八年级数学优质课一等奖教学设计3篇
- 格式:docx
- 大小:18.58 KB
- 文档页数:9
八年级数学公开课获奖教案设计优秀3篇作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
写教案需要注意哪些格式呢?这次帅气的小编为您整理了八年级数学教案优秀3篇,如果对您有一些参考与帮助,请分享给最好的朋友。
八年级数学教案篇一一、教学目标1、使学生理解并掌握分式的概念,了解有理式的概念;2、使学生能够求出分式有意义的条件;3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。
二、重点、难点、疑点及解决办法1、教学重点和难点明确分式的分母不为零。
2、疑点及解决办法通过类比分数的意义,加强对分式意义的理解。
三、教学过程【新课引入】前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)【新课】1、分式的定义(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:用、表示两个整式,就可以表示成的形式。
如果中含有字母,式子就叫做分式。
其中叫做分式的分子,叫做分式的分母。
(2)由学生举几个分式的例子。
(3)学生小结分式的概念中应注意的问题。
①分母中含有字母。
②如同分数一样,分式的分母不能为零。
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]2、有理式的分类请学生类比有理数的分类为有理式分类:例1 当取何值时,下列分式有意义?(1);解:由分母得。
∴当时,原分式有意义。
(2);解:由分母得。
∴当时,原分式有意义。
(3);解:∴恒成立,∴取一切实数时,原分式都有意义。
(4)。
解:由分母得。
∴当且时,原分式有意义。
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?例2 当取何值时,下列分式的值为零?(1);解:由分子得。
1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理教学设计省一等奖《勾股定理教学设计省一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!第1篇勾股定理教学设计省一等奖教学目标:一知识技能1.理解勾股定理的逆定理的证明方法和证明过程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;二数学思考1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.三解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.四情感态度1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.教学重难点:一重点:勾股定理的逆定理及其应用.二难点:勾股定理的逆定理的.证明.教学方法启发引导分组讨论合作交流等。
教学媒体多媒体课件演示。
教学过程:一复习孕新,引入课题问题:(1) 勾股定理的内容是什么?(2) 求以线段ab为直角边的直角三角形的斜边c的长:① a=3,b=4② a=2.5,b=6③ a=4,b=7.5(3) 分别以上述abc为边的三角形的形状会是什么样的呢?二动手实践,检验推测1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?三探索归纳,证明猜想问题1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC的三边长满足,试证明△ABC是直角三角形,请简要地写出证明过程.教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.四尝试运用,熟悉定理问题1例1:判断由线段组成的三角形是不是直角三角形:(1)(2)2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?教师巡视,了解学生对知识的掌握情况.特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题五类比模仿,巩固新知1.练习:练习题13.2.思考:习题18.2第5题.部分学生演板,剩余学生在课堂练习本上独立完成.小结梳理,内化新知六1.小结:教师引导学生回忆本节课所学的知识.2.作业:(1)必做题:习题18.2第1题(2)(4)和第3题;(2)选做题:习题18.2第46题.第2篇勾股定理教学设计省一等奖在教学工作者开展教学活动前,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。
八年级数学下册《提公因式法》教学设计一等奖《八年级数学下册《提公因式法》教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、八年级数学下册《提公因式法》教学设计一等奖一、教材分析本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.二、学生知识状况分析学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.三、教学目标知识与技能1、经历探索多项式各项公因式的过程,并在具体问题中能确定多项式的公因式。
2、会用提公因式法把多项式分解因式。
3、培养学生解决问题的能力。
过程与方法在探索过程中培养学生解决问题的主动性,加强学生的直觉思维并渗透化归的思想。
情感、态度与价值观在数学活动中培养学生的合作意识和创新精神,体会数学知识间的整体联系。
教学重点:会用提公因式法分解因式。
教学难点:正确找出多项式中各项的公因式,并注意各项变形的`符号问题。
四、教学过程设计(一)温故知新活动内容:计算:采用什么方法?依据是什么?活动目的:旨在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔。
优秀数学教学设计(优质3篇)1.优秀数学教学设计第1篇一、教学内容分析:本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
八年级上册数学优秀教案5篇八年级上册数学优秀教案篇1教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值. 重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运二、随堂练习,巩固深化课本P119练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:八年级上册数学优秀教案篇2一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗呢若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2) 是二次根式,而,提问学生:2是二次根式吗显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式例2 x是怎样的实数时,式子在实数范围有意义解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义. 例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3) ,且x≠0,∴x 0,当x 0时,是二次根式.(4) ,即,故x-2≥0且x-2≠0, ∴x 2.当x 2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1 0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1 0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.八年级上册数学优秀教案篇3《矩形》教案教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件。
八年级数学教案优秀八年级数学教案优秀5篇作为一位杰出的老师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
如何把教案做到重点突出呢?下面是小编帮大家整理的八年级数学教案优秀5篇,仅供参考,希望能够帮助到大家。
八年级数学教案优秀5篇1一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx 年上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案优秀5篇2一、课堂导入回顾平行四边的性质定理及定义1.什么叫平行四边形?平行四边形有什么性质?2.将以上的性质定理,分别用命题形式叙述出来。
(如果……那么……)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?二、新课讲解平行四边形的判定:(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕1 一、教学目的:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的打破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的打破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0。
而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
〔1〕、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
〔2〕、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义。
2、教材P140的考虑的意图。
〔1〕、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题〔2〕、帮助学生理解表中所表达出来的信息,培养学生分析数据的才能。
八年级上册数学教案(优秀6篇)初二数学上册教案篇一教学目标1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,Ⅰ并且能够作出一个简单平面图形关于某一直线的轴对称图形,Ⅰ还能够通过轴对称变换来设计一些美丽的图案。
这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。
来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,Ⅰ也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅰ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。
同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?Ⅰ底边上的高所在的直线呢?结论:等腰三角形是轴对称图形。
它的对称轴是顶角的平分线所在的直线。
因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
人教版八上数学教案优秀8篇出色的教案使教师可以提升教学效率和课堂效果,提前编写教案能够帮助教师更好地规划课堂活动,提升学生的积极性,以下是本店铺精心为您推荐的人教版八上数学教案优秀8篇,供大家参考。
人教版八上数学教案篇1教学要求:1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。
2.培养学生对看到的、听到的事物进行了深入理解和准确把握。
3.观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。
教学重点:培养学生的对看到的、听到的事物进行了深入理解和准确把握。
教学难点:开拓学生是思维能力。
教学过程:一、导入新课:要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。
所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。
愿这一节课能使你的头脑更灵活。
二、知识新授与应用1.课件出示:一组有趣的图片图1、柱子是圆的还是方的?仔细看一看。
让学生先同桌互相说一说,看到了什么?图2、看着黑点身体前后移动。
让学生跟着要求做,然后说一说看到的。
图3、有多少个黑点?图4、是静的还是动的?图5:弗雷泽螺旋是最有影响的幻觉图形。
你所看到的好像是个螺旋,但其实它是一系列完好的同心圆!这幅图形如此巧妙,以至于会促使你的手指沿着错误的方向追寻它的轨迹教师介绍学生认识。
2、练习。
三、回顾小结:学生谈收获。
人教版八上数学教案篇2圆的初步认识教学内容:小学数学新教材四年级第一学期(试用本)p74~76、教学目标:⒈从生活中感知圆,并抽象出圆。
⒉通过不同办法画圆,建立圆的初步概念并认识圆心、半径。
⒊认识圆规并会用圆规按要求画圆。
⒋通过认识圆、画圆和欣赏圆,感受圆的美。
教学重点:通过各种学习活动,认识圆并建立圆的初步概念,认识圆心、半径。
教学难点:用圆规画圆。
教学过程:一、情景导入1、(出示ppt)提问:在这些物体中,你都发现了哪个图形?2、揭题:生活中我们到处都可以见到圆形。
初中数学教学设计一等奖三初中数学教学设计一等奖一等奖篇7摘要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。
针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。
这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。
关键词:相切;环节说明;分层体现;一、案例背景介绍(一)教学环境在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。
(二)学生情况我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。
因此这种情况特别适合分层教学。
(三)教材情况本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。
学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。
重点是圆的切线的判定定理和性质定理。
难点是判定定理的理解和性质定理证明中反证法的理解。
二、案例内容设计及说明环节一:复习引入通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切环节说明:俗话说书读百遍,其意自现。
数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。
而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。
《§1.2.2直角三角形》教学设计XXX 学校 XXX一、 教学内容解析本节课是北师大版八年级下册《三角形的证明》的第二节课,是在学生已经历了一般三角形全等的判定、勾股定理及其逆定理的验证等相关知识的基础上,对直角三角形全等的判定作进一步深入和拓展,同时又是进一步研究轴对称、等腰三角形、四边形等知识的工具性内容,具有不容忽视的基石作用,因此本节课在教材中起着承上启下的作用。
从认知基础的角度看,一方面,学生已经历了平行线的证明、勾股定理及其逆定理的 验证,理解几何命题之间的因果关系,这些都为“HL ”定理的合情推理奠定了基础。
另一方面,“HL ”定理是一般三角形全等判定的延伸。
从思想方法的角度看,“HL ”定理是学生通过动手操作,从特例到一般结论的研究,综合运用了勾股定理等相关旧知化为一般三角形全等的判定而获得,而定理在实际生活中的应用又是数学建模的过程。
因此,本节的灵魂是化归思想、类比思想、模型思想、特殊与一般思想的具体化身。
从数学本质的角度看,实验-观察-归纳-猜想-验证是获得定理的关键,而灵活运用定理是知识转化为能力的催化剂。
根据以上分析,确定本节课的教学重点为: 直角三角形全等的判定定理“HL ”的探究与应用。
二、 目标与目标解析:依据《新课程标准》及学生的实际情况制定教学目标如下:1、知识与技能目标:能通过探索掌握判定直角三角形全等的“斜边、直角边”定理。
2、过程与方法目标:经历“探索--发现--猜想--证明”的过程,体会合情推理在获得结论中发挥的作用。
3、情感与价值目标:在自主探究定理证明的过程中培养勇于探索的精神,在合作交流环节中感受合作获得新知带来的成功喜悦,激发对数学证明的兴趣和信心。
三、 教学诊断分析1、预测在“发散探究”环节,由于学生存在差异,部分学生会存在不同的问题,例如, 变式2中,可能会出现由“C B BC ''=,C A AC ''=,A A '∠=∠”不能得出结论的错误判断这种情况。
第1篇田忌赛马数学一等奖教学设计设计意图:1.积极探索《新课程标准》倡导的自主、合作、探究的学习方式。
2.通过各种方式促使学生主动、活泼、全面地发展。
3.力求个性化的、情感化的阅读,在读中感悟形象、激发感情。
教学目标:1.初步学习本课的生字新词。
2.培养学生的朗读、表达能力。
3.任选文中某一人物,读中感受到该人物的人格魅力,激发学生对中国历史人物的兴趣。
教学重点、难点:1.重点:在阅读中感受人物的人格魅力。
2.难点:用自己的话简介人物。
教学准备:1.教学课件。
2.常规预习。
教学过程:一.导入。
1.出示赛马图片。
(仔细看图片,想一想:这是什么比赛?)(今天,我们要学一个古代赛马的故事。
)2.出示课题:16.田忌赛马二.新课学习。
1.看题质疑。
(看了题目,你想知道些什么?)重要问题:田忌跟谁赛马?是怎样比赛的?结果怎样?2.初读课文,解决问题。
①解疑课件逐步出示:②给课文分段。
③生字、新词学习。
3.深读课文。
过渡:出示人物志卡片。
(只有对人物相当熟悉,才能制做出一张好的.人物卡片。
)①自读课文。
要求:注意人物的言行和神态,让人物在你的脑海中活起来。
②选你认为最能使人物活起来的一段话,四人小组,分角色对话练习。
③汇报读。
学生评议(活了没有?)我仿佛看到4.研读课文。
①三个人物中,你们最喜欢哪一位?②学生选择其中一个人物,填写人物志卡片。
(怎么填才合适?从课文中找出有力的证据:相关的词、句、段落或对话。
)③投影仪展示学生作品,找出有力的证据,说说你为什么要这么填?④校对,出示教师准备的人物卡片。
三.总结谈话,激发兴趣。
(另外两位人物,我们可以在课后给他们制做一张更好看的人物志卡片。
我们古代的伟大人物还有很多很多,有兴趣的同学还可以去找一找他们的事迹,给他们也做一张人物志卡片。
)四.布置作业。
第2篇田忌赛马数学一等奖教学设计教学要求:理解课文内容,体会孙膑的足智多谋。
学习认真观察分析和科学的思想方法。
理解词语“扫兴、垂头丧气、目瞪口呆”等。
八年级数学获奖教案:《平行四边形》八年级数学获奖教案:《平行四边形》(通用12篇)作为一名教学工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。
那么问题来了,教案应该怎么写?下面是店铺整理的八年级数学获奖教案:《平行四边形》,希望能够帮助到大家。
八年级数学获奖教案:《平行四边形》篇1教学目标:1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:平行四边形面积公式的推导方法――转化与等积变形。
教学方法:利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:一、情境激趣二、自主探究古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。
可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。
老地主十分苦恼,不知如何是好。
这个难题同学们想想办法能解决吗?在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。
老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
第1篇数学教学设计一等奖教学目标:1、通过欣赏图案,体会图形排列的规律,感受图形的美。
2、用基本图形的平移、旋转、对称,设计自己喜欢的图案。
重点难点:1、通过欣赏图案,体会图形排列的规律,感受图形的美。
2、会利用基本图形的平移,设计自己喜欢的图案。
教学准备:课件、直尺、教具(小棒)教学过程:一、欣赏图案呈现教材中的图案让学生欣赏。
这些图案是怎样制作出来的.呢?引导学生用自己的语言描述图案的特点。
二、设计图案这些图案是怎样得到的,你想动手做一做吗?让学生自己选择一个图尝试画出来。
1、找出一个基本的图形。
2、在纸板上画出基本图形并剪下来。
纸板上的大小要与方格纸上的大小一样。
过程要求1、利用平移、旋转和对称,将基本图形画在方格纸上,组成美丽的图案。
2、同学之间互相交流。
三、课堂活动(一)完成课本35页的活动①1、活动准备。
取硬纸板一块,剪成正方形2、按课文要求制作图案。
3、将基本图形平移,形成一幅图案,并涂上你喜欢的颜色。
(二)完成课本35页的活动②让学生先观察这些基本图案是怎样得到的,然后选择其中一个设计美丽的花边。
(三)完成课本35页的活动③在附页中设计喜欢的图案三、总结回家收集漂亮的图案,看是怎样制作出来的,到全班交流。
教学反思:教材呈现了六幅图案,供学生欣赏,这六幅图分别是由对称、平移和旋转形成的。
体会图案形成过程能在方格纸上利用对称、平移和旋转设计简单的图案,本节课引导学生观察这六幅图案是怎样的得到的,用自己的语言描述图形成的过程,如第四幅图是由半圆通过旋转的得到的。
第2篇数学教学设计一等奖教学目标:1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。
初二数学优秀教案5篇作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。
那么写教案需要注意哪些问题呢?以下是小编为大家整理的初二数学优秀教案,仅供参考,希望能够帮助到大家。
初二数学优秀教案1教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________。
2.轴对称的三个重要性质_______________________________________________________。
二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?吸引学生让学生有一种解决难点的想法。
2.分析问题:分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
八年级上册数学教案优秀11篇八年级数学上册教案篇一教学目标知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
教学重难点重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
教学过程一、创设情境,故事引入情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?学生回答多项式乘以多项式。
教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。
错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
问题牵引计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
学生活动分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。
教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
学生活动讨论教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
八年级教案数学上册教案第一节:整数的认识与应用教学目标:1. 了解整数的概念与特点;2. 掌握整数的加法与减法运算方法;3. 能够在日常生活中灵活应用整数的相关知识。
教学重点:1. 整数的概念与特点;2. 整数的加法与减法运算方法。
教学难点:1. 整数的加法与减法运算方法的运用。
教学过程:一、导入(5分钟)1. 出示一个温度计图,让学生观察,并回答问题:温度计的正数和负数分别代表什么意思?2. 引导学生思考并分享他们在日常生活中遇到的正数和负数的例子。
二、新知讲解(10分钟)1. 概念讲解:教师简明扼要地讲解整数的概念,并重点说明整数的特点。
2. 加法运算方法:教师通过具体的例子,展示整数的加法运算方法,并解释其中的规律。
3. 减法运算方法:教师结合实际生活中的例子,演示整数的减法运算方法,并解释相关的概念。
三、示范与实操(15分钟)1. 教师示范加法与减法运算的步骤,并让学生跟随进行实操。
2. 教师板书相关的运算规则与注意事项,学生进行记录。
3. 学生自主完成练习册上的相关练习题,比较答案并讨论。
四、拓展应用(15分钟)1. 教师设计一些生活中实际的情境问题,让学生运用所学知识解决问题。
2. 学生小组合作,完成一道较难的整数运算问题,并向全班展示他们的解题思路。
五、归纳总结(5分钟)1. 教师与学生一起回顾整节课的重点内容,并进行总结归纳。
2. 教师重新强调同学们在习题解答时,要仔细分析题目,确定运算符号,按步骤计算。
六、作业布置(5分钟)1. 要求学生完成课后习题,巩固所学知识。
2. 鼓励学生在日常生活中积极应用整数的相关知识。
学生自主学习提示:1. 复习整数的概念与特点;2. 多进行整数的加法与减法运算练习,并注意运算符号的使用;3. 注意观察和发现日常生活中的整数情景,并将其运用到习题中。
教学反思:通过本节课的教学,学生对整数的概念与特点有了更加清晰的认知,并学会了整数的加法与减法运算方法。
第1篇教学设计
作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。
一、教学目的:
1、掌握菱形概念,知道菱形与平行四边形的关系;
2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;
二、重点、难点
1、教学重点:菱形的性质1、2;
2、教学难点:菱形的性质及菱形知识的综合应用;
三、例题的意图分析
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;
四、课堂引入
1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;
《18、2、2菱形》课时练习含答案;
5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )
A、矩形
B、菱形
C、正方形
D、梯形
答案:B
知识点:等边三角形的性质;菱形的判定
解析:
解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、
6、用两个边长为a的等边三角形纸片拼成的四边形是( )
A、等腰梯形
B、正方形
C、矩形
D、菱形
答案:D
知识点:等边三角形的性质;菱形的`判定
解析:
解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、
分析:本题利用了菱形的概念:四边相等的四边形是菱形、
《菱形的性质与判定》练习题
一选择题:
1、下列四边形中不一定为菱形的是( )
A、对角线相等的平行四边形
B、每条对角线平分一组对角的四边形
C、对角线互相垂直的平行四边形
D、用两个全等的等边三角形拼成的四边形
2、下列说法中正确的是( )
A、四边相等的四边形是菱形
B、一组对边相等,另一组对边平行的四边形是菱形
C、对角线互相垂直的四边形是菱形
D、对角线互相平分的四边形是菱形
3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
A、菱形
B、对角线互相垂直的四边形
C、矩形
D、对角线相等的四边形
第2篇教学设计
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
第3篇教学设计
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。
一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。
所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。
统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表所用时间t(分钟)人数
20
30
40
50
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
答案1.(1).15. (2)28. 2. 165
六、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
部门A B C D E F G
人数1 1 2 4 2 2 5
每人创得利润20 5 2.5 2 1.5 1.5 1.2
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
年龄频数
28≤X<30 4
30≤X<32 3
32≤X<34 8
34≤X<36 7
36≤X<38 9
38≤X<40 11
40≤X<42 2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元2.约29岁3.60.54分贝。