人教版八年级数学上册 第27章 相似专题练习:相似三角形的基本模型(含答案)
- 格式:doc
- 大小:177.50 KB
- 文档页数:7
周周练 (27、1~27、2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.(保定高阳月考)下面图形中,形状相同的一组是(D )2.(新疆生产建设兵团)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是(D )A .DE =12BCB 、AD AB =AE ACC .△ADE ∽△ABCD .S △ADE ∶S △ABC =1∶23.(河北中考)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是(A )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对4.(安徽中考)如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为(B )A .4B .4 2C .6D .4 35.如图,已知:DE ∥AC ,DF ∥AB ,则下列比例式中正确的是(B )A 、AE EB =BD DC B 、DF AB =DC BCC 、AE AB =AF ACD 、BD DC =FC AF6.(巴彦淖尔中考)如图,P 为▱ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△P AB 的面积分别为S ,S 1,S 2、若S =3,则S 1+S 2的值为(B )A .24B .12C .6D .37.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE ∽△AEF ;③AE ⊥EF ;④△ADF ∽△ECF 、其中正确的个数为(B )A .1B .2C .3D .48.(台湾中考)如图,矩形ABCD 中,E 点在CD 上,且AE <AC 、若P 、Q 两点分别在AD 、AE 上,AP ∶PD =4∶1,AQ ∶QE =4∶1,直线PQ 交AC 于R 点,且Q 、R 两点到CD 的距离分别为q 、r ,则下列关系正确的是(D )A .q <r ,QE =RCB .q <r ,QE <RC C .q =r ,QE =RCD .q =r ,QE <RC二、填空题(每小题4分,共24分)9.如图,若△ABC ∽△DEF ,则∠D 的度数为30°.10.(邢台临城县一模)已知c 4=b 5=a 6≠0,则b +c a 的值为32.11.(临沂中考)如图,已知AB ∥CD ,AD 与BC 相交于点O 、若BO OC =23,AD =10,则AO =4.12.在长8 cm ,宽6 cm 的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是27cm 2、13.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ·AB 、其中正确结论的序号是①④.14.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,则MN =3-5.三、解答题(共44分)15.(10分)如图,在△ABC 中,D 为AC 边上一点,∠DBC =∠A 、(1)求证:△BDC ∽△ABC ;(2)如果BC =6,AC =3,求CD 的长.解:(1)证明:∵∠DBC =∠A ,∠C =∠C , ∴△BDC ∽△ABC 、 (2)∵△BDC ∽△ABC , ∴BC AC =CD BC、 ∴63=CD6、∴CD =2、16.(10分)(白银、张掖中考)如图,已知EC ∥AB ,∠EDA =∠ABF 、(1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE ·OF 、证明:(1)∵EC ∥AB , ∴∠C =∠ABF 、 ∵∠EDA =∠ABF , ∴∠C =∠EDA 、 ∴DA ∥CF 、 ∵EC ∥AB ,∴四边形ABCD 是平行四边形.(2)∵DA ∥CF ,∴△OBF ∽△ODA 、∴OA OF =ODOB 、∵EC ∥AB ,∴△OAB ∽△OED 、∴OE OA =ODOB 、∴OA OF =OE OA, 即OA 2=OE ·OF 、17.(12分)(秦皇岛海港区月考)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CD BD、(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小;(3)若AD =3,BD =2,求BC 的长.解:(1)证明:∵CD 是边AB 上的高, ∴∠ADC =∠CDB =90°、 又∵AD CD =CD BD ,∴△ACD ∽△CBD 、 (2)∵△ACD ∽△CBD , ∴∠A =∠BCD 、在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°、 ∴∠BCD +∠ACD =90°,即∠ACB =90°、 (3)∵AD CD =CDBD, ∴CD 2=AD ·BD =6,即CD =6、 ∴BC =BD 2+CD 2=10、18.(12分)(六盘水中考)如图,在Rt △ACB 中,∠ACB =90°,点O 是AC 边上的一点,以O为圆心,OC 为半径的圆与AB 相切于点D ,连接OD 、(1)求证:△ADO ∽△ACB ;(2)若⊙O 的半径为1,求证:AC =AD ·BC 、解:(1)证明:∵AB 是⊙O 的切线,∴OD ⊥AB 、 ∴∠ADO =90°、 ∵∠ACB =90°, ∴∠ACB =∠ADO 、 又∵∠A =∠A ,∴△ADO ∽△ACB 、(2)由(1)知:△ADO ∽△ACB , ∴AD AC =OD BC、 ∴AD ·BC =AC ·OD 、 又∵OD =1, ∴AC =AD ·BC 、。
第一学期八年级数学期末复习专题相似三角形姓名:_____________班级:____________得分:______________一选择题:1.下列说法正确的是()(A)两个矩形一定相似. (B) 两个菱形一定相似.(C)两个等腰三角形一定相似.(D) 两个等边三角形一定相似.2.下列说法中正确的是()①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④3.如图,菱形ABCD中,对角线AC.BD相交于点O,M.N分别是边AB.AD 的中点,连接OM.ON.MN,则下列叙述正确的是()A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形MBCO和四边形NDCO都是等腰梯形D.四边形AMON与四边形ABCD是位似图形4.如图,在△ABC中,点D.E分别在边AB.AC上,下列条件中不能判断△ABC∽△AED的是( )A.∠AED=∠BB.∠ADE=∠CC.=D.=5.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.6.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A. B. C.∠ABP=∠C D.∠APB=∠ABC7.如图,在△ABC中,DE∥BC,DE分别与AB.AC相交于点D.E,若AD=4,DB=2,则AE:EC值为( )A.0.5B.2C.D.8.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2B.C.D.9.若,且,则的值是()A.14B.42C.7D.10.如图,AD∥BE∥CF,直线l1.l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A.4B.5C.6D.811.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条12.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点( ).A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)13.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.414.如图所示,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB•CF;③CF=FD;④△ABE∽△AEF.其中正确的有( )A.1个 B.2个 C.3个 D.4个15.如图所示,若DE∥FG∥BC,AD=DF=FB,则S△ADE:S四边形DFGE:S四边形FBCG ()A.2:6:9B.1:3:5C.1:3:6D.2:5:816.如图所示,一般书本的纸张是对原纸张进行多次对折得到的,矩形ABCD沿EF对折后,再把矩形EFCD沿MN对着,依此类推,若所得各种矩形都相似,那么等于()A.0.618B.C.D.217.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=( )A. B. C. D.218.如图所示,已知△ABC中,BC=8,BC上的高h=4,D为BC上一点,EF∥BC,交AB于点E,交AC于点F(EF不过A.B),设E到BC的距离为x.则△DEF的面积y关于x的函数的图象大致为( )A. B. C.19.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD.AC于点E,F,则的值是()A. B. C. D.20.彼此相似的矩形,,,…,按如图所示的方式放置.点,,,…,和点,,,…,分别在直线(k>0)和x轴上,已知点.的坐标分别为(1,2),(3,4),则Bn的坐标是()A. B. C. D.二填空题:21.如图,若△ADE∽△ACB,且=,DE=10,则BC=____________.22.如图,在△ABC中,D.E分别是边AB.AC上的点,DE∥BC,AD:DB=1:2,S△ADE=1,则S四边形BCED的值为_______.23.如图,上体育课,甲.乙两名同学分别站在C.D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是米.24.如图,AB是圆O的直径,点C在圆上,CD⊥AB于点D,DE//BC,则图中与△ABC相似三角形共有个.25.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .26.如图,已知D.E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于。
三角形相似模型知识框架相似模型(一)金字塔模型 (二) 沙漏模型GF E AB CD ABCDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.例题精讲一、沙漏模型【例 1】 四边形ABCD 被AC 和DB 分成甲乙丙丁4个三角形,已知BE=80,CE=60,DE=40,AE=30,问:丙、丁两个三角形之和是甲乙两个三角形面积之和的多少倍?【考点】沙漏模型 【难度】1星 【题型】解答【解析】 因为AE:CE=BE:DE=1:2,所以AD BC ,即ABCD 为梯形,并且三角形AED 与三角形BEC相似。
因此:::1:2:2:4∆∆∆∆=AED AEB CED CEB S S S S 。
故():()(22):(41)4:5S S S S ++=++=乙甲丙丁【答案】54。
【巩固】 梯形ABCD 的上底长为3厘米,下底长为9厘米,而三角形ABO 的面积为12平方厘米。
则整个梯形的面积为多少?【考点】沙漏模型 【难度】1星 【题型】解答【解析】 同上题,△AOD 与△BOC 形状相同,大小成比例,这个比例为:AD :BC =1:3,所以它们的面积比为1:9。
而△AOB 的面积则是二者之间的过渡量,即比例中的3份。
把△AOB 的面积看成3份,那么1份是:12÷3=4(平方厘米)。
章末复习(二) 相似01 基础题知识点1 图形的相似1.(邯郸育华中学月考)如图,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(B )2.如图,四边形ABCD ∽四边形GFEH ,且∠A =∠G =70°,∠B =60°,∠E =120°,DC =24,HE =18,HG =21,则∠F =60°,∠D =110°,AD =28.知识点2 平行线分线段成比例3.如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )A .=B .=CE CB DF DA AD DF CE BC C .=D .=CD EF AD AF CE BE AF AD4.(南皮模拟)如图,已知DE ∥BC ,EF ∥AB ,若AD =2BD ,则的值为(A )CF BF A . B . C . D .12131423 知识点3 相似三角形的性质与判定5.(自贡中考)如图,在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N .若AM =1,MB =2,BC =3,则MN 的长为1.6.(邯郸育华中学月考)如图,已知△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F .(1)求证:△AFE ∽△ABC ;(2)若∠A =60°时,求△AFE 与△ABC 面积之比.解:(1)证明:∵∠AFB =∠AEC =90°,∠A =∠A ,∴△AFB ∽△AEC .∴=.∴=.AF AE AB AC AF AB AE AC 又∵∠A =∠A ,∴△AFE ∽△ABC .(2)∵∠A =60°,∠AEC =90°,∴∠ACE =30°.∴AE =AC .∵△AFE ∽△ABC .12∴=()2=()2=.S △AFE S △ABC AE AC 1214知识点4 相似三角形的应用7.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图所示,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,则旗杆AB 的高度为13.5m .知识点5 位似8.(滨州中考)在平面直角坐标系中,点C ,D 的坐标分别为C (2,3),D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为(4,6)或(-4,-6).02 中档题9.(长沙中考)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点M 重合(M 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,△CMG 的周长为n ,则的值为(B )n mA .B .C .D .随H 点位置的变22125-12化而变化10.(枣庄中考)如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =6+3.(结果保留根号)211.(河北中考)如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且相似比为1∶2;(2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)解:(1)如图所示.(2)AA ′=CC ′=2.在Rt △OA ′C ′中,OA ′=OC ′=2,得A ′C ′=2.2同理可得AC =4,2∴四边形AA ′C ′C 的周长为4+6.212.如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点的位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD .又∵∠B =∠C =90°,∴△BEF ∽△CDF .(2)∵△BEF ∽△CDF ,∴=,BE CD BF CF 即=.∴CF =169 cm .70130260-CF CF 13.(杭州中考)如图,在锐角△ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD =3,AB =5,求的值.AF AG解:(1)证明:∵AF ⊥DE ,AG ⊥BC ,∴∠AFE =90°,∠AGC =90°.∴∠AEF =90°-∠EAF ,∠C =90°-∠GAC ,又∵∠EAF =∠GAC ,∴∠AEF =∠C .又∵∠DAE =∠BAC ,∴△ADE ∽△ABC .(2)∵△ADE ∽△ABC ,∴∠ADE =∠B .又∵∠AFD =∠AGB =90°,∴△AFD ∽△AGB .∴=.AF AG AD AB ∵AD =3,AB =5,∴=.AF AG 3503 综合题14.(眉山中考)如图,点E 是正方形ABCD 的边BC 延长线上一点,连接DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交CD 于G .(1)求证:BG =DE ;(2)若点G 为CD 的中点,求的值.HG GF解:(1)证明:∵四边形ABCD 为正方形,∴BC =CD ,∠BCG =∠DCE =90°.∵BF ⊥DE ,∴∠BFD =90°.∵∠BGC =∠DGF ,∴∠CBF =∠GDF .∴△BCG ≌△DCE .∴BG =DE .(2)设正方形ABCD 的边长为a ,∵点G 是CD 的中点,∴CB =a ,CG =GD =a .∴BG =a .1252∵∠CBG =∠GDF ,∠BGC =∠DGF ,∴△BCG ∽△DFG .∴=,即=.∴GF =a .GF GC DG BG GF12a 12a 52a 510又∵AB ∥CD ,∴==.∴=.CG BA HG HB 12HGGB 13∴GH =GB =a .∴==.1356HG GF 56a 510a53。
27.2相似三角形同步练习(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.2、若四条线段成比例,且则线段的长为()A.B.C.D.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.8、如图,已知,,,,则的值为()A.B.C.D.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.10、若,则等于()A.B.C.D.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④D. ①②④12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.18、如图,已知,,,且,则.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.22、如图,已知、分别是等边的边、上的点,,,,求的边长.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.27.2相似三角形同步练习(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.【答案】D【解析】解:根据题意,可设,,,选项正确,不能选;,选项正确,不能选;,选项正确,不能选;,选项错误;故正确答案为:.2、若四条线段成比例,且则线段的长为()A.B.C.D.【答案】B【解析】解:根据题意得:,即,解得,故答案为:.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似【答案】C【解析】解:,又,.故正确答案是:①和③相似.4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.【答案】A【解析】解:,,故选:.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.【答案】B【解析】解:,,,.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.【答案】C【解析】解:直线,,,,故选项不一定成立.故正确答案是:8、如图,已知,,,,则的值为()A.B.C.D.【答案】D【解析】解:,,,即,解得.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.【答案】B【解析】解:,故本选项正确;,故本选项正确;,故本选项错误;,故本选项正确.10、若,则等于()B.C.D.【答案】A【解析】解:,,.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④【答案】D【解析】解:为直径,,,而,,所以①正确;,,而,,,,,,所以②正确;不能确定为直角三角形,不能确定等于,与不能确定相等,所以③错误;,点在以为直径的圆上,,,而,,为的切线,所以④正确.综上,正确的有①②④.12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米【答案】A【解析】解:连接、,光是沿直线传播的,,,,即,解得:.13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.【答案】D【解析】解:如图,正方形的边,,,,,,设,则,,,在中,,即,解得,红、蓝两张纸片的面积之和为.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.【答案】D【解析】解:,,,,,,,,.故正确答案是:15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.【答案】B【解析】解:平分,;又四边形是平行四边形,,,,,垂足为,.在中,,,,,;.,,,.,,,则.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.【答案】【解析】解:四边形是平行四边形,,,,,,,又两个三角形以为顶点时高相同,,故正确答案为:.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.【答案】【解析】解:如图,、、、、、分别为各边的三等分点,,,为等边三角形,,,,,为等边三角形,同理,都是边长为的等边三角形,.正确答案是:.18、如图,已知,,,且,则.【答案】10【解析】解:过点作的平行线,分别交于点、交于点、交于点.,,,,,,,四边形、、都是平行四边形,.,即,,.,,即,,,,.,.,,,,,,..故答案为:.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.【答案】6【解析】解:中,,,为边上的高,,又,则,,,,,,,,,解得.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.【解析】解:,,由题意得:,,故,则,即解得:答:“望月阁”的高的长度为.22、如图,已知、分别是等边的边、上的点,,,,求的边长.【解析】解:为等边三角形,,.设的边长,那么,.,,.,,..又,....即的边长是.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.。
相似三角形基础模型【核心考点】A字型,8字型及其变形知识模块1 A字型及其变形知识模块2 8字型及其变形小试牛刀例1(1) (2020秋•丽水期末)如图,在ABC ∆中,AED B ∠=∠,若10AB =,8AE =,6DE =,则BC 的长为( )A .403B .245C .154D .152【考点】相似三角形的判定与性质【解答】解:AED B ∠=∠,A A ∠=∠,ABC AED ∴∆∆∽,∴AE DE AB BC=, 10AB =,8AE =,6DE =, ∴8610BC =,152BC ∴=,故选:D .(2) (2020秋•邵东市期末)如图,在平行四边形ABCD 中,点E 在边DC 上,:5:2DE EC =,连接AE 交BD 于点F ,则DEF ∆的面积与BAF ∆的面积之比为______________.A .5:7B .10:4C .25:4D .25:49【考点】平行四边形的性质;相似三角形的判定与性质【解答】解:设5DE k =,2EC k =,则7CD k =,四边形ABCD 是平行四边形,7AB CD k ∴==,//DE AB ,DEF BAF ∴∆∆∽, ∴22525()()749DEF ABF S DE S AB ∆∆===,(2020秋•鼓楼区期末)如图,在ABC∆中,点D、E分别在边AB、AC上,连接CD、BE 交于点O,且//DE BC,1OD=,3OC=,2AD=,则AB的长为()A.3B.4C.6D.8【考点】相似三角形的判定与性质【解答】解://DE BC,∴13 DE ODBC OC==,//DE BC,ADE ABC∴∆∆∽,∴13 AD DEAB BC==,36 AB AD∴==,故选:C.(2020秋•开福区校级月考)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE AB=,连接DE,分别交BC,AC交于点F,G.(1)求证:BF CF=;(2)若8DG=,求FG的长.【考点】全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质【解答】证明:(1)四边形ABCD是平行四边形,AB CD∴=,//AB CDE EDC∴∠=∠,BE AB=,CD AB∴=,E EDC∠=∠,BFE DFC∠=∠,()EBF DCF AAS∴∆≅∆BF CF∴=;(2)四边形ABCD是平行四边形,//AD BC∴,ADG CFG∴∆∆∽,∴CF FGAD DG=,且1122BF CF BC AD===,8DG=,∴128FG =,4 FG∴=.锋芒初露例4如下图,在ABC∆中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC 、AB 上,15BC =,BC 边上的高是10,则正方形的面积为( )A .6B .36C .12D .49【考点】9S :相似三角形的判定与性质【分析】过A 作AI BC ⊥交BC 于I ,交HG 于K ,设正方形EFGH 的边长为x ,则HG HE IK x ===,根据题意可得AK HG AI BC=,且AK AI x =-,代入可求得x ,进一步可求得面积.【解答】解:过A 作AI BC ⊥交BC 于I ,交HG 于K ,设正方形EFGH 的边长为x ,则HG HE IK x ===, //HG BC , ∴AK HG AI BC=,且AK AI x =-, 又10AI =,15BC =, ∴101015x x -=, 解得6x =,236EFGH S x ∴==正方形.故选:B .例5(2021•郫都区校级模拟)如图,////AC EF DB ,若8AC =,12BD =,则(EF = )A .3B .125C .4D .245【考点】相似三角形的判定与性质【解答】解://AC EF ,BEF BCA ∴∆∆∽, ∴EF BF AC BA=, 同理,EF AF BD BA =, ∴1EF EF BF AF AC BD BA BA +=+=, ∴1812EF EF +=, 解得,245EF =, 故选:D .【核心考点】 一线三等角模型知识模块3 一线三等角模型小试牛刀例6 (2020秋•密云区期末)如图,AB BC ⊥,EC BC ⊥,点D 在BC 上,1AB =,2BD =,3CD =,6CE =.(1)求证:ABD DCE ∆∆∽;(2)求ADE ∠的度数.【考点】相似三角形的判定与性质【解答】(1)证明:AB BC ⊥,EC BC ⊥,点D 在BC 上, 90ABD DCE ∴∠=∠=︒.1AB =,2BD =,3CD =,6CE =,∴12AB BD =,12DC CE =.∴AB DC BD CE=.ABD DCE ∴∆∆∽; (2)由(1)知,ABD DCE ∆∆∽,则BAD EDC ∠=∠. 90BAD ADB ∠+∠=︒,90ADB EDC ∴∠+∠=︒.18090ADE ADB EDC ∴∠=︒-∠-∠=︒.ABC DE ABC D F E GA D G FB E C锋芒初露例7(2020秋•江都区期末)如图,正方形ABCD 的边长为2,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),连接AP ,过点P 作PQ AP ⊥交DC 于点Q .(1)求证:AB CQ PB PC ⋅=⋅;(2)当CQ 最大时,求BP 的长.【考点】二次函数的最值;正方形的性质;相似三角形的判定与性质【解答】(1)证明:四边形ABCD 是正方形,90B C ∴∠=∠=︒PQ AP ⊥,90APB QPC ∴∠+∠=︒,90APB BAP ∠+∠=︒,BAP QPC ∴∠=∠,ABP PCQ ∴∆∆∽, ∴AB BP PC CQ=, AB CQ PB PC ∴⋅=⋅;(2)解:设BP x =,CQ y =,由(1)得2(2)y x x =-, ∴22111(2)(1)222y x x x =--=--+, 102-<,开口向下,对称轴是1x =,且x 的范围是02x , ∴当1x =时,y 有最大值为12,即当CQ 最大时,1BP =.【核心考点】双垂直模型知识模块4 双垂直模型小试牛刀例8(2019秋•东莞市期末)如图,在Rt ABC∆中,90ACB∠=︒,CD AB⊥于点D,2AD=,4CD=.求BD的长.【考点】相似三角形的判定与性质【解答】解:在Rt ABC∆中,90ACB∠=︒,CD AB⊥,90CDB ACB∴∠=∠=︒,90ACD BCD∴∠+∠=︒,90BCD B∠+∠=︒,ACD B∴∠=∠,ACD CBD∴∆∆∽,∴AD CDCD BD=,2AD=,4CD=,∴244BD =,8 BD∴=.例9(2021•津南区模拟)如图,Rt ABC∆中,90C∠=︒,10AB=,6AC=,D是BC上一点,5BD=,DE AB⊥,垂足为E,求线段DE的长.【考点】相似三角形的判定与性质【解答】解:DE AB⊥,90DEB∴∠=︒,C DEB∴∠=∠,B B∠=∠,BED BCA∴∆∆∽,∴DE BD AC AB=,即5 610 DE=,3DE∴=.。
1、相似三角形对应边成比例,对应角相等。
2、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
【例1】如图,已知点D ,E ,F 分别是△ABC 三边的中点,则△DEF 与△ABC 对应高的比是( )A .1∶2B .1∶3C .1∶4D .1∶2【解答】解:∵△ADE 与△ABC 相似,∴△DEF 与△ABC 对应高的比等于相似比,即是1∶2 。
故答案是A【例2】如图,已知△ABC 中,AB =20,BC =14,AC =12,△ADE 与△ACB 相似,∠AED =∠B ,DE =5.求AD ,AE 的长.【解答】解:∵△ADE 与△ACB 相似, ∠AED =∠B ,∠A =∠A ,∴,∴∴AD = ∵∴∴AE =【例3】如图所示,平行四边形ABCD 中,E 是BC 边上一点,且BE =EC ,BD 、AE相似三角形的性质相似三角形的性质典题精练模块二利用相似比求相似三角形对应线段的比利用相似比求三角形的周长和面积相交于F 点.(1)求△BEF 与△AFD 的周长之比; (2)若S △BEF =6cm 2,求S △AFD .【解答】解:(1)∵在平行四边形ABCD 中,AD ∥BC ,且AD =BC , ∴△BEF ∽△AFD .又∵BE =12BC ,∴BE AD =BF DF =EF AF =12,∴△BEF 与△AFD 的周长之比为BE +BF +EF AD +DF +AF =12;(2)由(1)可知△BEF ∽△DAF ,且相似比为12,∴S △BEF S △AFD =(12)2,∴S △AFD =4S △BEF =4×6=24cm 2.【例4】若△ABC ∽△A ′B ′C ′,其面积比为1∶2,则△ABC 与△A ′B ′C ′的相似比为( ) A .1∶2 B.2∶2 C .1∶4 D.2∶1【解答】解:∵△ABC ∽△A ′B ′C ′,其面积比为1∶2,∴△ABC 与△A ′B ′C ′的相似比为1∶2=2∶2.故选B.【例5】如图所示,在锐角三角形ABC 中,AD ,CE 分别为BC ,AB 边上的高,△ABC 和△BDE 的面积分别为18和8,DE =3,求AC 边上的高.【解答】解:过点B 作BF ⊥AC ,垂足为点F .∵AD ⊥BC, CE ⊥AB ,∴Rt △ADB ∽Rt △CEB ,∴BD BE =AB CB ,即BD AB =BECB ,且∠ABC =∠DBE ,∴△EBD ∽△CBA, ∴S △BED S △BCA =(DE AC )2=818.又∵DE =3,∴AC =4.5.∵S △ABC =12AC ·BF =18, ∴BF =8.利用相似三角形的周长或面积比求相似比利用相似三角形的性质和判定进行计算【例6】如图所示,PN ∥BC ,AD ⊥BC 交PN 于E ,交BC 于D . (1)若AP ∶PB =1∶2,S △ABC =18,求S △APN ; (2)若S △APN ∶S 四边形PBCN =1∶2,求AEAD的值.解:(1)因为PN ∥BC ,所以∠APN =∠B ,∠ANP =∠C ,△APN ∽△ABC ,所以S △APNS △ABC=(APAB )2.因为AP ∶PB =1∶2,所以AP ∶AB =1∶3.又因为S △ABC =18,所以S △APN S △ABC =(13)2=19,所以S △APN =2;(2)因为PN ∥BC ,所以∠APE =∠B ,∠AEP =∠ADB ,所以△APE ∽△ABD ,所以APAB =AE AD ,S △APN S △ABC =(AP AB )2=(AE AD )2.因为S △APN ∶S 四边形PBCN =1∶2,所以S △APN S △ABC =13=(AE AD )2,所以AE AD =13=33. 【例7】如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC =40cm ,AD =30cm .从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M . (1)求证:;(2)求这个矩形EFGH 的周长.【解答】(1)证明:∵四边形EFGH 为矩形, ∴EF ∥GH , ∴∠AHG =∠ABC , 又∵∠HAG =∠BAC , ∴△AHG ∽△ABC ,利用相似三角形线段的比等于相似比解决问题∴;(2)解:由(1)得:设HE =xcm ,MD =HE =xcm ,∵AD =30cm , ∴AM =(30﹣x )cm , ∵HG =2HE , ∴HG =(2x )cm , 可得,解得,x =12, 故HG =2x =24所以矩形EFGH 的周长为:2×(12+24)=72(cm ). 答:矩形EFGH 的周长为72cm .【例8】如图,已知△ABC 中,AB =5,BC =3,AC =4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积是四边形P ABQ 面积的13时,求CP 的长;(2)当△PQC 的周长与四边形P ABQ 的周长相等时,求CP 的长.【解答】解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC ,∵S △PQC =13S 四边形P ABQ ,∴S △PQC ∶S △ABC=1∶4,∵14=12,∴CP =12CA =2;(2)∵△PQC ∽△ABC ,∴CP CA =CQ CB =PQ AB ,∴CP 4=CQ 3,∴CQ =34CP .同理可知PQ =54CP ,∴C △PCQ =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形P ABQ =P A +AB +BQ +PQ =(4-CP )+AB +(3-CQ )+PQ =4-CP +5+3-34CP +54CP =12-12CP ,∴12-12CP =3CP ,∴72CP =12,∴CP =247.一.选择题(共5小题)1.如果两个相似三角形对应边的比为4:5,那么它们对应中线的比是( )跟踪练习利用相似三角形的性质解决动点问题A.B.2:5 C.4:5 D.16:252.已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是()A.3:2 B.2:3 C.4:9 D.9:43.若△ABC∽△DEF,相似比为1:2,则△ABC与△DEF的面积的比为()A.1:2 B.1:4 C.2:1 D.4:14.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm5.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应角平分线之比为()A.3:4 B.2:3 C.9:16 D.3:2二.解答题(共7小题)6.如图,在△ABC中,AB=AC,∠BAC=120°,AB边上的垂直平分线与AB、BC交于点D、E,AC边上的垂直平分线与AC、BC分别交于点G、F,(1)△AEF是什么形状?你能证明吗?(2)连结DG,你能根据学过的相似三角形的知识证明DG=BC吗?(3)DG=5cm,试求△AEF的周长.7.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.8.如图,在△ABC中,点D、E分别在边AB、AC上,AE2=AD•AB,∠ABE=∠ACB.(1)求证:DE∥BC;(2)如果S△ADE :S四边形DBCE=1:8,求S△ADE:S△BDE的值.9.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.10.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.11.已知△ABC中.AB=15cm,BC=20cm,AC=25cm,另一个与它相似的△A′B′C′的最长边A′C′=50cm,求△A′B′C′的周长和面积.12.已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.(1)当t为多少时,DE=2DF;(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.参考答案与试题解析一.选择题(共5小题)1.如果两个相似三角形对应边的比为4:5,那么它们对应中线的比是()A.B.2:5 C.4:5 D.16:25 【解答】解:∵两个相似三角形对应边的比为4:5,∴它们对应中线的比为4:5,故选:C.2.已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是()A.3:2 B.2:3 C.4:9 D.9:4【解答】解:∵△ABC∽△A'B'C',∴S△ABC :S△A'B'C'=22:32=4:9.故选:C.3.若△ABC∽△DEF,相似比为1:2,则△ABC与△DEF的面积的比为()A.1:2 B.1:4 C.2:1 D.4:1【解答】解:∵△ABC∽△DEF,相似比为1:2,∴△ABC与△DEF的面积的比为(1:2)2=1:4.故选:B.4.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:=,解得:x=6,即另一个三角形的最短边的长为6cm.故选:A.5.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应角平分线之比为()A.3:4 B.2:3 C.9:16 D.3:2【解答】解:∵△ABC∽△DEF,△ABC与△DEF的面积比为9:4,∴△ABC与△DEF的相似比为3:2,∴△ABC与△DEF对应角的角平分线之比为3:2,故选:D.二.解答题(共7小题)6.如图,在△ABC中,AB=AC,∠BAC=120°,AB边上的垂直平分线与AB、BC交于点D、E,AC边上的垂直平分线与AC、BC分别交于点G、F,(1)△AEF是什么形状?你能证明吗?(2)连结DG,你能根据学过的相似三角形的知识证明DG=BC吗?(3)DG=5cm,试求△AEF的周长.【解答】解:(1)△AEF为等边三角形.理由如下:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,FG垂直平分AC,∴BE=AE,AF=CF,∴∠EAB=∠B=30°,∠FAC=∠C=30°,∴∠AEF=2∠B=60°,∠AFE=2∠C=60°,∴△AEF为等边三角形;(2)∵D是AB中点、G是AC中点,∴DG是△ABC中位线,∴DG=BC;(3)∵DG=5,∴BC=2DG=10,∵AE=BE,AF=CF,∴AE+EF+AF=BE+EF+CF=BC=10cm,∴△AEF的周长为10cm.7.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.【解答】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当,即时,△PBQ∽△ABC,解得:x=2;②当,即时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.8.如图,在△ABC中,点D、E分别在边AB、AC上,AE2=AD•AB,∠ABE=∠ACB.(1)求证:DE∥BC;(2)如果S△ADE :S四边形DBCE=1:8,求S△ADE:S△BDE的值.【解答】(1)证明:∵AE2=AD•AB,∴,又∵∠EAD=∠BAE,∴△AED∽△ABE,∴∠AED=∠ABE,∵∠ABE=∠ACB,∴∠AED=∠ACB,∴DE∥BC;(2)解:∵DE∥BC,∴△ADE∽△ABC,∴,∵,∴,∴,∴,∴,∴.9.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.【解答】解:(1)设BC=3x,则AD=2x,∵△ABC的面积为12,∴×3x×2x=12,解得,x1=2,x2=﹣2(舍去),则AD的长=2x=4;(2)设GF=y,则HG=2y,∵四边形EFGH为矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得,y=,HG=2y=,则矩形EFGH的面积=×=.10.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.【解答】证明:(1)∵AB=AD,AE⊥BC,∴BE=ED=DB,∵EF2=•BD•EC,∴EF2=ED•EC,即得=,又∵∠FED=∠CEF,∴△EDF∽△EFC.(2)∵AB=AD,∴∠B=∠ADB,又∵DF∥AB,∴∠FDC=∠B,∴∠ADB=∠FDC,∴∠ADB+∠ADF=∠FDC+∠ADF,即得∠EDF=∠ADC,∵△EDF∽△EFC,∴∠EFD=∠C,∴△EDF∽△ADC,∴=()2=,∴=,即ED=AD,又∵ED=BE=BD,∴BD=AD,∴AB=BD.11.已知△ABC中.AB=15cm,BC=20cm,AC=25cm,另一个与它相似的△A′B′C′的最长边A′C′=50cm,求△A′B′C′的周长和面积.【解答】解:∵△ABC中,AB=15cm,BC=20cm,AC=25cm,∴△ABC的周长=60cm,AB2+BC2=AC2,∴△ABC是直角三角形,∴△ABC的面积=×15×20=150cm2,∵△ABC∽△A′B′C′,且△ABC中最长边为25cm,△A′B′C′的最长边长为50cm,∴相似比为,∴=,即=,=120cm,解得C△A′B′C′∵=()2,∴=,=600cm2.解得S△A′B′C′12.已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.(1)当t为多少时,DE=2DF;(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.【解答】解:(1)由题意得:DE=AD﹣t=6﹣t,DF=2t,∴6﹣t =2×2t ,解得t =,故当t =时,DE =2DF ;(2)∵矩形ABCD 的面积为:12×6=72,S △ABE =×12×t =6t , S △BCF =×6×(12﹣2t )=36﹣6t ,∴四边形DEBF 的面积=矩形的面积﹣S △ABE ﹣S △BCF =72﹣6t ﹣36+6t =36,故四边形DEBF 的面积为定值;(3)设以点D 、E 、F 为顶点的三角形能与△BCD 相似,则=或=, 由ED =6﹣t ,DF =2t ,FC =12﹣2t ,BC =6,代入解得:=或=,解得t =3或t =,故当t =3或时,以点D 、E 、F 为顶点的三角形与△BCD 相似.。
八年级数学相似判定及相似基本模型(相似图形)基础练习试卷简介:这套试卷用5道题考察了相似的判定,相似常考的三种模型,性质和判定的综合应用;强调几何记模型对学生的重要性.学习建议:对于相似判定的三种判定方式记忆牢固,对于相似常考的模型记忆牢固,会根据相似的三种模型拓展应用.一、单选题(共5道,每道20分)1.如图,BC∥DE∥FG,图中有()对相似三角形.A.2B.3C.4D.5答案:B解题思路:△ABC∽△ADE,△ABC∽△AFG,△AFG∽△ADE共有三对“A”字形相似易错点:相似模型不熟悉,在查相似三角形的时候没有分类讨论意识,漏掉一些相似三角形,忽略相似的传递性,不明确相似三角形的定义,多查相似三角形试题难度:二颗星知识点:相似三角形的判定2.如图,在△ABC中,已知DE∥BC,AD=3BD,S△ABC=48,则S△ADE的面积为()A.27B.36C.18D.不确定答案:A解题思路:DE∥BC,△ADE和△ABC是“A”字形的形似,相似比等于对应边长之比,等于AD:AB,因为AD=3BD,所以AD:AB=3:4,对应面积比为9:16,因为S△ABC=48,所以△ADE 的面积为27.易错点:没有记牢相似三角形的面积比等于相似比的平方,△ADE和△ABC的相似比找错试题难度:三颗星知识点:相似三角形的性质3.如图,能保证使△ACD与△ABC相似的条件是()A.AC:CD=AB:BCB.CD:AD=BC:ACC.AC2=AD·ABD.CD2=AD·DB答案:C解题思路:△ACD和△ABC有一个公共角∠A,只需要再找一个角相等,或者找夹角为∠A的两条线段成比例,,即AC2=AD·AB易错点:三角形相似的三种判定方式没有记忆牢固试题难度:三颗星知识点:相似三角形的判定4.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为()A.3 : 2B.9 : 4C.27 : 8D.不确定答案:B解题思路:因为△ACM、△CBN都是等边三角形,所以∠MCA=∠NBC=60°,所以MC∥NB,△MCD与△BND是“X”字形相似,相似比等于对应边长之比,是MC:NB=3:2,面积比等于相似比的平方,即9:4.易错点:相似和判定记混,不清楚什么时候用性质,什么时候用判定,判定相似的时候不知道找什么样的条件试题难度:四颗星知识点:相似三角形的性质5.Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=4,BC=3,则BD的值为()A.B.C.D.答案:A解题思路:因为AC⊥BC,CD⊥AB于D,所以这个图形是一个“母子型”相似,△BCD∽△BAC,即,BD=.易错点:没有理解“母子型”相似,不知道哪些三角形是相似的,对应边找错试题难度:三颗星知识点:相似三角形的判定与性质。
27 相似典型练习一、选择题(本大题共5小题,共16.0分)1.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A. B. C. D.2.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.B.C.D. 14m3.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB.C.D.4.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A. 1B. 2C. 3D. 45.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F若AC=3,AB=5,则CE的长为( )A. B. C. D.二、填空题(本大题共10小题,共32.0分)6.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则=______.7.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为______.8.如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为______.9.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为______.10.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为______.11.如图,在纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与相似的小三角形纸板,如果有种不同的剪法,那么长的取值范围是___________________.12.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=______.13.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为______.14.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC 的布罗卡尔点,若PA=,则PB+PC=______.15.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为______.三、解答题(本大题共8小题,共83.0分)16.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.17.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.18.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.19.如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF•DF=BF•CF.(1)求证:AD•AB=AE•AC;的值.(2)当AB=12,AC=9,AE=8时,求BD的长与△△20.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.21.如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E 作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.22.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.23.已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.(1)求证:BD′=CE';(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.答案和解析1.【答案】C【解析】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.2.【答案】B【解析】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.先证明△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.3.【答案】D【解析】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.此题考查垂径定理,关键是根据垂径定理得出OE的长.4.【答案】C【解析】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°-∠CGB,∠DAF=90°+∠EAF=90°+(90°-∠AGF)=180°-∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴=,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG•FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得==,由EG∥CD,推出==,推出=,由AD=AE,EG•AE=BG•AB,故④正确,本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】A【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.6.【答案】2【解析】解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.根据题意求出,根据平行线分线段成比例定理解答.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.【答案】【解析】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.8.【答案】1:9【解析】【分析】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故答案为1:9.9.【答案】6-2【解析】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3-,∵△CDF∽△A′HC,∴=,∴=,∴DF=6-2,故答案为6-2.如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.【答案】4【解析】解:如图所示:连接AQ.∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.连接AQ,首先证明△ABP∽△QBA,则∠APB=∠QAB=90°,然后求得点P与点C重合时,AQ的长度即可.本题主要考查的是相似三角形的判定和性质,证得△ABP∽△QBA是解题的关键.11.【答案】3≤AP<4【解析】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.12.【答案】或【解析】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②如图2,当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.分两种情形分别求解:①如图1,当AQ=PQ,∠QPB=90°时,②如图2,当AQ=PQ,∠PQB=90°时;本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.13.【答案】2【解析】【分析】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得,在Rt△GCF中,利用勾股定理求出b,即可解决问题. 【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,,∵CG=DG,CF=FB,∴,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴,在Rt△GCF中,,∴,∴AB=2b=2.故答案为2.14.【答案】1+【解析】解:作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴===,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.作CH⊥AB于H.首先证明BC=BC,再证明△PAB∽△PBC,可得===,即可求出PB、PC;本题考查等腰三角形的性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.15.【答案】【解析】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4-x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF= x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,16.【答案】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2-x,EC=2-y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2-x,x=2-2,代入y=x+2,解得:y=4-2,即AE=4-2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2-y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4-2或.【解析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2-x;②当AE=ED时,如图3,则ED=EC,即y=(2-y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.17.【答案】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴∴CF=,∴AC=2AF=.【解析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.18.【答案】证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.【解析】(1)由∠ACB=90°、CD⊥AB利用同角的余角相等可得出∠BCD=∠A,由E是AC的中点利用直角三角形斜边上的中线等于斜边的一半可得出DE=AE,进而可得出∠ADE=∠A,结合对顶角相等可得出∠FCD=∠FDB,再结合公共角∠CFD=∠DFB,即可证出△CFD∽△DFB,根据相似三角形的性质可证出DF2=BF•CF;(2)由AE•AC=AG•AD结合∠A=∠A可证出△AEG∽△ADC,根据相似三角形的性质可求出∠AEG=∠ADC=90°,结合∠ACB=90°可得出EG∥BC,进而可得出=,根据(1)△CFD∽△DFB可得出=,等量替换后可得出=,进而即可证出EG•CF=ED•DF.本题考查了相似三角形的判定与性质、互余、平行线的判定与性质以及直角三角形的性质,解题的关键是:(1)利用相似三角形的性质找出△CFD∽△DFB;(2)根据相似三角形的性质及平行线的性质找出=、=.19.【答案】证明:(1)∵EF•DF=BF•CF,∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE,∴,∴AD•AB=AE•AC;(2)由(1)知AD•AB=AE•AC,∴AD=6,BD=6,EC=1,∵△,△∴△,四边形∵△,△∴△,四边形∴△=28.△【解析】(1)根据相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,进而证明△CAB∽△DAE,再利用相似三角形的性质证明即可;(2)根据相似三角形的性质得出有关图形的面积之比,进而解答即可.本题考查相似三角形的判定和性质知识,解题的关键是灵活运用相似三角形的判定解答.20.【答案】解:(1)证明:在正方形ABCD 中,∠ADC =90°, ∴∠CDF +∠ADF =90°,∵AF ⊥DE ,∴∠AFD =90°,∴∠DAF +∠ADF =90°,∴∠DAF =∠CDF ,∵四边形GFCD 是⊙O 的内接四边形,∴∠FCD +∠DGF =180°,∵∠FGA +∠DGF =180°,∴∠FGA =∠FCD ,∴△AFG ∽△DFC .(2)如图,连接CG .∵∠EAD =∠AFD =90°,∠EDA =∠ADF ,∴△EDA ∽△ADF ,∴ = ,即 = ,∵△AFG ∽△DFC ,∴ = ,∴= ,在正方形ABCD 中,DA =DC ,∴AG =EA =1,DG =DA -AG =4-1=3,∴CG = =5,∵∠CDG =90°,∴CG 是⊙O 的直径,∴⊙O 的半径为 .【解析】 (1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ;(2)首先证明CG 是直径,求出CG 即可解决问题;本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.21.【答案】解:(1)∵AC 是⊙O 的切线,∴CA ⊥AB ,∵EH ⊥AB ,∴∠EHB =∠CAB ,∵∠EBH =∠CBA ,∴△HBE ∽△ABC .(2)连接AF .∵AB是直径,∴∠AFB=90°,∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2,∵=,∴∠EAF=∠EAH,∵EF⊥AF,EH⊥AB,∴EF=EH,∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x,在Rt△EHB中,(5-x)2=x2+()2,∴x=2,∴EH=2.【解析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x,在Rt△EHB中,可得(5-x)2=x2+()2,解方程即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.22.【答案】解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【解析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.23.【答案】解:(1)证明:∵AB=AC,D、E分别是AB、AC的中点,∴AD=BD=AE=EC.由旋转的性质可知:∠DAD′=∠EAE′=α,AD′=AD,AE′=AE.∴AD′=AE′,∴△BD′A≌△CE′A,∴BD′=CE′.(2)连接DD′.∵∠DAD′=60°,AD=AD′,∴△ADD′是等边三角形.∴∠ADD′=∠AD′D=60°,DD′=DA=DB.∴∠DBD′=∠DD′B=30°,∴∠BD′A=90°.∵∠D′AE′=90°,∴∠BAE′=30°,∴∠BAE′=∠ABD′,又∵∠BFD′=∠AFE′,∴△BFD′∽△AFE′,∴.∵在Rt△ABD′中,tan∠BAD′==,∴=.【解析】(1)首先依据旋转的性质和中点的定义证明AD′=AE′,然后再利用SAS证明△BD′A≌△CE′A,最后,依据全等三角形的性质进行证明即可;(2)连接DD′,先证明△ADD′为等边三角形,然后再证明△△ABD′为直角三角形,接下来,再证明△BFD′∽△AFE′,最后,依据相似三角形的性质求解即可.本题主要考查的是全等三角形的判定和性质、相似三角形的性质和判定、旋转的性质,发现△BFD′∽△AFE′是解题的关键.。
第27章相似检测题(时间:120分钟满分:120分)一.选择题(每小题3分,共30分)1.下列四条线段为成比例线段的是()A.a=10,b=5,c=4,d=7 B.a=1,b=3,c=6,d= 2 C.a=8,b=5,c=4,d=3 D.a=9,b=3,c=3,d= 6 2.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36 cm,则较大多边形的周长为()A.48 cm B.54 cm C.56 cm D.64 cm 3.(2016·河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()4.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB等于()A.60 m B.40 m C.30 m D.20 m第4题图第5题图第6题图5.如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1) B.(8,-4)或(-8,4) C.(2,-1) D.(8,-4)6.如图,若∠1=∠2=∠3,则图中的相似三角形有() A.1对 B.2对 C.3对 D.4对7.如图,在平行四边形ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3∶4 B.9∶16 C.9∶1 D.3∶1第7题图第8题图第9题图第10题图8.如图,在平面直角坐标系的4×4的正方形方格中,△ABC是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是()A.(1,4) B. (3,4) C.(3,1) D.(1,4)或(3,4) 9.(2016·金华)如图,在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()10.(2016·包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE 的数量关系正确的是()A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE二.填空题(每小题3分,共24分)11.如果在比例1∶2000000的地图上,A,B两地的图上距离为3.6厘米,那么A,B两地的实际距离为____千米.12.(2016·娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是___________(答案不唯一)__.(只需写一个条件,不添加辅助线和字母)第12题图第13题图第14题图第15题图13.(2016·临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为____.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____.15.(2016·安顺)如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,若AD ⊥BC ,BC =3,AD =2,EF =23EH ,那么EH 的长为___. 16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH =____________里.第16题图 第17题图 第18题图17.如图,点M 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有____条.18.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有_________________.(填序号)三.解答题(共66分)19.(8分)(2016·眉山)如图,△ABC 三个顶点的坐标分别为A (0,-3),B (3,-2),C (2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC位似,且△A 2B 2C 2与△ABC 的相似比为2∶1,并直接写出点A 2的坐标.20.(8分)如图,已知AB ∥CD ,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C .求证:(1)∠EAF =∠B ;(2)AF 2=FE ·FB .21.(9分)如图,已知B ,C ,E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形,其中线段BD 交AC 于点G ,线段AE 交CD 于点F .求证:(1)△ACE ≌△BCD ;(2)AG GC =AF FE.22.(9分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3 m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15 m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2 m,已知王亮的身高为1.6 m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)23.(10分)如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.24.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:∠DAF =∠CDE ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =33,AE =3,求AF 的长.25.(12分)如图①,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于点F ,OE ⊥OB 交BC 边于点E .(1)求证:△ABF ∽△COE ;(2)当O 为AC 的中点,AC AB =2时,如图②,求OF OE的值;(3)当O 为AC 边中点,AC AB =n 时,请直接写出OF OE的值.参考答案一.选择题(每小题3分,共30分)1.下列四条线段为成比例线段的是( B )A.a=10,b=5,c=4,d=7 B.a=1,b=3,c=6,d= 2C.a=8,b=5,c=4,d=3 D.a=9,b=3,c=3,d= 62.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36 cm,则较大多边形的周长为( A )A.48 cm B.54 cm C.56 cm D.64 cm3.(2016·河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C)4.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB等于(B)A.60 m B.40 m C.30 m D.20 m第4题图第5题图第6题图5.如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2把△EFO缩小,则点E的对应点E′的坐标为(A)A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)6.如图,若∠1=∠2=∠3,则图中的相似三角形有(D) A.1对 B.2对 C.3对 D.4对7.如图,在平行四边形ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B) A.3∶4 B.9∶16 C.9∶1 D.3∶1第7题图,第8题图,第9题图,第10题图8.如图,在平面直角坐标系的4×4的正方形方格中,△ABC是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是(D)A.(1,4) B. (3,4) C.(3,1) D.(1,4)或(3,4)9.(2016·金华)如图,在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为(D)10.(2016·包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE 的数量关系正确的是(B)A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE二.填空题(每小题3分,共24分)11.如果在比例1∶2000000的地图上,A,B两地的图上距离为3.6厘米,那么A,B两地的实际距离为__72__千米.12.(2016·娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是__AB∥DE(答案不唯一)__.(只需写一个条件,不添加辅助线和字母)第12题图 第13题图 第14题图第15题图13.(2016·临沂)如图,在△ABC 中,点D ,E , F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB .若AB =8,BD =3,BF =4,则FC 的长为__125__. 14.如图,在△ABC 中,AB =2,AC =4,将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C , 使CB ′∥AB ,分别延长AB ,CA ′相交于点D ,则线段BD 的长为__6__.15.(2016·安顺)如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,若AD ⊥BC ,BC =3,AD =2,EF =23EH ,那么EH 的长为__32__. 16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH =__1.05__里.第16题图 第17题图第18题图17.如图,点M 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有__3__条.18.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=52S△ABF.其中正确的结论有__①②③④__.(填序号)三.解答题(共66分)19.(8分)(2016·眉山)如图,△ABC三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC 位似,且△A2B2C2与△ABC的相似比为2∶1,并直接写出点A2的坐标.解:(1)图略(2)图略,A2(-2,-2)20.(8分)如图,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.解:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B(2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FE FA,∴AF 2=FE ·FB21.(9分)如图,已知B ,C ,E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形,其中线段BD 交AC 于点G ,线段AE 交CD 于点F .求证:(1)△ACE ≌△BCD ;(2)AG GC =AF FE.解:(1)∵△ABC 与△CDE 都是等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACD =∠DCE +∠ACD ,即∠ACE =∠BCD ,可证△ACE ≌△BCD (SAS ) (2)∵△ACE ≌△BCD ,∴∠AEC =∠BDC ,可证△GCD ≌△FCE (ASA ),∴CG =CF ,∴△CFG 为等边三角形,∴∠CGF =∠ACB =60°,∴GF ∥CE ,∴AG GC =AF FE22.(9分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3 m 的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15 m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2 m,已知王亮的身高为1.6 m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)解:根据题意知AB⊥BF,CD⊥BF,EF⊥BF,EF=1.6 m,CD=3 m,FD=2 m,BD=15 m,过E点作EH⊥AB,交AB于点H,交CD于点G,则EG⊥CD,EH∥FB,EF=DG=BH,EG=FD,CG=CD-EF,∴△ECG∽△EAH,∴EGEH=CGAH,即22+15=3-1.6AH,∴AH=11.9m,所以AB=AH+HB=AH+EF=11.9+1.6=13.5(m),即旗杆的高度为13.5 m23.(10分)如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.解:(1)∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED =∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线(2)∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴DFFC=DEAC,∴26=3AC,解得AC=9,即⊙O的直径为924.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:∠DAF=∠CDE;(2)△ADF与△DEC相似吗?为什么?(3)若AB=4,AD=33,AE=3,求AF的长.解:(1)∵∠AFE=∠DAF+∠FDA,又∵四边形ABCD为平行四边形,∴∠B=∠ADC=∠ADF+∠CDE,又∵∠AFE=∠B,∴∠DAF=∠CDE (2)△ADF∽△DEC,理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CED,由(1)知∠DAF=∠CDE,∴△ADF∽△DEC(3)∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=4,又∵AE⊥BC,∴AE⊥AD,在Rt△ADE中,DE=AD2+AE2=(33)2+32=6,∵△ADF∽△DEC,∴ADDE=AFCD,∴336=AF4,∴AF=2325.(12分)如图①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC边于点E .(1)求证:△ABF ∽△COE ;(2)当O 为AC 的中点,AC AB =2时,如图②,求OF OE的值; (3)当O 为AC 边中点,AC AB =n 时,请直接写出OF OE的值.解:(1)∵AD ⊥BC ,∴∠DAC +∠C =90°.∵∠BAC =90°,∴∠DAC +∠BAF =90°,∴∠BAF =∠C .∵OE ⊥OB ,∴∠BOA +∠COE =90°,∵∠BOA +∠ABF =90°,∴∠ABF =∠COE ,∴△ABF ∽△COE (2)过O 作AC 的垂线交BC 于点H ,则OH ∥AB ,由(1)得∠ABF =∠COE ,∠BAF =∠C ,∴∠AFB =∠OEC ,∴∠AFO =∠HEO ,而∠BAF =∠C ,∴∠FAO =∠EHO ,∴△OEH ∽△OFA ,∴OA ∶OH =OF ∶OE ,又∵O 为AC 的中点,OH ∥AB ,∴OH 为△ABC 的中位线,∴OH =12AB ,OA =OC =12AC ,而AC AB =2,∴OA ∶OH =2∶1,∴OF ∶OE =2∶1,即OF OE =2 (3)OF OE =n。
小专题(三) 相似三角形的基本模型
下面仅以X 字型.A 字型.双垂型.M 字型4种模型设置练习,帮助同学们认识相似三角形的基本模型,并能从复杂的几何图形中分辨出相似三角形,进而解决问题. 模型1 X 字型及其变形
(1)如图1,对顶角的对边平行,则△ABO ∽△DCO ;
(2)如图2,对顶角的对边不平行,且∠OAB =∠OCD ,则△ABO ∽△CDO .
1.(滨州中考)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,则CF CD =1
3
.
2.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.
解:∵∠ADE =∠ACB , ∴180°-∠ADE =180°-∠ACB , 即∠BDF =∠ECF . 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF . ∴
BD CE =DF CF ,即84=DF 2
. ∴DF =4.
模型2 A 字型及其变形
(1)如图1,公共角所对应的边平行,则△ADE ∽△ABC ;
(2)如图2,公共角的对边不平行,且有另一对角相等,则△ADE ∽△ABC ;
(3)如图3,公共角的对边不平行,两个三角形有一条公共边,且有另一对角相等,则△ACD ∽△ABC .
3.(潍坊中考)如图,在△ABC 中,AB ≠AC ,D ,E 分别为边AB ,AC 上的点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件:答案不唯一,如:∠A =∠BDF ,∠A =∠BFD ,∠ADE =∠BFD ,∠EDA =∠BFD ,DF ∥AC ,BD AE =BF ED ,BD DE =BF AE 等,可以使得△FDB 与△ADE
相似.(只需写出一个)
4.(福州中考)如图,在△ABC 中,AB =AC =1,BC =5-1
2
,在AC 边上截取AD =BC ,连接BD .
(1)通过计算,判断AD 2与AC ·CD 的大小关系;
(2)求∠ABD 的度数.
解:(1)∵AD =BC =5-1
2
, ∴AD 2=(
5-12)2=3-5
2. ∵AC =1, ∴CD =1-
5-12=3-5
2
. ∴AD 2=AC ·CD . (2)∵AD 2
=AC ·CD , ∴BC 2=AC ·CD ,即BC AC =CD BC .
又∵∠C =∠C ,∴△ABC ∽△BDC . ∴
AB BD =AC BC
. 又∵AB =AC ,∴BD =BC =AD .
∴∠A =∠ABD ,∠ABC =∠C =∠BDC .
设∠A=∠ABD=x,
则∠BDC=∠A+∠ABD=2x,
∴∠ABC=∠C=∠BDC=2x.
∴∠A+∠ABC+∠C=x+2x+2x=180°.
解得x=36°.
∴∠ABD=36°.
模型3双垂型
直角三角形被斜边上的高分成两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.
5.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为(C)
A.3
B.4
C.5
D.6
6.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为(B) A.3 6 B.15
C.9 5 D.3+3 5
7.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4,那么CD=6,AC=313.
模型4M字型及其变形
(1)如图1,Rt△ABD与Rt△BCE的斜边互相垂直,则有△ABD∽△CEB;
(2)如图2,点B,C,E在同一条直线上,∠ABC=∠ACD,则再已知一组条件,可得△ABC与△DCE相似.
8.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,求AB 的长.
解:∵AB ⊥BD ,ED ⊥BD , ∴∠B =∠D =90°. ∴∠ACB +∠A =90°. ∵AC ⊥CE ,
∴∠ACB +∠ECD =90°. ∴∠A =∠ECD . ∴△ABC ∽△CDE . ∴
AB CD =BC DE
. 又∵C 是线段BD 的中点,ED =1,BD =4,
∴BC =CD =2. ∴AB =4.
9.如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且∠BEF =90°.
(1)求证:△ABE ∽△DEF ;
(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.
解:(1)证明:∵四边形ABCD 为正方形, ∴∠A =∠D =90°.
∴∠ABE +∠AEB =90°. ∵∠BEF =90°,
∴∠AEB +∠DEF =90°. ∴∠ABE =∠DEF . ∴△ABE ∽△DEF .
(2)∵AB =AD =4,E 为AD 的中点,
∴AE=DE=2.
由(1)知,△ABE∽△DEF,
∴AB
DE=
AE
DF,即
4
2=
2
DF.
∴DF=1.∴CF=3. ∵ED∥CG,
∴△EDF∽△GCF.
∴ED
CG=
DF
CF,即
2
GC=
1
3.
∴GC=6.
∴BG=BC+GC=10.。