概率论公式总结
- 格式:doc
- 大小:159.00 KB
- 文档页数:2
概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。
2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。
3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。
4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。
二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。
2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。
3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。
4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。
三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)分布函数对离散型随机变量 对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数)(b X a P ≤≤∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dt t f x X P x F )()()(),(y x f 1),(0≤≤y x F联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式方差定义式常用计算式常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数 ),(y x F ∑+∞-∞=⋅=k k k P x X E )([]22)()()(X E X E X D -=协方差的性质独立与相关独立必定不相关相关必定不独立不相关不一定独立第四章 正态分布标准正态分布的概率计算标准正态分布的概率计算公式一般正态分布的概率计算一般正态分布的概率计算公式第五章卡方分布t 分布F 分布 正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数矩估计最大似然估计 ),(~2σμN X )(~)1,0(~212n X N X n i i χ∑=,则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ似然函数 均值的区间估计——大样本结果正态总体方差的区间估计两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章 二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤b adx x f b X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kk k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
概率论的公式大全1.基本概率公式:对于一个随机事件A,它发生的概率(记作P(A))等于A包含的元素数目除以样本空间中元素的总数目。
P(A)=个数(A)/个数(样本空间)2.条件概率公式:对于两个事件A和B,如果B已经发生,则A发生的概率记作P(A,B)。
P(A,B)=P(A交B)/P(B)3.全概率公式:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(A)=Σ(P(A,Bi)*P(Bi)),i=1到n4.贝叶斯定理:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(Bi,A)=(P(A,Bi)*P(Bi))/Σ(P(A,Bj)*P(Bj)),j=1到n5.独立事件公式:对于两个事件A和B,如果它们相互独立(即A的发生与B的发生没有任何关系),则它们的联合概率等于它们的乘积。
P(A交B)=P(A)*P(B)6.乘法公式:对于一系列独立事件A1,A2,...,An,它们的概率等于各个事件发生的概率的乘积。
P(A1交A2交...交An)=P(A1)*P(A2)*...*P(An)7.加法公式:对于两个事件A和B,它们的并集的概率等于各个事件发生的概率之和减去它们的交集的概率。
P(A并B)=P(A)+P(B)-P(A交B)8.期望值公式:对于一个随机变量X和它的概率分布P(X),它的期望值可以表示为:E(X)=Σ(Xi*P(Xi))9.方差公式:对于一个随机变量X和它的期望值E(X),它的方差可以表示为:Var(X) = Σ((Xi - E(X))^2 * P(Xi)),i为X的取值范围内的索引10.协方差公式:对于两个随机变量X和Y,它们的协方差可以表示为:Cov(X, Y) = E((X - E(X)) * (Y - E(Y)))11.相关系数公式:对于两个随机变量X和Y,它们的相关系数可以表示为:Corr(X, Y) = Cov(X, Y) / (σ(X) * σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差12.大数定律:对于独立同分布的随机变量序列X1,X2,...,Xn,当n趋向于无穷大时,它们的算术平均值逐渐接近它们的期望值。
概率公式整理
1.随机事件及其概率吸收律:A
AB A A
A A =⋃=∅
⋃Ω
=Ω⋃)(
A
B A A A A A =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-
反演律:B A B A =⋃ B A AB ⋃=
n
i i
n
i i
A A
1
1
===
n
i i
n
i i
A A
1
1
===
2.概率的定义及其计算:)(1)(A P A P -= 若B A ⊂ )()()(A P B P A B P -=-⇒ 对任意两个事件A , B , 有 )()()(AB P B P A B P -=-
加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃
)()
1()()()()(211
111
1
n n n
n
k j i k j i
n
j i j i
n
i i
n
i i A A A P A A A
P A A
P A
P A P -≤<<≤≤<≤==-+++
-
=
∑∑∑
3.条件概率 ()=A B P
)
()(A P AB P 乘法公式 ())
0)(()()(>=A P A B P A P AB P
()()
)
0)(()()(12112112
121>=--n n n n A A A P A A A A P A A P A P A A A P
全概率公式∑
==
n
i i AB P A P 1
)()( )()(1
i n
i i B A P B P ⋅=
∑
=Bayes 公式)(A B P k )
()(A P AB P k =
∑==
n
i i i
k k B A
P B P B A P B P 1
)
()()
()(
4.随机变量及其分布 分布函数计算
)
()()
()()(a F b F a X P b X P b X a P -=≤-≤=≤<
5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k
(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞
→λn n np 有
,2,1,0!)
1(lim ==---∞
→k k e
p p C k
k
n n k n
k n n λ
λ
(3) Poisson 分布 )(λP ,2,1,0,!
)(===-k k e
k X P k
λ
λ
6.连续型随机变量 (1) 均匀分布 ),(b a U ⎪⎩
⎪
⎨⎧
<<-=其他
,0,1
)(b x a a
b x f ⎪⎪⎩
⎪⎪
⎨⎧--=1,
,
0)(a b a
x x F
(2) 指数分布 )(λE
⎪⎩⎪⎨
⎧>=-其他
,
00,
)(x e x f x
λλ ⎩⎨
⎧≥-<=-0
,
10,
0)(x e
x x F x
λ
(3) 正态分布 N (μ , σ 2 ) +∞<<∞-=--
x e
x f x 22
2)(21)(σ
μσ
π ⎰
∞
---=
x
t t e
x F d 21)(22
2)(σ
μσ
π
*N (0,1) — 标准正态分布
+∞<<∞-=
-
x e
x x
2
2
21)(π
ϕ
+∞
<<∞-=
Φ⎰
∞
--
x t e
x x
t
d 21)(2
2
π
7.多维随机变量及其分布 二维随机变量( X ,Y )的分布函数 ⎰⎰
∞
-∞
-=x
y d v d u v u f y x F ),(),(
边缘分布函数与边缘密度函数 ⎰⎰
∞
-+∞
∞
-=
x X dvdu v u f x F ),()( ⎰
+∞
∞
-=
dv v x f x f X ),()(
⎰⎰
∞
-+∞
∞
-=
y Y dudv v u f y F ),()( ⎰
+∞
∞
-=
du y u f y f Y ),()(
8. 连续型二维随机变量 (1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他
,
0),(,
1),(G y x A
y x f
(2)二维正态分布
+∞
<<-∞+∞<<∞-⨯-=
⎥⎥⎦
⎤
⎢⎢⎣⎡-+------
y x e
y x f y y x x ,121
),(2
22221212121
2
)())((2)()1(212
2
1
σμσσμμρσμρ
ρ
σ
πσ
9. 二维随机变量的 条件分布0)()
()(),(>=x f x y f x f y x f X X Y X 0)()
()(>=y f y x f y f Y Y X Y
⎰
⎰
+∞
∞
-+∞
∞
-=
=
dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰
⎰
+∞
∞
-+∞
∞
-=
=
dx x f x y f dx y x f y f X X
Y
Y )()(),()(
)(y x f Y X )
(),(y f y x f Y =
)
()()(y f x f x y f Y X X
Y =
)(x y f X Y )
(),(x f y x f X =
)
()
()(x f y f y x f X Y Y X =
10.随机变量的数字特征 数学期望∑
+∞
==
1
)(k k
k p x X E ⎰
+∞
∞
-=
dx x xf X E )()(
随机变量函数的数学期望 X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X E
X 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-
X ,Y 的 k + l 阶混合原点矩 )(l k Y X E X ,Y 的 k + l 阶混合中心矩 ()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E -- X ,Y 的相关系数
XY Y D X D Y E Y X E X E ρ=⎪⎪⎭
⎫
⎝
⎛--)()())())(((
X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -=
())()()(2
1Y D X D Y X D --±±
=
相关系数
)
()
(),cov(Y D X D Y X XY =
ρ。