专题讲座 转化与化归(答案)
- 格式:doc
- 大小:78.00 KB
- 文档页数:2
我们时常会遇到这样一些问题,若要直接解决会较为困难,若通过问题的转化、归类,就会使问题变得简单,这类问题的解决方法就是转化与化归思想,它在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归.转化与化归思想,指的是在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终使问题得到解决的一种思想。
利用化归与转化的思想可以实现问题的规范化、模式化,以便应用已知的理论、方法和技巧来解决问题.数学解题过程,就是不断转化的过程,不断把问题由陌生转化成熟悉的来解决,几乎所有问题的解决都离不开转化与化归。
在其他的数学思想中明显体现了转化与化归的思想,比如,数形结合思想体现了数与形的相互转化,函数与方程思想体现了函数、方程、不等式等问题之间的相互转化,分类讨论思想体现了局部与整体的相互转化.一、常见的转化与化归的形式常见的有:陌生问题向熟悉问题的转化,复杂问题向简单问题的转化,不同数学问题之间的互相转化,实际问题向数学问题转化等。
二、常见的转化策略常见的有:正与反的转化、数与形的转化、整体与局部的转化、常量与变量的转化、相等与不等的转化、空间与平面的转化、数学语言之间的转化等。
三、常见的实现转化与化归的方法:1.直接转化法:把原问题直接转化为学过的基本定理、基本公式或基本图形问题.2.换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。
3。
数形结合法,即数与形的转化。
将比较抽象的问题化为比较直观的问题来解决.例如在函数与图象的联系中可以体现出,把繁琐的代数问题转化为直观的几何图形来解决4。
特殊化方法:即特殊与一般的转化,把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题。
5。
补集法,即正与反的相互转化.当问题正面讨论遇到困难时,可考虑问题的反面,正难则反,设法从问题的反面去探讨,使问题获解.6.等价转化法:把原问题转化为一个易于解决的等价命题,即原问题的充要条件,达到化归的目的.7。
九、化归与转化思想专题上海市向东中学 刘成宏经典例题【例1】若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点,求MN 的最大值.分析: 动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点, 横坐标相同,那么MN 就转化为N M ,两点纵坐标之差,即x x MN cos sin -=求最值.解: x x MN cos sin -==)4sin(2π-x 最大值为2.【例2】设点)0,(m M 在椭圆1121622=+y x 的长轴上,点P 是椭圆上任意一点. 当MP 的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.解:设),(y x P 为椭圆上的动点,由于椭圆方程为1121622=+y x ,故44≤≤-x .因为()y m x MP ,-=,2222312)4(4112241m m x m mx x -+-=++-=.依题意可知,当4=x 取得最小值.而[]4,4x ∈-, 故有44≥m ,解得1≥m .又点M 在椭圆的长轴上,即44≤≤-m . 故实数m 的取值范围是]4,1[∈m . 【例3】设R y x ∈,且x y x 62322=+,求22y x +的范围.分析:设22y x k +=,再代入消去y ,转化为关于x 的方程有实数解时求参数k 范围的问题.其中要注意隐含条件,即x 的范围.解:方法一、由023622≥=-y x x 得20≤≤x .设22y x k +=,则22x k y -=,代入已知等式得:0262=+-k x x , 即x x k 3212+-=,其对称轴为3=x .由20≤≤x 得[]4,0∈k .所以22y x +的范围是:4022≤+≤y x . 方法二、 数形结合法(转化为解析几何问题):由x y x 62322=+得 ()123122=+-y x ,即表示如图所示椭圆,其一个顶点在坐标原点.22y x +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22y x +=k ,代入椭圆中消y 得0262=+-k x x .由判别式40836==-=∆k k 得,所以22y x +的范围是:4022≤+≤y x .【例4】已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数). (1)求数列{}n a 的通项公式; (2)记 ++++=n a a a S 21.若n ,n S kS ≤恒成立,求实数k 的最大值.解:(1) 3231=++n n S a , ①∴ 当2≥n 时,3231=+-n n S a . ②由 ① - ②,得02331=+-+n n n a a a .311=∴+n n a a )2(≥n .又 11=a ,32312=+a a ,解得 312=a . ∴ 数列{}n a 是首项为1,公比为31=q 的等比数列.11131--⎪⎭⎫ ⎝⎛==∴n n n qa a (n 为正整数).(2)由(1)知,23311111=-=-=qa S ,()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=--=nnnn qq a S 31123311311111.由题意可知,对于任意的正整数n ,恒有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-≤n k 3112323,解得 nk ⎪⎭⎫⎝⎛-≤311.数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛-n311单调递增,∴ 当1=n 时,数列中的最小项为32,∴ 必有32≤k ,即实数k 的最大值为32.【例5】设bax f x x ++-=+122)((b a ,为实常数).(1)当1==b a 时,证明:)(x f 不是奇函数; (2)设)(x f 是奇函数,求a 与b 的值;(3)当)(x f 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立?若存在试找出所有这样的D ;若不存在,请说明理由.解:(1)举出反例即可.1212)(1++-=+x x x f ,511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,)(x f 不是奇函数;(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x成立.化简整理得0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x,这是关于x 的恒等式,所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意. (3)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x,所以112>+x ,11210<+<x,从而21)(21<<-x f ; 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立.当⎩⎨⎧-=-=21b a 时,)021*******)(1≠-+-=---=+x x f xx x (,所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f ; 1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 1分 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x得:75lo g 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.化归与转化思想检测题一、填空题(每小题4分,满分40分)1.使函数),606(20069)(2Z x x xx x f ∈≤≤+=取最小值的x 的值为___________. 2.设函数()y f x =存在反函数1()y fx -=,且函数2()y x f x =-的图象过点(2,3),则函数1()2y f x x -=-的图象一定过点 .3.已知ABC ∆中,c b a ,,分别为角C B A ,,所对的边,ca bA B 2cos cos +-=,则B 的大小________. 4.函数)1arccos(2-=x y 的定义域为 ______ . 5.锐角α满足34)cot (tan log sin -=+ααα,则=ααcos log tan . 6.已知0y >x ,且0y -9-y =x x ,则y +x 的最小值为_____________.7.已知a 为正实数,直线a y x =+与圆422=+y x 交于B A ,两点,且||||OB OA OB OA -=+,其中O 为原点,则正实数a 的值为________.8.若点O 和点F 分别为椭圆2212x y +=的中心和左焦点,点P 为椭圆上的任意一点,则22OP PF +的最小值为 .9.数列{}n a 满足 ()1,0log 1log 1≠>+=+a a a a n a n a 且10010021=+++a a a ,则=+++10042a a a .10.在圆5x y x 22=+内,过点⎪⎭⎫ ⎝⎛23,25有n 条弦的长度成等差数列,最短弦长为该等差数列的首项1a ,最长弦长为n a ,若公差 ⎝⎛⎥⎦⎤∈31,61d ,则n 的取值构成的集合是 .二、解答题(本大题共有5题,解答下列各题必须在规定区域内写出必要的步骤)11. (10分)如图,在平面直角坐标系xOy 中,以x 轴为始边作两个锐角,αβ,它们的终边分别与单位圆交于,A B 两点.已知,A B. (1)求tan()αβ+的值;(2)求2αβ+的值.12.(12分)如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,2BC =,4AB =,14CC =,E 在1BB 上,且11EB =,D F 、分别为111CC AC 、的中点. (1)求证:1B D ⊥平面ABD ;(2)求异面直线BD 与EF 所成的角; (3)求点F 到平面ABD 的距离.13.(12分)设A 、B 是双曲线1222=-y x 上的两点,点()2,1N 是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?14.(12分)设)2(cos )22(cos )2sin()22sin(2)(22x x x x x f +--++-=ππππ(1)若)2,0(π∈x ,求)(x f 的最小值;(2)设]87,4[,2)42()(πππ∈+-=x m x f x g ,若)(x g 有两个零点, 求实数m 的取值范围.15. (14分)设数列{}n a 的前n 项和为n S ,点(,)n n P S a 在直线(3)230m x my m -+--=上,*(,N m m ∈为常数,3)m ≠.(1)求n a ;(2)若数列{}n a 的公比()q f m =,数列{}n b 满足1113,=(),(*,2)2N n n b a b f b n n -=∈≥,求证:1{}nb 为等差数列,并求n b ; (3)设数列{}nc 满足2n n n c b b +=⋅,n T 为数列{}n c 的前n 项和,且存在实数T 满足n T T ≥,(*)N n ∈,求T 的最大值.化归与转化思想检测题答案一、填空题:1. 15;2.(1,0);3. 120°;4. ]2,2[-;5.21;6. 16;7. 2; 8.2; 解答提示:设(),P x y ,由()1,0F -得()2222221OP PF x y x y +=++++①因为点P 为椭圆上的任意一点,则2212x y =-,于是①式化为2222221212x OP PF x x ⎛⎫+=+++- ⎪⎝⎭223x x =++()212x =++.因为x ≤≤,而()212x ++图象的对称轴1x ⎡=-∈⎣,所以当1x =-时,22OP PF +有最小值为2. 9.aa+1100 ;10.{}6,5,4. 二、解答题:(满分60分) 11.解:(1)由已知得:cos 510αβ==. ∵,αβ为锐角∴sin αβ==. ∴ 1tan 2,tan 7αβ==. ∴12tan tan 7tan()311tan tan 127αβαβαβ+++===-⋅-⨯.--------------------6分 (2)∵22tan 44tan 21tan 143ααα===--- ∴41tan 2tan 37tan(2)1411tan 2tan 1()37αβαβαβ-+++===--⋅--⨯. ,αβ 为锐角,∴3022παβ<+<, ∴324παβ+=. -----------10分 12.解:(1)由条件得114DB DB BB ===22211BD DB BB ∴+=1.B D DB ∴⊥11,AB BCC B ⊥又面1BA B D ∴⊥ 1B D ABD ∴⊥面 ---------4分(2)取11B C 的中点 G ,连接GF GE 、.则//EG BD ,GEF ∴∠或其补角为BD EF 、所成角.111111,//A B BCC B GF A B ⊥ 面 11,FG BCC B ∴⊥面FG GE ∴⊥.EGF ∆在Rt 中,2,GE GF ==tan GEF ∴∠=BD EF ∴与所成角为 ---------8分(3)设F 到面ABD 的距离为d ,过B 作BH AC H ⊥于,则11BH ACC A ⊥面.F ABD B DAF V V --= ,1133ABD ADF S d S BH ∆∆∴⋅⋅=⋅⋅1111114424323222d ⎛∴⋅⋅⋅=⋅⋅⋅⋅⋅⋅ ⎝2d ∴=. ---------12分 13.解 (1)设AB ∶2)1(+-=x k y 代入1222=-y x整理得02)2()2(2)2(222=------k x k k x k ①………………2分设),(11y x A 、),(22y x B ,21,x x 为方程①的两根 所以022≠-k 且2212)2(2kk k x x --=+ 又N 为AB 中点,………………4分 有1)(2121=+x x ∴22)2(k k k -=-,解得1=k 故AB ∶1+=x y ………………6分 (2)解出)4,3(),0,1(B A -,得CD 的方程为x y -=3 与双曲线方程联立消y 有01162=-+x x ②记),(33y x C 、),(44y x D 及CD 中点),(00y x M 由韦达定理可得.6,300=-=y x …………8分∵|CD |=104)()(243243=-+-y y x x∴|MC |=|MD |=21|CD ………………10分 又|MA |=|MB |=102)()(210210=-+-y y x x 即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆 ………………12分14.解:(1))4sin(2cos sin )(π+-=--=x x x x f ………………3分∵4344πππ<+<x ∴x =2,4m in -=f π……………………………5分(2)设g (x )=]87,4[,22sin 2ππ∈+-x m x …………………………7分∵函数g (x )有两个零点∴方程]87,4[022sin 2ππ∈=+-x m x 当时有两个解……………9分∴y=m 2与y=]87,4[2sin 2ππ∈x x ,图象有两个交点.由图象得122-≤<-m ∴2122-≤<-m ……………………12分 15.解:(1)由题设,(3)230n n m S ma m -+--= ①1113(3)23013m m a ma m a m +∴-+--=⇒==+ ………………2分 由①,2n ≥时,11(3)230n n m S ma m ---+--=②①-②得,112(3)2()0,3n n n n n m m a m a a a a m ---+-=⇒=+ 12().3n n m a m -∴=+ …………3分(2)由(Ⅰ)知111112233,1,(),3223n n n n b m q b a b f b m b ---=====⨯++……………2分化简得: 12111111(1).333n n nn n b b b -+=+⇒=+-⨯=1{}n b ∴为等差数列,3.2n b n ∴=+………………2分(3)由(Ⅱ)知*2330,.24n n n c b b n N n n +=⋅=⋅>∈++n T 为数列{}n c 的前n 项和,因为0n c >,………………2分所以n T 是递增的, 1135n T T c ==≥, ………………2分所以要满足n T T ≥,(*)n N ∈,3.5T ∴≤所以T 的最大值是35. ………………1分。
化归与转化的思想在解题中的应用一、知识整合1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
2.化归与转化思想的实质是揭示联系,实现转化。
除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。
从这个意义上讲,解决数学问题就是从未知向已知转化的过程。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
3.转化有等价转化和非等价转化。
等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
4.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、例题分析例1.某厂2001年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m 与全年总投入N的大小关系是()A. m>NB. m<NC.m=ND.无法确定[分析]每月的利润组成一个等差数列{a n },且公差d >0,每月的投资额组成一个等比数列{b n },且公比q >1。
《新课标》高三数学(人教版)第二轮专题讲座第三讲 转化与化归思想一.知识探究:等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
1.转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。
2.常见的转化方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;(2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题;(3)参数法:引进参数,使原问题的变换具有灵活性,易于转化;(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;(5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径;(6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径;(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题;(8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化;(9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的;(10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。
3.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
转化与化归的思想方法(2)---高考题选讲化归与转化的思想是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题.事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题无论是难题还是易题,都离不开化归.例如,对于立体几何问题通常要转化为平面几何问题,对于多元问题,要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等等.在高考中,对化归思想的考查,总是结合对演绎证明,运算推理,模式构建等理性思维能力的考查进行,因此可以说高考中的每一道试题,都在考查化归意识和转化能力.【例1】已知球O的半径为1,A,B,C三点都在球面上,且每两点间的球面距离均为,则球心O到平面ABC的距离为().分析与求解:由已知条件,分析所给出的几何体的特征,可作如下转化:球心O到平面ABC的距离?圳正三棱锥的高?圳正方体的对角线,可立即得出球心O到平面ABC的距离=棱长为1的正方体对角线的.故B正确.【例2】设x、y∈R且3x2+2y2=6x,求x2+y2的X围.分析1:设k=x2+y2,再代入消去y,转化为关于x的方程有实数解时求参数k的X围的问题.其中要注意隐含条件,即x的X围.解法1:由6x-3x2=2y2≥0得0≤x≤2.设k=x2+y2,则y2=k-x2,代入已知等式得:x2-6x+2k=0,即k=-x2+3x,其对称轴为x=3.由0≤x≤2得k∈[0,4].所以x2+y2的X围是:0≤x2+y2≤4.分析2:三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题)解法2:由所以x2+y2的X围是:0≤x2+y2≤4.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.此题还可以利用均值换元法进行解答.各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型.【例3】求值:cot10°-4cos10°分析:要求该式的值,估计有两条途径:一是将函数名化为相同,二是将非特殊角化为特殊角.解法:cot10°-4cos10°【点评】无条件三角求值问题,是高考中常见题型,其变换过程是等价转化思想的体现.此种题型属于三角变换型.一般对于三角恒等变换,需要灵活运用的是同角三角函数的关系式、诱导公式、和差角公式、倍半角公式、和积互化公式以及万能公式,常用的手段是:切割化弦、拆角、降次与升次、和积互化、异名化同名、异角化同角、化特殊角等等.对此,我们要掌握变换的通法,活用公式,攻克三角恒等变形的每一道难关.【例4】球面上有3个点,其中任意两点的球面距离都相等于大圆周长的,经过3个点的小圆周长为4π,那么这个球的半径为().分析:将空间的问题转化为平面的问题来处理,这是解题的通法.由任意两点球面距离相等,则这三点构成过这三点截面上的等边三角形,又球面距离等于大圆周长的,则任意两点与球心构成的圆心角为,即,且任意两点与球心构成过这两点大圆截面上的等边三角形,则球半径等于球面上这三点任意二点的平面距离.运用转化的思想方法,把求球半径的问题转化为已知过球面三点的小圆周长,求这小圆上内接正三角形的边长.解:设A、B、C为球面上三点,过其中A、B两点的大圆,如图,O为球心,则∠AOB==,且OA=OB=R.则AB=OA=OB=R.同理OC=OA=OB=R,OB=OC=BC=R,∴△ABC为等边三角形.设过A、B、C三点的小圆为⊙O′,如图2,半径为r,则由2πr=4π,得r=2,∴AB=AC=BC=R=2rsin=4=2. ∴应选B.【点评】这里用了降维转化的思想方法,转化的对象为求球的半径,转化的方向为求△ABC的边长,转化的条件是“任意两点的球面距离都等于大圆周长的”.【例5】(某某卷)设函数f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求证:(Ⅰ)方程f(x)=0有实数根;(Ⅱ)-2<<-1;(Ⅲ)设x1,x2是方程f(x)=0的两个实根,则≤<.思路分析:对于(Ⅰ),应首先看系数3a是否为0.若a=0,则b=-c,f(0)f(1)=c(3a+2b+c)=-c2≤0,与已知矛盾,所以a≠0.从而有对于(Ⅱ),结论等价于(+1)(+2)<0.故由条件中消去c,有(a+b)(2a+b)<0,除以a2即可.对于(Ⅲ),应将转化为关于的表达式,即,再利用(Ⅱ)的结论求解.【点评】本题有效地将二次函数,二次方程,二次不等式融于一题,三问层层递进.(Ⅱ)、(Ⅲ)两问的证明均需我们盯住解题目标在条件与结论之间进行有效地转化与化归以寻求沟通点.【例6】(某某卷)设a为实数,设函数f(x)=a+的最大值为g(a).(Ⅰ)设t=,求t的取值X围,并把f(x)表示为t的函数m(t);(Ⅱ)求g(a);(Ⅲ)求满足g(a)=g()的所有实数a.思路分析:(Ⅰ)1. ∵,∴要使t有意义,必须1+x≥0且1-x≥0,即-1≤x≤1.∴t的取值X围是[,2].由①得c osθ-sinθ+cosθ=2cosθ,由于所以,即t∈[,2],f(x)=acos2θ+t.又t=3. 令则t=m+n,m2+n2=2,由数形结合可得t∈[,2].从而求出m(t)的解析式.(Ⅱ)、(Ⅲ)略.【点评】本题表面看是与无理函数有关的一个综合性的分步设问的问题,主要考查函数、方程等基本知识,试题的设置事实上也给出了处理结构较复杂函数f(x)的基本思路,只要经过换元很容易转化为常规的二次函数问题,其中的分类讨论对学生思维的周密性考查得力,具有很大的区分度.本题(Ⅰ)中三种思路分别利用代数换元、三角换元以及数形结合将问题进行了转化与化归从而求得了t的取值X围以及m(t)的解析式.【例7】(某某卷)已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R.求:(Ⅰ)函数f(x)的最大值及取得最大值的自变量x的集合;(Ⅱ)函数f(x)的单调增区间.解:(Ⅰ)解法1:∴当时,f(x)取得最大值2+.因此,f(x)取得最大值的自变量x的集合是{xx=kπ+,k∈Z}.解法2:∵f(x)=(sin2x+cos2x)+sin2x+2cos2x=1+sin2x+ 1+cos2x=2+sin (2x+).∴当取得最大值2+.因此,f(x)取得最大值的自变量x的集合是(Ⅱ)f(x)=2+sin(2x+).由题意得2kπ-≤因此,f(x)的单调增区间是【点评】本题两问的求解都需同学们将f(x)准确而合理地转化为的形式,即考查同学们对三角函数式的转化与化归的能力,这也是高考试题重点考查的能力之一.【例8】(某某卷)已知数列{a n}满足2a n(n∈N+).(Ⅰ)证明:数列{an+1-an}是等比数列;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)若数列{b n}满足(n∈N+),证明{bn}是等差数列.解:(Ⅰ)证明:a1=2为首项,2为公比的等比数列.(Ⅱ)解:由(Ⅰ)得(Ⅲ)证明:∵,∴∴{b n}是等差数列.【点评】本小题主要考查数列、不等式等基本知识,考查化归与转化的数学思想方法,考查综合解题能力.【例9】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱EFBC.(1)证明FO∥平面CDE;(2)设BC=CD,证明EO⊥平面CDF.解:(1)证明:取CD中点M,连结OM,在矩形ABCD中,OMBC,又EFBC,则EFOM.连结EM,于是四边形EFOM为平行四边形. ∴FO∥EM.又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.(2)证明:连结FM,由(1)和已知条件,在等边△CDE中,CM=DM,EM⊥CD且EM=CD=BC=EF.因此平行四边形EFOM为菱形,从而EO⊥FM,∵CD⊥OM,CD⊥EM∴CD⊥平面EOM,从而CD⊥EO,而FM∩CD=M,所以EO⊥平面CDF.【点评】立体几何是考查转化与化归的重要截体,如本题中的位置关系转化(第(Ⅰ)问中的线线平行与线面平行的转化,第(Ⅱ)问中的线线垂直与线面垂直的转化),空间向平面的转化、等积转化等等.【例10】. 已知f(x)=tgx,x∈(0,π2),若x1、x2∈(0,π2)且x1≠x2,求证:12[f(x1)+f(x2)]>f(x x122)【分析】从问题着手进行思考,运用分析法,一步步探求问题成立的充分条件。
新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。
2008高考数学专题复习 化归与转化思想一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化有等价转化与不等价转化。
等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。
应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有:1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。
3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。
4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。
5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。
6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。
7、函数与方程的转化二、 经典例题剖析例1、(2007安徽卷 理)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>. (Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决; (Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。
第4讲转化与化归思想转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题的转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.1.转化与化归的指导思想(1)把什么问题进行转化,即化归对象.(2)化归到何处去,即化归目标.(3)如何进行化归,即化归方法.化归与转化思想是一切数学思想方法的核心.2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A获得原问题的解决,体现了正难则反的原则. 热点一特殊与一般的转化例1(1)AB是过抛物线x2=4y的焦点的动弦,直线l1,l2是抛物线两条分别切于A,B的切线,则l1,l2的交点的纵坐标为()A.-1 B.-4 C.-14D.-116(2)已知函数f(x)=a xa x+a(a>0且a≠1),则f⎝⎛⎭⎫1100+f⎝⎛⎭⎫2100+…+f⎝⎛⎭⎫99100的值为________.思维升华一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.(1)在△ABC中,角A、B、C所对的边分别为a、b、c,若a、b、c成等差数列,则cos A+cos C1+cos A cos C =________.(2)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f⎝⎛⎭⎫52=________.热点二函数、方程、不等式之间的转化例2(1)定义运算:(a⊕b)⊗x=ax2+bx+2,若关于x的不等式(a⊕b)⊗x<0的解集为{x|1<x<2},则关于x 的不等式(b⊕a)⊗x<0的解集为()A.(1,2) B.(-∞,1)∪(2,+∞) C.⎝⎛⎭⎫-23,1D.⎝⎛⎭⎫-∞,-23∪(1,+∞)(2)已知函数f(x)=3e|x|.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m],m∈Z且m>1,都有f(x+t)≤3e x,则m的最大值为________.思维升华函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数的帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.(1)若关于x的方程9x+(4+a)·3x+4=0有解,则实数a的取值范围是________.(2)设f(x)是定义在R上的单调增函数,若f(1-ax-x2)≤f(2-a)对任意a∈[-1,1]恒成立,则x的取值范围为______________.热点三正难则反的转化例3若对于任意t∈[1,2],函数g(x)=x3+⎝⎛⎭⎫m2+2x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是__________.思维升华否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单.因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,求实数p 的取值范围.将问题进行化归与转化时,一般应遵循以下几种原则 (1)熟悉化原则:将陌生的问题转化为我们熟悉的问题. (2)简单化原则:将复杂的问题通过变换转化为简单的问题.(3)直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何问题向平面几何问题转化).(4)正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题. 真题感悟1.(2014·山东)设集合A ={x ||x -1|<2},B ={y |y =2x,x ∈[0,2]},则A ∩B 等于( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4)2.(2014·安徽)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6等于( ) A .12 B .32 C .0 D .-123.(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________. 解析 圆C 的圆心为(0,1),半径为1,标准方程为x 2+(y -1)2=1.4.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3押题精练1.已知函数f (x )=|e x +ae x |(a ∈R ,e 是自然对数的底数)在区间[0,1]上单调递增,则a 的取值范围是( )A .[0,1]B .[-1,0]C .[-1,1]D .(-∞,-e 2]∪[e 2,+∞)2.过双曲线x 2a 2-y 2b 2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R 、Q 两点,则PR →·PQ →的值为( )A .a 2B .b 2C .2abD .a 2+b 23.已知数列{a n }的前n 项和为S n ,且a n =S n ·S n -1 (n ≥2),a 1=29,则a 10等于( )A .49B .47C .463D .5634.设函数f (x )=⎩⎪⎨⎪⎧2x(x ≤0),log 2x (x >0),则函数y =f (f (x ))-1的零点个数为________.5.(2014·湖北)若函数f (x ),g (x )满足⎠⎛1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .36.已知奇函数f (x )的定义域为实数集R ,且f (x )在[0,+∞)上是增函数,当0≤θ≤π2时,是否存在实数m ,使f (cos 2θ-3)+f (4m -2m cos θ)>f (0)对所有的θ∈⎣⎡⎦⎤0,π2均成立?若存在,求出所有适合条件的实数m ;若不存在,请说明理由.例1 (1)A (2)992 变式训练1 (1)45(2)0例2 (1)D (2)3 变式训练2 (1)(-∞,-8] (2)(-∞,-1]∪[0,+∞) 例3-373<m <-5变式训练3 解 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为(-3,32).CA 3.x 2+(y -1)2=1 D CAC 4.2 C6.解 ∵f (x )在R 上为奇函数,又在[0,+∞)上是增函数, ∴f (x )在R 上为增函数,且f (0)=0.由题设条件可得,f (cos 2θ-3)+f (4m -2m cos θ)>0. 又由f (x )为奇函数,可得 f (cos 2θ-3)>f (2m cos θ-4m ). ∵f (x )在R 上为增函数, ∴cos 2θ-3>2m cos θ-4m , 即cos 2θ-m cos θ+2m -2>0. 令cos θ=t ,∵0≤θ≤π2,∴0≤t ≤1.于是问题转化为对一切0≤t ≤1, 不等式t 2-mt +2m -2>0恒成立. ∴t 2-2>m (t -2),即m >t 2-2t -2恒成立.又∵t 2-2t -2=(t -2)+2t -2+4≤4-22,∴m >4-22,∴存在实数m 满足题设的条件,即m >4-2 2.。
20.设S n 为数列{a n }的前n 项和,若S 2n S n
(n ∈N *)是非零常数,则称该数列为“和等比数列”. (1)若数列{2b n }是首项为2,公比为4的等比数列,试判断数列{b n }是否为“和等比数列”;
(2)若数列{c n }是首项为c 1,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,试探究d 与c 1之间的关系.
解析 (1)因为数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,因此,b n
=2n -1,设数列{b n }前n 项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2n T n
=4.因此数列{b n }是“和等比数列”.
(2)设数列{c n }的前n 项和为R n ,且R 2n R n
=k (k ≠0), 则由{c n }是等差数列,得R n =nc 1+n (n -1)2d ,R 2n =2nc 1+2n (2n -1)2d ,所以R 2n R n
=2nc 1+2n (2n -1)2d nc 1+n (n -1)2d =k .对于n ∈N *都成立,化简得(k -4)dn +(k -2)(2c 1-d )=0,则有⎩⎪⎨⎪⎧
(k -4)d =0,(k -2)(2c 1-d )=0.因为d ≠0,所以k =4,d =2c 1. 因此,d 与c 1之间的等量关系为d =2c 1. 说明 本题属于新定义问题,通过“和等比数列”的定义,使问题处在一个新的背景之下,解题时运用已有的等差数列求和公式,转化成关于正整数n 的恒等式确定了d 与c 1的关系.这种新定义问题在近几年的高考中经常出现,解决它的关键是理解新定义的内涵,将其转化为熟悉的问题加以解决.
另解:以aOb
≤,下略.
25.在平面直角坐标系xOy 中,已知点()02A ,,()01B ,,()(),00D t t >,M 为线段AD 上的动点.若2AM BM ≤恒成立,则正实数t 的最小值为 .
解析 设(),M x y ,由2A M B M ≤,得222439x y ⎛⎫+- ⎪⎝
⎭≥.故线段AD 始终在圆2
224=39x y ⎛⎫+- ⎪⎝⎭的外部.当t 最小时,线段与圆相切,从而,:12AD x y l t +=.于
是23t =⇒= 27.在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32
,直线y =x 被椭圆C 截得的线段长为4105
. (1)求椭圆C 的方程;
(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.
①设直线BD ,AM 的斜率分别为k 1,k 2,证明:存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.
解 (1)由题意知a 2-b 2a =32
,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5,因此2×25a 5=4105
,可得a =2. 因此b =1,所以椭圆C 的方程为x 24
+y 2=1. (2)①设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1).因为直线AB 的斜率k AB =y 1x 1
, 又AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1
. 设直线AD 的方程为y =kx +m ,由题意知k ≠0,m ≠0.
由⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1
可得(1+4k 2)x 2+8mkx +4m 2-4=0.所以x 1+x 2=-8mk 1+4k 2, 因此y 1+y 2=k (x 1+x 2)+2m =2m 1+4k 2
. 由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2
=-14k =y 14x 1. 所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0),可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12
. 因此存在常数λ=-12
使得结论成立. ②直线BD 的方程y +y 1=y 14x 1
(x +x 1), 令x =0,得y =-34
y 1,即N ⎝⎛⎭⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积S =12×3|x 1|×34|y 1|=98
|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98
. 所以△OMN 面积的最大值为98
.。