当m=10,n=8时,中途上车的乘客有29人.15.解:(1)1(2)因为a-b=-3,所以-5a+5b=--5×(--3)=15.所以原式=3×(-3)+15+5=11.(3)因为a²+2ab=−2,ab−b²=−4,所以2a2+4ab=−4,12b2−12ab=−4×(−12)=2.则原式=2a2+4ab−12ab+12b2=−4+2=-2.。
7.1 整式的加减法同步练习
【基础能力训练】
一、升幂排列与降幂排列
1.把多项式x2+1+x+x3按x升幂排列,得_________________________________.
2.把多项式-3
2
x2-1+3x+
1
2
x3重新排列:
(1)按x升幂排列,得_________________________________.
(2)按x降幂排列,得_________________________________.
3.把多项式2x2y-4y3+5xy2重新排列:
(1)按x降幂排列,得_________________________________.
(2)按y升幂排列,得_________________________________.
4.把多项式2x3y-4y2+5x2-3重新排列:
(1)按x降幂排列,得_________________________________.
(2)按y升幂排列,得_________________________________.
二、合并同类项
5.下列各题合并同类项的结果对不对?若不对,请改正.
(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-4x2=3;(4)9a2b-9ba2=0。
6.合并下列多项式中的同类项:
(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b
(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-1
2
a2b
7.填空
(1)如果3x k y与-x2y是同类项,那么k=________.
(2)如果-3x2y3k与4x2y6是同类项,那么k=________.
(3)如果3x2y k与-x2是同类项,那么k=________.
(4)如果3a x+1b2与-7a3b2y是同类项,那么x=______,y=______.8.先去括号,再合并同类项:
(1)(2x+3y)+(5x-4y);(2)(8a-7b)-(4a-5b)
(3)(8x-3y)-(4x+3y-z)+2z;(4)(2x-3y)-3(4x-2y)
(5)3a2+a2-2(2a2-2a)+(3a-a2)(6)3b-2c-[-4a+(c+3b)]+c
三、整式的加减应用
9.填空:
(1)3x与-5x的和是________.
(2)3x与-5x的差是________.
(3)a-b,b-c,c-a三个多项式的和是________.
10.若两个单位式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.11.求3a-2ab+6与5a-6ab-7的和与差.
12.先化简,再求值:5(3a2b-ab2)-(ab2+3a2b),其中a=1
2
,b=-1.
13.求下列式子的值:2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3.
【综合创新训练】一、创新应用
14.把多项式2π+4
3
r3-πr2-r按r升幂排列.
15.已知3x a+1y k-2与2
5
x2是同类项,求2a2b+3a2b-
1
2
a2b的值.
二、开放探索
16.若P是关于x的三次三项式,Q是关于x的五次三项式,则P+Q是关于x的_____次多项式,P-Q是关于x的______次多项式.
17.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.
三、拓展延伸
18.已知整式2x2+ax-y+6与整式2bx2-3x+5y-1的差与字母x的值无关,试求代数式2(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)的值.
四、趣味数学
19.已知3a-5b+19=0,a+8b-1=0,不用求出a,b的值,•你能计算出下列代数式的值吗?
(1)-12a-9b (2)4a-26b
20.为了加强地球和月球,人们在地球和月球上各加上了一道铁箍,•现在想把铁箍各向外扩展1米,问哪个所增加的铁箍长.
五、探究学习
取一副扑克牌中各种花色的一至九点共36张牌,•每次取出其中的两张牌按从左到右的顺序组成一个两位数,再交换它们左右的位置,得到一个新的两位数,•最后求出这两个两位数的和,并分析所得和数有什么规律,你能说明理由吗?
答案:
【基础能力训练】
1.1+x+x2+x3
2.(1)-1+3x-3
2
x2+
1
2
x3(2)
1
2
x3-
3
2
x2+3x-1
3.(1)-4y3+5xy2+2x2y (2)2x2y+5xy2-4y3
4.(1)2x3y+5x2-4y2-3 (2)5x2-3+2x3y-4y2
5.(1)×应=5x2(2)×3x与2y不是同类项,不能合并(3)×应=3x2(4)∨
6.(1)2x2-1 (2)a2b (3)a3-ab2+b3(4)9
2
a2b
7.(1)2 (2)2 (3)0 (4)2 1
8.(1)7x-y (2)4a-2b (3)4x-6y+3z (4)-10x+3y (5)7a-a2(6)4a-2c
9.(1)-2x (2)8x (3)0
10.另一个加式=(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.
11.和是8a2-8ab-1,差是-2a2+4ab+13.
12.化简,得12a2b-6ab2,把a=1
2
,b=-1化入化简,得-6.
13.化简,得5mn-6m-6n,变形为5mn-6(m+n),把mn=-3,m+n=2代入得-27.
【综合创新运用】
14.2π-r-πr2+4 3
r3
15.由同类项的定义得
121
202
a a
b b
+==
⎧⎧
⎨⎨
-==
⎩⎩
解得,化简2a2b+3a2b-
1
2
a2b=
9
2
a2b,
把a=1,b=2代入得a2b=9
2
×12×2=9.
16.五五解析:无论P+Q还是P-Q,Q中的最高次项5次项都是消不掉的,•因为P只是一个三次多项式.
17.由A+B+C=0,得C=-A-B=-(a2+b2-c2)-(-4a2+2b2+3c2)=-a2-b2+c2+4a2-2b2-3c2=3a2-3b2-2c2.
18.(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1 =(2-2b)x2+(a+3)•x-6y+7,
因为它们的差与字母x的取值无关,所以2-2b=0,a+3=0,解得a=-3,b=1.化简2(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)得6a2-4a2b+5ab2+4b3,
然后把a=-3,b=1代入6a2-4a2b+5ab2+4b3得7.
19.由3a-5b+19=0得3a-5b=-19①,由a+8b-1=0,得a+8b=1②,将①+②得4a+3b=-•18,①-②得2a-13b=-20
(1)-12a-9b=-3(4a+3b)=-3×(-18)=54
(2)4a-26b=2(2a-13b)=2×(-20)=-40.
20.设地球的半径为R米,月球的半径为r米,则地球上的铁箍增加的长度为2π(•R+1)-2πR=-2π,
月球上的铁箍增加的长度为2π(r+1)-2πr=2π,
所以两者所增加的铁箍的长度是相同的.
【探究学习】
所得的和数都是11的倍数.。