19.2.2_菱形的判定(公开课).......
- 格式:ppt
- 大小:1.83 MB
- 文档页数:21
年级学科:八年级数学 主编: 邹玉珍 备课组长: 教导处审核: 编号:第 1页装订线批阅评价 19.2.2 菱形(2)姓名 班级 组别 自学完成时间 30 分钟【学习目标】1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2、经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法。
3、培养良好的思维意识以及合情推理的能力 ,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【重点、难点】重点:菱形的三个判定方法.难点:判定方法的证明方法及运用.【使用说明】通过用8分钟自己阅读本导学案和教材P99-100页课文内容,然后用20分钟内尽力通过独立思考完成导学案。
【旧知回顾】1、菱形的性质:从边看:_____________________________________从对角线看:_______________________________________菱形既是_____________图形,又是________________图形2、菱形的面积计算公式:_______________________________。
3、菱形的定义: 。
【新知探究】探究一 用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 结论: 。
探究二、用你认为是最简洁的方法画一个菱形.结论: 。
探究三 你能用菱形定义证明吗?菱形判定方法1 对角线互相垂直的平行四边形是菱形. 菱形判定方法2 四边都相等的四边形是菱形.探究四 如图,平行四边形ABCD 的两条对角线AC ,BD 相交于点O ,OA=3,OB=4,AB=5, (1)AC ,BD 互相垂直吗?为什么? (2)四边形ABCD 是菱形吗?为什么?第 2页装订线【巩固练习】1、如图AD 是△ABC 的角平分线,DE ∥AC ,DF ∥AB ,求证:四边形AEDF 是菱形。
18.2.2特殊的平行四边形——菱形《菱形的判定》一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.二、教学重点:菱形判定方法的探究.三、教学难点:菱形判定方法的探究及灵活运用.四、教学过程:活动1、引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。
(2)菱形的性质:2、想一想:同学们,我们在学习平行四边形的判定和矩形的判定时,我们首先想到的第一种方法是什么?那么类比着它们,菱形的第一种判定方法是什么?根据菱形的定义,可得菱形的第一个判定的方法:一组邻边相等的平行四边形是菱形.问题:除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法【问题牵引】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。
问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形。
O CB A教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在□ABCD中,对角线AC⊥BD,求证:□ABCD是菱形。
分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO,由∠AOB=∠AOD=90º及AO=AO,得ΔAOB≌ΔAOD,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD是菱形。
【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。
活动3、探究与归纳菱形的第三个判定方法有两条边相等、有三条边相等、有四条边相等的四边形是菱形吗?得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。
学生进行几何论证,教师规范学生的证明过程。
班级:组别:姓名:钢屯中学八年级导学案(2011-2012学年度第二学期)学科:数学编号:81个性天地课题19.2.2菱形的判定课型自学课总课时81 主创人刘国利教研组长签字王廷臣领导签字个性天地学习目标:1.能说出菱形的两个判定定理,并会用判定方法进行相关的论证和计算。
2.了解菱形的现实应用和常用判别条件。
学习重点:菱形的判定方法。
学习难点:探究菱形的判定条件并合理利用它进行论证和计算。
学法指导:1、学生独立阅读课本P99,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
导学流程:一、旧知回顾1.菱形和矩形分别比平行四边形多了哪些性质?2.怎样判定一个四边形是矩形?二、基础知识探究1.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?2.【探究】(教材P99的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1通过教材P99下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2三、综合应用探究1.99页例3(独立完成)2. 自学99页例三完成下题“在□ABCD中,对角线AC和BD相交于点O,并且AB=9,OB=6,OA=35.求证:(1)AC⊥BD(2)□ABCD是菱形吗?说说你的理由. (3)求四边形ABCD的面积.ODCBA四、达标反馈 1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是______ ;(3)对角线相等且互相平分的四边形是________ ;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
华师大版八下数学19.2菱形19.2.1菱形的性质说课稿一. 教材分析菱形是中学数学中的重要内容,它是一种四边形,四条边都相等,对角线互相垂直且平分的四边形。
华师大版八下数学19.2节讲述了菱形的性质,包括菱形的判定、对角线性质、对称性质等。
这部分内容是学生进一步学习几何图形的基础,也是中考的热点考点。
二. 学情分析八年级的学生已经学习了矩形、平行四边形等四边形,对四边形的性质有一定的了解。
但是,对于菱形这一特殊四边形的性质,学生可能较为陌生。
因此,在教学过程中,需要引导学生从已知的四边形性质出发,探究菱形的性质,提高学生的几何思维能力。
三. 说教学目标1.知识与技能:使学生了解菱形的性质,能够判定一个四边形是否为菱形,学会用菱形的性质解决实际问题。
2.过程与方法:通过观察、操作、探究等活动,培养学生的几何思维能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、勇于探究的精神。
四. 说教学重难点1.教学重点:菱形的性质及其应用。
2.教学难点:菱形性质的推导和证明,以及如何运用菱形性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、几何画板等软件,直观展示菱形的性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过展示生活中的菱形图案,如蜂巢、骰子等,引导学生关注菱形这一几何图形,激发学生的学习兴趣。
2.探究菱形的性质:(1)引导学生回顾矩形、平行四边形的性质,提出问题:矩形、平行四边形与菱形有哪些相同和不同的性质?(2)让学生观察一组菱形,引导学生发现菱形的四条边相等、对角线互相垂直平分的性质。
(3)分组讨论:如何证明菱形的性质?(4)每组汇报讨论成果,师生共同总结菱形的性质。
3.应用菱形性质:(1)出示例题,引导学生运用菱形性质解决问题。
1第2课时 菱形的判定1.掌握菱形的判定方法;(重点) 2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分; 2.四条边都相等;3.每条对角线平分一组对角. 这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究 探究点一:菱形的判定 【类型一】 利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .求证:四边形BCFE 是菱形. 解析:由题意易得,EF 与BC 平行且相等,∴四边形BCFE 是平行四边形.又∵EF =BE ,∴四边形BCFE 是菱形.证明:∵BE =2DE ,EF =BE ,∴EF =2DE .∵D 、E 分别是AB 、AC 的中点,∴BC =2DE 且DE ∥BC ,∴EF =BC .又∵EF ∥BC ,∴四边形BCFE 是平行四边形.又∵EF =BE ,∴四边形BCFE 是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】 利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形如图,AE ∥BF ,AC 平分∠BAD ,且交BF 于点C ,BD 平分∠ABC ,且交AE 于点D ,连接CD .求证:(1)AC ⊥BD ;(2)四边形ABCD 是菱形. 解析:(1)证得△BAC 是等腰三角形后利用“三线合一”的性质得到AC ⊥BD 即可;(2)首先证得四边形ABCD 是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE ∥BF ,∴∠BCA =∠CAD .∵AC 平分∠BAD ,∴∠BAC =∠CAD ,∴∠BCA =∠BAC ,∴△BAC 是等腰三角形.∵BD 平分∠ABC ,∴AC ⊥BD ;(2)∵△BAC 是等腰三角形,∴AB =CB .∵BD 平分∠ABC ,∴∠CBD =∠ABD .∵AE ∥BF ,∴∠CBD =∠BDA ,∴∠ABD =∠BDA ,∴AB =AD ,∴DA =CB .∵BC ∥DA ,∴四边形ABCD 是平行四边形.∵AC ⊥BD ,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于12AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.解析:(1)由作图知PQ为线段AC的垂直平分线,从而得到AE=CE,AD=CD.然后根据CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用“AAS”证得两三角形全等即可;(2)根据(1)中全等得到AE=CF.然后根据EF为线段AC的垂直平分线,得到EC=EA,FC=FA从而得到EC=EA=FC=FA,利用“四边相等的四边形是菱形”判定四边形AECF为菱形.证明:(1)由作图知PQ为线段AC的垂直平分线,∴AE=CE,AD=CD.∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED.在△AED与△CFD中,îïíïì∠EAC=∠FCA,∠AED=∠CFD,AD=CD,∴△AED≌△CFD(AAS);(2)∵△AED≌△CFD,∴AE=CF.∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.探究点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠FAD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠FAD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由.解析:(1)首先利用“SSS”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,îïíïìAB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF中,îïíïìAB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,îïíïìBC =CD ,∠BCF =∠DCF ,CF =CF ,∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°,∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、板书设计 1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形. 2.菱形的性质和判定的综合运用在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.。