高功率光纤合束器热阻系数的研究_黄榜才
- 格式:pdf
- 大小:389.56 KB
- 文档页数:4
第40卷㊀第7期2019年7月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 40No 7Julyꎬ2019文章编号:1000 ̄7032(2019)07 ̄0907 ̄08石墨片作辅助热沉的高功率半导体激光器热传导特性房俊宇ꎬ石琳琳∗ꎬ张㊀贺ꎬ杨智焜ꎬ徐英添ꎬ徐㊀莉ꎬ马晓辉(长春理工大学高功率半导体激光国家重点实验室ꎬ吉林长春㊀130022)摘要:为使边发射高功率单管半导体激光器有源区温度降低ꎬ增加封装结构的散热性能ꎬ降低器件封装成本ꎬ提出一种采用高热导率的石墨片作为辅助热沉的高功率半导体激光器封装结构ꎮ利用有限元分析研究了采用石墨片作辅助热沉后ꎬ封装器件的工作热阻更低ꎬ散热效果更好ꎮ研究分析过渡热沉铜钨合金与辅助热沉石墨的宽度尺寸变化对半导体激光器有源区温度的影响ꎮ新型封装结构与使用铜钨合金作为过渡热沉的传统结构相比ꎬ有源区结温降低4.5Kꎬ热阻降低0.45K/Wꎮ通过计算可知ꎬ激光器的最大输出功率为20.6Wꎮ在研究结果的指导下ꎬ确定铜钨合金与石墨的结构尺寸ꎬ以达到最好的散热效果ꎮ关㊀键㊀词:半导体激光器ꎻ散热性能ꎻ石墨辅助热沉ꎻ有限元分析ꎻ封装结构中图分类号:TN248㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194007.0907HeatTransferCharacteristicsofHighPowerSemiconductorLaserwithGraphiteSheetasAuxiliaryHeatSinkFANGJun ̄yuꎬSHILin ̄lin∗ꎬZHANGHeꎬYANGZhi ̄kunꎬXUYing ̄tianꎬXULiꎬMAXiao ̄hui(NationalKeyLaboratoryonHighPowerSemiconductorLaserꎬChangchunUniversityofScienceandTechnologyꎬChangchun130022ꎬChina)∗CorrespondingAuthorꎬE ̄mail:linlinshi88@foxmail.comAbstract:Inordertoreducethetemperatureoftheactiveregionofthehigh ̄powersingle ̄tubesemi ̄conductorlaserꎬincreasetheheatdissipationperformanceofthepackagestructureꎬandreducethecostofthedevicepackageꎬahigh ̄powersemiconductorlaserpackagestructureusingahighthermalconductivitygraphitesheetasanauxiliaryheatsinkisproposed.Usingfiniteelementanalysisꎬtheuseofgraphitesheetsasauxiliaryheatsinkshasbeenstudiedꎬandthepackageddeviceshavelowerthermalresistanceandbetterheatdissipation.Theeffectofthevariationofthewidthdimensionofthetransitionheatsinkcopper ̄tungstenalloyandtheauxiliaryheatsinkgraphiteontheactiveregiontemperatureofthesemiconductorlaserwasinvestigated.Comparedwiththetraditionalstructureusingcopper ̄tungstenalloyasthetransitionheatsinkꎬthenewpackagestructurehasajunctiontemperatureof4.5Kandathermalresistanceof0.45K/W.Accordingtothecalculationꎬthemax ̄imumoutputpowerofthelaseris20.6W.Undertheguidanceoftheresearchresultsꎬthestructuraldimensionsofcopper ̄tungstenalloyandgraphitecanbedeterminedtoachievethebestheatdissipa ̄tioneffect.Keywords:highpowdersemiconductorlaserꎻheatdissipationꎻgraphiteheatsinkꎻfiniteelementanalysisꎻpackagestructure㊀㊀收稿日期:2018 ̄09 ̄18ꎻ修订日期:2018 ̄12 ̄03㊀㊀基金项目:国家自然科学基金(61804013)ꎻ吉林省优秀青年科学基金(20180520194JH)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61804013)ꎻExcellentYouthFoundationofJilinProvince(20180520194JH)908㊀发㊀㊀光㊀㊀学㊀㊀报第40卷1㊀引㊀㊀言半导体激光器具有体积小㊁重量轻㊁光电转换效率高㊁可靠性高等优点ꎬ在医学㊁军事㊁工业等领域有着广泛的应用[1 ̄3]ꎮ随着科学技术的发展ꎬ人们对半导体激光器的输出功率需求越来越高ꎮ激光器工作时有源区温度升高ꎬ造成激光器波长红移ꎬ阈值电流增大ꎬ光电转换效率下降ꎬ寿命降低等ꎬ严重时会使激光器彻底损坏[4 ̄5]ꎮ因此ꎬ热管理技术是高功率半导体激光器发展的一个重要环节ꎮ通过研究高功率半导体激光器热传导特性来提高其热管理技术㊁增加封装结构散热性㊁提高半导体激光器的输出功率具有重要意义ꎮ提高器件散热途径的方法主要有两种:一是采用散热性能更好的散热结构ꎻ二是研发出热导率更高的散热材料ꎮ为使高热导率的材料能与管芯热膨胀系数相匹配ꎬ通常使用与激光器芯片热膨胀系数相差较小的过渡热沉来提高材料间的匹配度ꎬ以减小硬焊料对芯片产生的残余应力ꎬ提高器件的可靠性[6]ꎮ常见过渡热沉有氮化铝㊁碳化硅等陶瓷材料和钨铜合金㊁铜钼合金等金属合金材料[7 ̄11]ꎮ目前ꎬ国内外所研究的导热性能良好的过渡热沉材料普遍价格昂贵ꎬ且不能突破兼顾热膨胀系数匹配和热导率较高这一瓶颈ꎬ因而在过渡热沉材料的选择与设计方面还有很大的提升空间ꎬ因此需要对热沉材料与结构进行优化设计ꎮ近年来ꎬ石墨因具有优异的机械㊁光学㊁电子和热性能引起了国内外科研工作者的极大关注ꎮ石墨作为一种超高导热材料ꎬ体积小㊁重量轻ꎬ是电子和光子器件热管理的理想材料ꎬ目前在电子器件中已经有了广泛的应用ꎮOno等提出使用石墨片作为一种被动部署的散热器ꎬ该散热器可以通过根据温度改变其散热面来控制散热量ꎬ被用作小型卫星上的新型热控装置[12]ꎮWen等使用商业石墨片用作燃料电池的散热器ꎬ石墨片切割成流通形状与通道板结合使热量通过石墨片向外传导ꎬ有效降低燃料电池的反应区域的温度[13]ꎮ研究表明石墨具有超高导热性ꎬ最高可达1000W/(m K)ꎬ比一般金属导热材料高约3倍ꎬ但是由于石墨导热率的各向异性特征ꎬ横向热传导率较高而纵向热传导率较低以及石墨的热膨胀系数与半导体激光器材料GaAs不匹配等难题ꎬ使得石墨在半导体激光器封装结构的应用方面很少有人研究[14]ꎮ因此ꎬ如何将这种超高热导率石墨应用在半导体激光器封装结构中具有较高的研究价值ꎬ利用其较高的横向导热性ꎬ增大水平方向热通量传导效率ꎬ从而达到减少半导体激光器有源区温度㊁增大半导体激光器输出功率的目的ꎬ成为本文的研究重点[15]ꎮ本文在传统封装结构的基础上ꎬ通过在过渡热沉两侧引入石墨片作为该结构的辅助热沉ꎬ依据C ̄Mount封装方式热传导路径ꎬ充分利用石墨极高的横向热导率以达到更好的降低结温的目的ꎮ同时石墨片通过过渡热沉铜钨合金传导芯片所产生的热量ꎬ解决了石墨片与半导体激光器热膨胀系数不匹配的问题ꎮ利用有限元分析软件ANSYS建立模型ꎬ选用热导率较高的导电材料铜钨合金(WCu)作为过渡热沉ꎮ通过模拟结果可以发现ꎬ在减少过渡热沉WCu长度和宽度尺寸的情况下ꎬ可以更好地减少封装结构的热阻ꎬ降低半导体激光器结温ꎬ达到了降低器件热阻的目的ꎬ从而提高半导体激光器的输出功率ꎮ2㊀建立模型对传统边发射单管半导体激光器封装结构建立模型ꎬ其中在理论模拟过程中做出如下设定[16 ̄18]:在半导体激光器正常工作过程中ꎬ所产生的热量主要来源于有源区中载流子复合㊁吸收和自发发射ꎻ由于半导体激光器体积较小ꎬ因此忽略激光器的辐射散热及与空气对流散热ꎻ由于C ̄Mount封装结构的后表面固定在其他制冷结构上ꎬ所以模拟过程中ꎬ在其结构的后平面设置固定温度298Kꎬ并且半导体激光器芯片采用倒装式封装ꎮ该C ̄Mount铜热沉尺寸为6.86mmˑ6.35mmˑ2.18mmꎬ由于该半导体激光器封装方式采用C ̄Mount封装ꎬ其导热路径如图1所示[19]ꎮCoolerHeatsinkChip图1㊀C ̄Mount封装导热路径示意图Fig.1㊀ThermalconductionpathinC ̄Mountpackage㊀第7期房俊宇ꎬ等:石墨片作辅助热沉的高功率半导体激光器热传导特性909㊀模拟计算中所使用的半导体激光器光电参数为:波长808nmꎬ电光转换效率50%ꎬ连续条件下输出功率10Wꎬ激光器芯片尺寸为1.5mmˑ0.5mmˑ0.15mmꎬ发光区宽度100μmꎮWCu热沉尺寸为3.35mmˑ2.18mmˑ0.5mmꎮ为满足与激光器芯片热膨胀系数匹配的要求和此后过渡热沉的尺寸设计要求ꎬ选用与铜热膨胀系数匹配的电导率较好的WCu材料作为过渡热沉ꎮ为阻挡焊料向下扩散ꎬ便于引线键合ꎬ在过渡热沉铜钨合金的上下表面分别镀有金属层ꎮ模拟分析所涉及的材料参数如表1所示ꎮ表1㊀材料参数Tab.1㊀MaterialparametersMaterialThermalconductivity/(W m-1 K-1)Thickness/μmCoefficientofthermalexpansion/(10-6K)GaAs551506.4MetallizationlayerCu3980.318Tungstencopper2100.5ˑ1034.5graphite1000㊁350.5ˑ1032copperheatsink3986.86ˑ10318在半导体激光器工作过程中ꎬ所产生的热量主要来自以下方面[20 ̄21]:(1)激光器有源区在正常工作状态下有很高的载流子密度和光子密度ꎬ部分电子与空穴非辐射复合㊁辐射吸收与自发辐射吸收ꎬ其产生的热量Q1为:Q1=Vdact{jth(1-ηspfsp)+(j-jth)ˑ[1-ηex-(1-ηi)fspηsp]}ꎬ(1)其中ꎬV为PN结上的结电压ꎬηsp为自发辐射内量子效率ꎬfsp为自发辐射光子逃逸因子ꎬdact为有源区厚度ꎬj为电流密度ꎬjth为阈值电流密度ꎬηex为外微分量子效率ꎬηi为受激辐射内量子效率ꎮ(2)当半导体激光器工作时ꎬ由于各层材料电阻引起的焦耳热ꎬ计算公式为:Q2=j2ρ+ρj2dcꎬ(2)其中ꎬQ2为焦耳热功率密度ꎬρ为各材料层的电阻率ꎬdc为欧姆接触层厚度ꎮ(3)盖层以及衬底材料对有源区自发辐射逃逸光子的吸收所产生的热量为:Q3=V2dijthηspfꎬ(3)其中ꎬdi为除有源区外各层材料的厚度ꎮ激光器在正常工作状态下ꎬ热传导方程为:K∂2T∂x2+∂2T∂y2+∂2T∂z2()+Q=0ꎬ(4)其中ꎬT为激光器有源区温度ꎬK为材料热传导系数ꎬQ为半导体激光器热功率密度ꎮ3㊀模拟结果与分析3.1㊀WCu热沉宽度的变化对芯片结温的影响金属铜与芯片材料GaAs的热膨胀系数差距较大ꎬ为减少封装过程中所带来的封装应力ꎬ采用与GaAs的热膨胀系数相近的WCu材料作为过渡热沉ꎬ同时由于WCu材料具有很好的导电性ꎬ便于正电极连接ꎮ利用有限元分析法探讨在传统封装结构中ꎬWCu热沉宽度的变化对芯片结温的影响ꎬWCu热沉的长度与厚度分别为2.18mm和0.5mmꎬWCu宽度由3.35mm减少到0.6mm时ꎬ半导体激光器有源区温度变化如图2所示ꎮ半导体激光器有源区温度为Tjꎬ热沉的最低温度为T0ꎬ热功率为Ptemꎬ根据激光器热阻Rth的表达式:354W/mmT/K0.5 3.53503523483463443423403381.01.52.02.53.0T图2㊀半导体激光器有源区温度与铜钨合金宽度W变化曲线Fig.2㊀Variationcurveofactiveregiontemperatureandtung ̄stencopper(CuW)widthWvalueofsemiconductorlaser㊀910㊀发㊀㊀光㊀㊀学㊀㊀报第40卷Rth=Tj-T0Ptemꎬ(5)从图2中可以看出ꎬ当WCu热沉宽度尺寸从3.35mm减少到0.6mm时ꎬ结温从339.4K增加为352.2Kꎬ热阻从4.14K/W增加到5.42K/Wꎮ其原因是热沉宽度的减小影响了热流的横向散热ꎬ降低了器件散热能力ꎮ因此ꎬ提高半导体激光器的横向导热性能是改善激光器散热能力的重要瓶颈ꎮ3.2㊀石墨片作辅助热沉热模拟3.2.1㊀石墨片导热性能在固体材料中ꎬ热传导方式主要分为两种ꎮ一种是通过自由电子振动实现ꎬ如金属材料ꎮ另一种由晶体内晶格原子的振动波即声子振动实现ꎬ如石墨[22]ꎮ在石墨的网状结构中ꎬ声子振动的热振幅很大ꎬ致使石墨具有高的晶面导热系数ꎬ可达1000W/(m K)以上[23]ꎻ但在垂直网状结构的方向ꎬ由于声子振动的热振幅很小ꎬ在该方向的热导率仅有35W/(m K)ꎮ因此ꎬ石墨片是一种各向导热异性的导热材料ꎬ横向导热率明显优于纵向导热率ꎬ且明显高于常用的金属热沉热导率ꎬ所以在封装领域中有着极高的研究价值ꎮ3.2.2㊀新型封装结构使用石墨片作辅助热沉的新型封装结构示意图如图3所示ꎮ在传统封装结构中ꎬWCu热沉两边分别使用石墨作为辅助热沉ꎬ石墨首先通过化学镀铜法或电镀铜法使石墨表面金属化ꎬ使石墨表面具有金属的性质ꎬ从而实现石墨分别与铜热沉㊁WCu过渡热沉接触面的焊接工艺[24 ̄26]ꎮ表面金属化后的石墨与WCu接触部分使用焊料焊接ꎬ使得二者在工作过程中紧密接触ꎮ石墨长度和厚度分别为2.18mm和0.5mmꎬ在石墨辅助热沉㊁WCu热沉以及C ̄Mount铜热沉的后表面设置固定温度为298Kꎮ图3(b)所示为由芯片所产生的热量通过过渡热沉分别向后表面冷却面㊁铜热沉以及石墨片辅助热沉传导散热ꎬ使半导体激光器有源区的温度降低ꎮ铜石墨芯片铜钨合金(a)(b)图3㊀(a)石墨片作辅助热沉的新型封装结构示意图ꎻ(b)石墨局部热传递示意图ꎮFig.3㊀(a)Schematicdiagramofnewpackagingstructureofgraphitesheetasauxiliaryheatsink.(b)Schematicdiagramoflo ̄calheattransferingraphite.增加石墨片平行于半导体激光器芯片端面方向的尺寸ꎬ同时减少铜钨合金的宽度(W)ꎬ保证二者宽度尺寸总和为3.35mmꎮ当WCu尺寸分别由2.0mm变化到0.6mm时ꎬ计算各个参数下的芯片结温ꎮ如图4所示ꎬ通过不同尺寸下的激光器温度分布云图可以看出ꎬWCu宽度从2.0mm减小到0.6mm时ꎬ结温逐渐下降ꎬ分别从338.9K减小到334.9Kꎬ热阻Rth也逐渐降低ꎬ从4.09K/W变化为3.69K/Wꎮ随着WCu尺寸的减小ꎬ更多热量传导到石墨片上ꎬ散热效果明显提高ꎬ当铜钨合金热沉的宽度为0.6mm时ꎬ半导体激光器有源区温度达到最小ꎮ为进一步分析横向热传导性能ꎬ对传统封装结构和石墨片作辅助热沉的封装结构的端面方向热流矢量进行模拟分析ꎬ如图5所示ꎮ其中图5(a)㊁(b)分别为W=0.6mm和W=3.35mm的传统封装结构ꎬ图5(c)㊁(d)分别为W=0.6mm和W=2.0mm的石墨片作辅助热沉的封装结构的热流矢量图ꎮ从图5(a)㊁(b)中可以看出ꎬ传统封装结构有源区热量仅向下通过过渡热沉WCu和铜热沉进行散热ꎬ当WCu热沉尺寸增大(图5(b))ꎬ封装结构热阻与结温温度有所降低ꎮ图5(c)㊁(d)为采用石墨片作辅助热沉的封装结构的热流矢量图ꎬ从图中可以看出ꎬ有源区热量首先扩散到WCu热沉中ꎬ由于石墨片具有较高的横向热导率ꎬ致使扩散到WCu的热量首先通过石墨㊀第7期房俊宇ꎬ等:石墨片作辅助热沉的高功率半导体激光器热传导特性911㊀0.8mm 1.0mm (a )298307.0302.5311.6316.1325.2320.7329.8334.3338.92.0mm(b )298324.8315.8306.9302.4311.4320.3329.3338.2333.71.5mm(c )298311.11.2mm319.9328.7337.5333.1324.3315.5306.7302.3(d )298(e )(f )298330.8314.4336.9328.2332.6323.9319.6315.3310.9306.6302.3336.0327.5331.8323.3319.1314.9310.6306.4298302.2322.6326.7318.5310.3306.2302.10.6mm334.9图4㊀不同过渡热沉宽度尺寸器件温度分布云图Fig.4㊀Graphitetemperaturedistributionofanewpackagestructurewithdifferentwidthsoftungstencarbide(a )(c )0.6mm0.6mm(b )(d )3.35mm2.0mm图5㊀传统封装结构和石墨片作辅助热沉的封装结构热流矢量图ꎮ(a㊁b)传统封装结构热流矢量图ꎻ(c㊁d)石墨片作辅助热沉的封状结构结构热流矢量图ꎬ热量随石墨片尺寸增加ꎬ散热效果明显ꎮFig.5㊀Traditionalpackagestructureandgraphitesheetasauxiliaryheatsinkpackagestructureheatflowvector.(aꎬb)Tradi ̄tionalpackagestructureheatflowvectordiagram.(cꎬd)Graphitesheetasauxiliaryheatsinksealstructureheatflowvector.Theheatisobviouslyincreasedwiththesizeofthegraphitesheet.片进行散热ꎬ其次再通过WCu和铜散热ꎬ随着石墨片尺寸的增大散热效果明显ꎮ因此ꎬ相比传统封装结构ꎬ通过对石墨辅助热沉的引入ꎬ利用其极高的热导率增大了封装结构的散热途径ꎬ可以很好地减小封装结构的热阻Rth和半导体激光器有源区温度Tjꎬ进而可以很好地降低连续工作的半导体激光器所产生的热量ꎮ对于半导体激光器ꎬ其结温计算表达式为:Tj=T0+(Pin-P)Rthꎬ(6)其中ꎬTj为激光器芯片结温ꎬT0为热沉温度ꎬPin为激光器的输入功率ꎬP为激光器的输出功率ꎬRth为热阻ꎮ由上述公式可知ꎬ激光器芯片结温受工作电流㊁热沉温度及器件热阻影响ꎮ半导体激光器阈值电流和有源区温度之间的关系为:Ith(T)=IRetexpT-TRetTtæèçöø÷ꎬ(7)其中ꎬIRet为温度TRet下的阈值电流ꎬTt为激光器特征温度ꎬ主要由激光器结构和材料决定ꎮ激光器斜率效率η随有源区温度变化的表达式为:η(T)=η(Tr)exp-(T-Tr)T1[]ꎬ(8)式中T1为斜率效率的特征温度ꎮ激光器输出功率与斜率效率和工作电流的关系为:P=η(T)Iꎬ(9)结合公式(6)㊁(7)㊁(8)㊁(9)可得出输出功率P:P=ηexp-Rth(IV-P)T1[]I-IRetexpRth(IV-P)T0[]{}.(10)912㊀发㊀㊀光㊀㊀学㊀㊀报第40卷20535I /AP /W20.6W 18.8WR th =4.14R th =3.691015202530151050图6㊀不同热阻下的P ̄I特性曲线Fig.6㊀CharacteristiccurveofP ̄Iunderdifferentthermalre ̄sistance半导体激光器的输出功率与输入电流的关系曲线如图6所示ꎮ从图中可以看出随着封装热阻的减少ꎬ器件输出功率会增加ꎮ经过本文封装结构优化后ꎬ封装热阻降为3.69K/Wꎬ其最大输出功率为20.6Wꎮ4㊀结㊀㊀论为了降低边缘式高功率半导体激光器有源区温度ꎬ降低器件封装成本ꎬ在C ̄Mount封装结构的基础上ꎬ研究了一种使用石墨材料作为辅助热沉的封装结构ꎬ并理论分析比较其输出功率与传统封装结构的输出功率ꎮ在传统封装结构中ꎬ过渡热沉WCu宽度尺寸从3.35mm减小到0.6mm时ꎬ半导体激光器有源区温度从339.4K升高到352.2Kꎮ在使用石墨作辅助热沉的条件下ꎬ石墨片与WCu宽度和为3.35mmꎬ当过渡热沉尺寸从2.0mm减少到0.6mm时ꎬ结温从338.9K降到334.9Kꎮ相比于宽为3.35mm的WCu传统结构ꎬ其温度降低4.5Kꎮ在传统封装结构中ꎬ随着WCu宽度的减少ꎬ有源区温度升高ꎮ而新型封装结构与其相反ꎬ相比于传统结构ꎬ有源区温度降低4.5Kꎬ散热效果明显改善ꎮ通过计算可知ꎬ半导体激光器的最大输出功率为20.6Wꎮ该结构设计为今后高功率半导体激光器的发展提供了帮助ꎬ同时在商业上有着很高的使用价值ꎮ参㊀考㊀文㊀献:[1]韩晓俊ꎬ李正佳ꎬ朱长虹.半导体激光器在医学上的应用[J].光学技术ꎬ1998(2):7 ̄10.HANXJꎬLIZJꎬZHUCH.Laserdiodeappliedinmedicine[J].Opt.Technol.ꎬ1998(2):7 ̄10.(inChinese)[2]耿素杰ꎬ王琳.半导体激光器及其在军事领域的应用[J].激光与红外ꎬ2003ꎬ33(4):311 ̄312.GENGSJꎬWANGL.Thesemiconductorlaseranditsapplicationsinmilitary[J].LaserInfraredꎬ2003ꎬ33(4):311 ̄312.(inChinese)[3]张纯.半导体激光器在印刷工业上的应用[J].光电子 激光ꎬ1991ꎬ2(4):231 ̄235.ZHANGC.Theapplicationofthetransistor ̄laserintheprintingindustry[J].J.Optoelectr.Laserꎬ1991ꎬ2(4):231 ̄235.(inChinese)[4]汪瑜.半导体激光器热特性分析研究[D].长春:长春理工大学ꎬ2009:16 ̄17.WANGY.AnalysisandResearchforTheThermalCharacteristicofTheSemiconductorLaser[D].Changchun:ChangchunUniversityofScienceandTechnologyꎬ2009:16 ̄17.(inChinese)[5]廖翌如ꎬ关宝璐ꎬ李建军ꎬ等.低阈值852nm半导体激光器的温度特性[J].发光学报ꎬ2017ꎬ38(3):331 ̄337.LIAOYRꎬGUANBLꎬLIJJꎬetal..Thermalcharacteristicsofthelowthreshold852nmsemiconductorlasers[J].Chin.J.Lumin.ꎬ2017ꎬ38(3):331 ̄337.(inChinese)[6]王辉.半导体激光器封装中热应力和变形的分析[J].半导体技术ꎬ2008ꎬ33(8):718 ̄720.WANGH.Thermalstressanddeformationanalysisofsemiconductorlaserspackaging[J].Semicond.Technol.ꎬ2008ꎬ33(8):718 ̄720.(inChinese)[7]ZHANGXLꎬBOBXꎬQIAOZLꎬetal..Analysisofthermalcharacteristicsbasedonanewtypediodelaserpackagingstructure[J].Opt.Eng.ꎬ2017ꎬ56(8):085105 ̄1 ̄5.[8]刘一兵ꎬ戴瑜兴ꎬ黄志刚.照明用大功率发光二极管封装材料的优化设计[J].光子学报ꎬ2011ꎬ40(5):663 ̄666.LIUYBꎬDAIYXꎬHUANGZG.Optimizationdesignonpackagingmaterialsofhigh ̄powerLEDforlighting[J].ActaPhoton.Sinicaꎬ2011ꎬ40(5):663 ̄666.(inChinese)[9]倪羽茜ꎬ井红旗ꎬ孔金霞ꎬ等.碳化硅封装高功率半导体激光器散热性能研究[J].中国激光ꎬ2018ꎬ45(1):㊀第7期房俊宇ꎬ等:石墨片作辅助热沉的高功率半导体激光器热传导特性913㊀0101002 ̄1 ̄5.NIYXꎬJINGHQꎬKONGJXꎬetal..Thermalperformanceofhigh ̄powerlaserdiodespackagedbySiCceramicsubmount[J].Chin.J.Lasersꎬ2018ꎬ45(1):0101002 ̄1 ̄5.(inChinese)[10]KUCMꎬWASIAKMꎬSARZALARP.ImpactofheatspreadersonthermalperformanceofⅢ ̄N ̄basedlaserdiode[J].IEEETrans.Comp.ꎬPack.Manuf.Technol.ꎬ2015ꎬ5(4):474 ̄482.[11]王文ꎬ许留洋ꎬ王云华ꎬ等.热沉尺寸对半导体激光器有源区温度的影响[J].半导体光电ꎬ2013ꎬ34(5):765 ̄769.WANGWꎬXULYꎬWANGYHꎬetal..Influencesofthedimensionofheatsinkonthetemperatureofactiveregioninsemiconductorlaser[J].Semicond.Optoelectr.ꎬ2013ꎬ34(5):765 ̄769.(inChinese)[12]ONOSꎬNAGANOHꎬNISHIKAWAYꎬetal..Thermophysicalpropertiesofhigh ̄thermal ̄conductivitygraphitesheetandapplicationtodeployable/stowableradiator[J].J.Thermophys.HeatTrans.ꎬ2015ꎬ29(2):347 ̄353.[13]WENCYꎬHUANGGW.ApplicationofathermallyconductivepyrolyticgraphitesheettothermalmanagementofaPEMfuelcell[J].J.PowerSourcesꎬ2008ꎬ178(1):132 ̄140.[14]MALEKPOURHꎬCHANGKHꎬCHENJCꎬetal..Thermalconductivityofgraphenelaminate[J].NanoLett.ꎬ2014ꎬ14(9):5155 ̄5161.[15]WANGYXꎬOVERMEYERL.Chip ̄levelpackagingofedge ̄emittinglaserdiodesontolow ̄costtransparentpolymersub ̄stratesusingoptodicbonding[J].IEEETrans.Comp.ꎬPack.Manuf.Technol.ꎬ2016ꎬ6(5):667 ̄674.[16]王文ꎬ高欣ꎬ周泽鹏ꎬ等.百瓦级多芯片半导体激光器稳态热分析[J].红外与激光工程ꎬ2014ꎬ43(5):1438 ̄1443.WANGWꎬGAOXꎬZHOUZPꎬetal..Steady ̄statethermalanalysisofhundred ̄wattsemiconductorlaserwithmultichip ̄packaging[J].InfraredLaserEng.ꎬ2014ꎬ43(5):1438 ̄1443.(inChinese)[17]杨宏宇ꎬ舒世立ꎬ刘林ꎬ等.半导体激光器模块散热特性影响因素分析[J].半导体光电ꎬ2016ꎬ37(6):770 ̄775.YANGHYꎬSHUSLꎬLIULꎬetal..Analysisoninfluencingfactorsofheatdissipationcharacteristicsofsemiconductorla ̄sermodule[J].Semicond.Optoelectr.ꎬ2016ꎬ37(6):770 ̄775.(inChinese)[18]韩立ꎬ徐莉ꎬ李洋ꎬ等.基于C ̄mount封装的半导体激光器热特性模拟分析[J].长春理工大学学报(自然科学版)ꎬ2016ꎬ39(3):27 ̄31.HANLꎬXULꎬLIYꎬetal..ThermalcharacteristicsimulationandanalysisofsemiconductorlaserbasedonC ̄mount[J].J.ChangchunUniv.Sci.Technol.(Nat.Sci.Ed.)ꎬ2016ꎬ39(3):27 ̄31.(inChinese)[19]LIXNꎬZHANGYXꎬWANGJWꎬetal..Influenceofpackagestructureontheperformanceofthesingleemitterdiodela ̄ser[J].IEEETrans.Comp.ꎬPack.Manuf.Technol.ꎬ2012ꎬ2(10):1592 ̄1599.[20]井红旗ꎬ仲莉ꎬ倪羽茜ꎬ等.高功率密度激光二极管叠层散热结构的热分析[J].发光学报ꎬ2016ꎬ37(1):81 ̄87.JINGHQꎬZHONGLꎬNIYXꎬetal..Thermalanalysisofhighpowerdensitylaserdiodestackcoolingstructure[J].Chin.J.Lumin.ꎬ2016ꎬ37(1):81 ̄87.(inChinese)[21]姜晓光ꎬ赵英杰ꎬ吴志全.基于ANSYS半导体激光器热特性模拟与分析[J].长春理工大学学报(自然科学版)ꎬ2010ꎬ33(1):41 ̄43.JIANGXGꎬZHAOYJꎬWUZQ.ThermalcharacteristicsimulationandanalysisofsemiconductorlaserbasedonANSYS[J].J.ChangchunUniv.Sci.Technol.(Nat.Sci.Ed.)ꎬ2010ꎬ33(1):41 ̄43.(inChinese)[22]杨振忠ꎬ马忠良ꎬ王峰.基于石墨导热介质的新型LED路灯散热系统[J].照明工程学报ꎬ2011ꎬ22(3):49 ̄52.YANGZZꎬMAZLꎬWANGF.AnewLEDroadlightingluminaireheatdissipationsystembasedongraphitematerial[J].ChinaIllum.Eng.J.ꎬ2011ꎬ22(3):49 ̄52.(inChinese)[23]邱海鹏ꎬ郭全贵ꎬ宋永忠ꎬ等.石墨材料导热性能与微晶参数关系的研究[J].新型炭材料ꎬ2002ꎬ17(1):36 ̄40.QIUHPꎬGUOQGꎬSONGYZꎬetal..Studyoftherelationshipbetweenthermalconductivityandmicrocrystallineparam ̄etersofbulkgraphite[J].NewCarbonMater.ꎬ2002ꎬ17(1):36 ̄40.(inChinese)[24]程小爱ꎬ曹晓燕ꎬ张慧玲ꎬ等.石墨表面金属化处理及检测[J].表面技术ꎬ2006ꎬ35(3):4 ̄7.CHENGXAꎬCAOXYꎬZHANGHLꎬetal..Metal ̄modificationanddetectionofgraphitesurface[J].Surf.Technol.ꎬ2006ꎬ35(3):4 ̄7.(inChinese)[25]黄凯ꎬ白华ꎬ朱英彬ꎬ等.石墨表面化学镀Cu对天然鳞片石墨/Al复合材料热物理性能的影响[J].复合材料学报ꎬ2018ꎬ35(4):920 ̄926.914㊀发㊀㊀光㊀㊀学㊀㊀报第40卷HUANGKꎬBAIHꎬZHUYBꎬetal..Thermalconductivityandmechanicalpropertiesofflakgraphite/AlcompositewithelectrolessCuplatingongraphitesurface[J].ActaMater.Comp.Sinicaꎬ2018ꎬ35(4):920 ̄926.(inChinese)[26]SONGXGꎬCHAIJHꎬHUSPꎬetal..Anovelmetallizationprocessforsolderinggraphitetocopperatlowtemperature[J].J.Alloy.Comp.ꎬ2016ꎬ696:1199 ̄1204.房俊宇(1994-)ꎬ男ꎬ吉林松原人ꎬ硕士研究生ꎬ2017年于长春理工大学光电信息学院获得学士学位ꎬ主要从事半导体激光器的研究ꎮE ̄mail:442176287@qq.com石琳琳(1988-)ꎬ女ꎬ吉林长春人ꎬ博士ꎬ助理研究员ꎬ2016年于中国科学院长春光学精密机械与物理研究所获得博士学位ꎬ主要从事半导体激光器物理与技术的研究ꎮE ̄mail:linlinshi88@foxmail.com。
高功率下光纤中的非线性效应抑制方法的研究一、引言随着语音、图像和数据等信息量爆炸式的增长, 尤其是因特网的迅速崛起,人们对于信息获取的需求呈现出供不应求的态势。
这对通信系统容量和多业务平台的服务质量提出了新的挑战,也反过来推动了通信技术的快速发展。
1966年,美籍华人高锟博士提出可以通过去杂质降低光纤损耗至20dB/km,使光纤用于通信成为可能,从而开启了人类通信史的新纪元。
与传统的电通信相比,光纤通信以其损耗低、传输频带宽、容量大、抗电磁干扰等优势备受业界青睐,已成为一种不可替代的支撑性传输技术。
新型激光器和调制格式、波分复用(WDM)技术、宽带光放大技术的不断涌现,大幅提高了光通信能力[15]。
光纤通信的传输容量在1980~2000年间增加了近10000倍,传输速率在过去的10年中提高了约100 倍。
目前,单信道40Gbit/s的光传输系统已经广泛商用,100Gbit/s的WDM/OTN(Optical Transmission Network,光传输网)链路也开始在欧美地区进行商用部署,400Gbit/s 的传输技术成为未来的研究方向。
众所周知,信号在光纤通信系统中的传输性能会受到光纤的损耗、色散和非线性效应的制约,而且传输速率越高、距离越长,上述效应越严重,对系统性能的劣化十分明显。
因此,对这些制约因素的削弱甚至消除是进一步提高信息传输容量的关键,也一直是光纤传输技术的重点研究方向,并已取得了一系列卓有成效的进展。
二、光纤损伤及补偿技术光纤损伤主要包含上节所述的损耗、色散和非线性效应。
光放大器技术,包括EDFA(Erbium Doped Fiber Amplifier,掺铒光纤放大器)、FRA(Fiber Raman Amplifier,光纤拉曼放大器)和参量放大器的出现已经完美地解决了光纤损耗问题。
光纤色散补偿技术也已十分成熟。
色散作为一种线性损伤,其补偿原理是利用光电元件实现波长或偏振相关的延时功能。
第41卷㊀第7期2020年7月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 7Julyꎬ2020文章编号:1000 ̄7032(2020)07 ̄0839 ̄10㊀㊀收稿日期:2020 ̄05 ̄03ꎻ修订日期:2020 ̄05 ̄13㊀㊀基金项目:国家自然科学基金(61827818ꎬ61620106014ꎬ61975049)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61827818ꎬ61620106014ꎬ61975049)高功率掺Tm3+光纤放大器热效应管理的泵浦方式优化理论研究张㊀轲1ꎬ延凤平1∗ꎬ韩文国1ꎬ冯㊀亭2∗(1.北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室ꎬ北京㊀100044ꎻ2.河北大学物理科学与技术学院光信息技术创新中心ꎬ河北保定㊀071002)摘要:基于主振荡功率放大器结构的高功率掺Tm3+光纤激光器是2μm波段高功率光纤激光器的主要实现形式ꎬ掺Tm3+光纤放大器(Thulium ̄dopedfiberamplifierꎬTDFA)热效应管理的研究对于其输出激光功率的不断提升具有重要意义ꎮ本文主要对TDFA热效应管理的泵浦方式优化方面进行理论研究ꎬ利用龙格库塔法以及牛顿迭代法求解不同泵浦方式下TDFA的稳态速率方程ꎬ并根据热传导方程ꎬ模拟掺Tm3+光纤(Thulium ̄dopedfiberꎬTDF)温度沿径向和轴向的分布ꎮ结合遗传算法理论ꎬ研究了分段泵浦方式ꎬ经过参数优化ꎬ在功率为5W的2020nm输入信号光㊁总功率为1000W的793nm激光泵浦㊁TDF吸收系数为3.1dB/m条件下ꎬ将总长度为11m的TDF分为2.4ꎬ2ꎬ2ꎬ2ꎬ2.6m的5段进行泵浦ꎬ得到放大信号激光输出功率为284.5W㊁斜率效率为28.45%㊁光纤外包层边界最高温度为86.28ħ且温度总体分布均匀ꎮ与传统前向泵浦㊁双端泵浦方式下的TDFA相比ꎬ其热效应有明显改善ꎮ关㊀键㊀词:掺Tm3+光纤放大器ꎻ热效应管理ꎻ分段泵浦ꎻ遗传算法中图分类号:O437㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/fgxb20204107.0839TheoreticalStudyofPumpingMethodofHighPowerTm3+ ̄dopedFiberAmplifierforThermalEffectManagementZHANGKe1ꎬYANFeng ̄ping1∗ꎬHANWen ̄guo1ꎬFENGTing2∗(1.KeyLaboratoryofAllOpticalNetworkandAdvancedTelecommunicationNetworkofMinistryofEducationꎬInstituteofLightwaveTechnologyꎬBeijingJiaotongUniversityꎬBeijing100044ꎬChinaꎻ2.PhotonicsInformationInnovationCenterꎬCollegeofPhysicsScience&TechnologyꎬHebeiUniversityꎬBaoding071002ꎬChina)∗CorrespondingAuthorsꎬE ̄mail:fpyan@bjtu.edu.cnꎻwlxyft@hbu.edu.cnAbstract:Thehigh ̄powerthulium(Tm3+)dopedfiberlaser(TDFL)basedonthestructureofmas ̄teroscillatorpower ̄amplifieristhemaintypeof2μmbandhigh ̄powerfiberlasers.Studyonther ̄maleffectmanagementofthethuliumdopedfiberamplifier(TDFA)stagemeansalottothecontinu ̄ouslypower ̄scalingoftheTDFL.Thispapermainlyfocusesonthetheoreticalresearchontheopti ̄mizationofthepumpingmethodofTDFAforthermaleffectmanagement.WeusetheRunge ̄KuttamethodandNewtoniterationmethodtosolvethesteady ̄staterateequationofTDFAunderdifferentpumpingmethods.AndꎬonthebasisoftheheatconductionequationꎬthetemperaturedistributionsofTm3+dopedfiber(Thulium ̄dopedfiberꎬTDF)alongtheradialandaxialdirectionaresimulated.Combiningwiththegeneticalgorithmtheoryꎬthesegmentallypumpingmethodisstudied.Throughoptimizingoftherelativeparametersꎬusinga2020nminputsignallightwithapowerof5Wꎬa840㊀发㊀㊀光㊀㊀学㊀㊀报第41卷total793nmlaserpumppowerof1000WandaTDFwithanabsorptioncoefficientof3.1dB/mandatotallengthof11mwhichisdividedinto5segments(2.4ꎬ2ꎬ2ꎬ2ꎬ2.6m)ꎬweobtainedanamplifiedsignallaserwithanoutputpowerof284.5Wandaslopeefficiencyof28.45%ꎬandthemaximumtemperatureattheoutercladdingboundaryoftheTDFisonly86.28ħwithauniformtemperaturedistributionalongthewholefiber.ComparedwithaTDFAusingtraditionalforwardpumpingordual ̄endpumpingmodeꎬthethermaleffecthasbeensignificantlyimproved.Keywords:thulium ̄dopedfiberamplifierꎻthermaleffectmanagementꎻsegmentedpumpꎻgeneticalgorithm1㊀引㊀㊀言2μm波段掺Tm3+光纤激光器(Thulium ̄dopedfiberlaserꎬTDFL)的输出波长处于人眼安全波段ꎬ并且同时覆盖了多个重要的吸收带ꎬ如水的吸收峰和大气窗口等ꎬ因此有望被广泛应用于诸多领域ꎬ如激光医疗手术㊁激光雷达和激光大气监测与传感等[1 ̄3]ꎮ近年来ꎬ光纤激光器的输出功率已从几瓦提高至几千瓦量级ꎬ大多采用主振荡功率放大器(Masteroscillatorpower ̄amplifierꎬMOPA)结构[4 ̄5]ꎮ除种子源激光器外ꎬ高功率放大器的性能是决定MOPA系统输出功率量级的关键ꎬ且随着诸多理论与实验工作的进一步开展ꎬ研究发现强烈的热效应是限制高功率光纤放大器输出功率进一步提升的主要因素之一ꎮ然而ꎬ目前关于2μm波段掺Tm3+光纤放大器(Thulium ̄dopedfiberamplifierꎬTDFA)热效应管理的理论研究报道还比较少ꎮ双包层掺Tm3+光纤(Thulium ̄dopedfiberꎬTDF)增益介质本身的表面积与体积比很大ꎬ散热性能良好ꎮ但是ꎬ对于上千瓦量级的TDFAꎬ其泵浦光转化为信号光时量子亏损引起强烈的热效应ꎬ从而引起光纤热透镜效应㊁应力和折射率变化等问题[6]ꎮ此外ꎬ热效应还会严重影响激光输出特性ꎬ如输出波长不稳定㊁转换效率下降㊁光束质量变差㊁噪声高等ꎮ因此ꎬ研究高功率TDFA的热效应管理问题对其整体性能的提升有着重要意义[5 ̄6]ꎮ目前ꎬ对于高功率光纤放大器热效应的研究主要集中在三个方面[6]:增益光纤制作质量提升㊁泵浦优化及外部散热辅助ꎬ研究也多以1μm波段的掺镱光纤放大器为主[7 ̄14]ꎮ其中ꎬ以泵浦方式及泵浦源选择研究为主的泵浦优化方面可以开展大量的实验与理论研究工作ꎮ对于TDFAꎬ常用793nm的半导体激光器(LaserdiodeꎬLD)作为TDF的泵浦源ꎬ而由于793nm~2μm之间的量子亏损比较大ꎬ这种泵浦方式可实现的最高斜率效率为60%ꎬ泵浦源产生的热沉积成为限制其输出功率进一步提升的主要原因[15 ̄16]ꎮ研究者们尝试使用其他波段激光泵浦TDFꎬ用于实现更高的输出功率ꎮ2007年ꎬMe ̄leshkevich等利用中心波长为1500nm附近的铒镱共掺光纤激光器作为泵浦源ꎬ获得了中心波长为1940nm㊁功率为415W的连续激光输出[17]ꎻ2014年ꎬCreeden等利用中心波长为1908nm的TDFL泵浦掺铥光纤获得中心波长为1993nm㊁功率为123W的连续激光输出[18]ꎮ但是ꎬ特殊波长的高功率泵浦源的获取是非常大的难题ꎬ对于2μm波段TDFA的实现ꎬ目前仍以高功率793nm的LD泵浦为主ꎮ可见ꎬ在泵浦方式方面开展研究工作ꎬ是目前高功率TDFA热效应管理中泵浦优化的主要途径ꎮ本文主要针对高功率TDFA的分段泵浦方式进行理论建模和仿真研究ꎬ采用龙格库塔法以及牛顿迭代法求解出耦合速率方程ꎬ并根据热传导方程得出TDF的径向和轴向温度分布ꎬ再结合遗传算法理论对分段泵浦的每段泵浦功率及长度做出优化选择ꎮ以5段泵浦为例ꎬ在得到TDFA较高转换效率的同时实现TDF最高温度满足实际需要且整体光纤温度均匀分布ꎮ2㊀理论模型与方法2.1㊀泵浦方案和理论模型图1为3H6ң3H4泵浦方案的能级跃迁示意图ꎮ该泵浦方案对应于800nm的吸收峰ꎬ泵浦源通常使用中心波长为793nm的LD激光器ꎮ在3H6ң3H4的跃迁方式下得到双包层TD ̄FA的稳态速率方程为[19 ̄20]:㊀第7期张㊀轲ꎬ等:高功率掺Tm3+光纤放大器热效应管理的泵浦方式优化理论研究841㊀LaserW 10N 0N 1N 2N 3粒子密度W 01W 033H 63F 43H 5k 3101k 1013Pump3H 4能级图1㊀3H6ң3H4能级跃迁示意图Fig.1㊀Schematicdiagramof3H6ң3H4energyleveltransitiondN0dt=-(W01+W03)N0+N1τ1+W10N1+N3τ3dN1dt=W01N0-1τ1+W10()N1+2G+β31N3τ3dN3dt=W03N0-1τ3N3-GN=N0+N1+N3ìîíïïïïïïïïïꎬ(1)其中ꎬτi为能级i的寿命ꎻN为总的离子数浓度ꎻG为交叉弛豫因子ꎻW03㊁W10㊁W01分别为基态泵浦吸收系数㊁2μm激光受激发射系数和受激吸收系数ꎬ它们可分别表示为:G=k3101N3N0-k1013N21ꎬW03=λpΓphcAσα(λp)[P+p(z)+P-p(z)]W10=λsΓshcAσe(λs)[P+s(z)+P-s(z)]W01=λsΓshcAσα(λs)[P+s(z)+P-s(z)]ìîíïïïïïïïꎬ㊀(2)其中ꎬλp㊁λs分别为泵浦光和信号光的波长ꎬΓp和Γs为泵浦光和信号光的重叠因子ꎬh为普朗克常量ꎬc为光速ꎬkijkl表示能级i到能级j和能级k到能级l的能量转移系数ꎮσe(λp)㊁σα(λp)㊁σe(λs)㊁σα(λs)分别为泵浦光的发射和吸收截面㊁2μm激光的发射和吸收截面ꎻPʃp(z)和Pʃs(z)分别为前㊁后向泵浦光功率和前㊁后向信号光功率ꎬ忽略SBS效应的影响ꎬ可分别表示为:dPʃp(z)dz=∓[Γp(σα(λp)N0+σe(λp)N1)+δp]Pʃp(z)dPʃs(z)dz=ʃ[Γs(σe(λs)N1-σα(λs)N0)+δs]Pʃs(z)ìîíïïïïïïïïꎬ(3)其中ꎬδp和δs分别为泵浦光和2μm激光的本征吸收系数ꎬ正㊁负号分别表示沿光纤的正㊁反方向ꎮ分段泵浦示意图如图2所示ꎬ其中P+s1(0)为种子光功率ꎮ公式(4)为满足分n段的泵浦边界方程:P+pm(0)=(1-μ)P+p(m-1)(L)+p+m-1P+pm(L)=(1-μ)P-p(m+1)(0)+p-mP+sm(0)=(1-η)P+s(m-1)(L)P-sm(L)=(1-η)P-s(m+1)(0)ìîíïïïïïꎬ(4)其中ꎬP+pm(0)㊁P-pm(L)㊁P+sm(0)㊁P-sm(L)分别为第m段的前㊁后向泵浦光与信号光功率ꎮp+m和p-m分别是第m段前㊁后向注入泵浦光功率ꎬμ为泵浦点泵浦光的泄露比率ꎬ取0.123ꎻη为前㊁后向激光在经过泵浦点时的损耗比率ꎬ取0.01ꎻ下标m表示相应的光纤段序数ꎮTDF 2TDF 1Seed laserP +p2P -P +p1P -p2P +p3P -p (m -1)P -p m P +p (m +1)P -p (n -1)P -P nTDF nP outTDF mp1P +(0)s1图2㊀TDFA分段泵浦示意图Fig.2㊀SchematicdiagramofsegmentallypumpedTDFA2.2㊀温度分布和理论模型TDFA中的大部分热量是吸收泵浦光时量子亏损引起的ꎬ其在光纤径向的热传导方程为:1r∂∂r∂T∂r[]=-Qkꎬ(5)其中r为光纤径向方向坐标ꎬk为热传导系数ꎬQ为热功率密度ꎮ假设TDF的纤芯半径为r0ꎬ内包层半径为r1ꎬ外包层半径为r2ꎮ将热传导方程与光纤温度分布的边界条件结合ꎬ得到TDF中径向温度分布:842㊀发㊀㊀光㊀㊀学㊀㊀报第41卷T0(r)=T0-14Qr2kT1(r)=T0-Qr204k-Qr202klnrr0()T2(r)=T0-Qr204k-Qr202klnr1r0æèçöø÷-Qr20klnrr1()ìîíïïïïïïïꎬ(6)其中ꎬT0(r)㊁T1(r)㊁T2(r)分别为纤芯㊁内包层㊁外包层中坐标r处的温度ꎬ且有T0=T0(0)ꎮ单位体积内泵浦功率密度及纤芯轴向温度可分别表示为:Q(z)=βpηh[P+p(z)+P-p(z)]πr20ꎬ(7)T0(z)=Tc+Qr202Hr2+Qr204k+Qr202k2lnr1r0æèçöø÷+Qr202klnr22r21æèçöø÷ꎬ(8)其中ꎬβp为泵浦吸收系数ꎬH为对流传热系数ꎬTc为环境温度或制冷温度ꎬ且若只考虑量子亏损产生的热量时ꎬηh=(λs-λp)/λsꎮ2.3㊀理论方法龙格库塔法配合牛顿迭代法可求解两点边值问题的微分方程组ꎬ在计算分段泵浦的速率方程时可以将多点边值问题转换为两点问题ꎮ基本思路是:假设存在3个泵浦点ꎬ分别位于z=0㊁z=kL㊁z=L处ꎬ其中L为光纤长度ꎻ将泵浦点1和2之间的区间通过线性坐标变换z=z1/k1由[0ꎬk1L]换成[0ꎬL]ꎬ泵浦点2和3之间光纤通过线性变化同样由[0ꎬk2L]变为[0ꎬL]ꎬk1㊁k2分别为两段光纤与整段光纤的长度比ꎬ则分别有dz1=k1Ldz和dz2=k2Ldzꎮ这样就可将三点边值问题转换为两点边值问题[21]ꎮ使用MATLAB进行数值仿真ꎬ计算中所用到的各个参数的选取如表1所示ꎮ基于表1中的参数ꎬ对于TDFAꎬ图3给出了前向泵浦方式下ꎬ泵浦功率为1000W㊁信号光功率为5W㊁纤芯掺杂浓度N=2.5ˑ1026m-3时光纤径向温度分布以及光纤外包层边界(r=200μm)处温度沿光纤轴向的分布情况ꎮ从图3(a)中可以看出ꎬTDF中纤芯与外包层外侧处温差为20ħꎬ而纤芯与外包层外侧正常工作所允许的最高温度分别为700ħ与200ħꎬ故外包层外侧的温度为主要的限制因素ꎮ从图3(b)中可以看出ꎬ泵浦端的外包层外侧温度为693.21ħꎬ远高于200ħꎬ所以在高功率TDFA中需要进行热管理ꎮ表1㊀数值模型中各个参数的取值[19]Tab.1㊀Valueofeachparameterinthenumericalmodel[19]λp/nmλs/nmh/(J s)τ1/μs79320206.63ˑ10-34340k3101/(m-3 s-1)k1013β31σα(λp)/m23ˑ10-230.084k31010.725ˑ10-25σe(λp)/m2σα(λs)/m2σe(λs)/m2Гp/m22.5ˑ10-2510-262.5ˑ10-250.8964Гsδpδsk/(Wm-1 K-1)0.7520.0120.00231.33H/(W m-2 K-1)r0/μmr1/μmr2/μm501512520071571050150r /滋mT /℃705700695690(a )100020070060014L /mT /℃4003002000(b )30650010025图3㊀TDF中温度沿光纤径向分布(a)与轴向分布(b)Fig.3㊀Radialdistribution(a)andaxialdistribution(b)oftemperatureinTDF3㊀分段泵浦仿真分析与优化3.1㊀泵浦方式对比及分析本文仿真中参数设置为低掺浓度掺杂Tm3+的交叉弛豫系数ꎬ所以得到的斜率效率比较低ꎬ但是对应的量子亏损更大ꎬ产生的热效应也就更为明显ꎬ得到的仿真结果更适用于一般情况ꎬ更有助㊀第7期张㊀轲ꎬ等:高功率掺Tm3+光纤放大器热效应管理的泵浦方式优化理论研究843㊀于说明分段泵浦方式热效应管理的优势ꎮ当采用前向泵浦方式ꎬ泵浦光功率为1000W㊁信号光功率为5W时ꎬ转化斜率效率与交叉弛豫系数关系如图4所示ꎮ从图4中可以看出ꎬ斜率效率随着交叉弛豫系数的增大而增大ꎬ这是因为增强交叉弛豫过程会增加量子转换效率ꎮ605015L /mS l o p e e f f i c i e n c y /%4030201002346k 3101=3×10-23m -3·s -1k 3101=6×10-23m -3·s-1k 3101=1.2×10-22m -3·s-1k 3101=2×10-22m -3·s -1k 3101=4×10-22m -3·s-1k 3101=3×10-22m -3·s -1图4㊀交叉弛豫系数对斜率效率的影响Fig.4㊀Effectofcross ̄relaxationcoefficientonslopeefficiency基于表1中的仿真参数ꎬ对于TDFAꎬ图5给出了在总泵浦功率为1000W条件下ꎬ2020nm种子源信号光功率为5W㊁纤芯掺杂浓度N=2.5ˑ1026m-3时ꎬ分别在前向泵浦㊁双端泵浦㊁分段泵35025015L /mP o w e r /W300Forward pumping Dual 鄄end pumping Segmentally pumping200150100500203470015L /mT /℃Forward pumping Dual 鄄end pumping Segmentally pumping40030020010002034500600(b )(a )图5㊀不同泵浦方式下TDF中信号光功率(a)与外包层边界温度(b)沿光纤轴向分布Fig.5㊀Distributionofsignallaserpower(a)andouterclad ̄dingboundarytemperature(b)alongtheTDFunderdifferentpumpingmethods浦(5段)3种泵浦方式下ꎬTDF中放大信号光功率及光纤外包层边界(r=200μm)处温度沿光纤轴向分布情况ꎮ其中ꎬ3种情况下TDF长度均为5mꎮ从图5(a)中可以看出ꎬ在光纤长度相同时ꎬ3种泵浦方式在光纤末端处的放大信号光功率分别为326.68ꎬ322.71ꎬ264.73Wꎬ其中前向泵浦的信号光功率最大ꎬ其次为双端泵浦ꎬ分段泵浦的信号光功率最低ꎮ造成这种情况的原因主要有两个:一是泵浦光转化效率不同ꎬ因为在不同的泵浦方式下光纤的最佳长度不一样ꎬ存在光纤长度过短时泵浦光未被完全吸收现象ꎻ二是分段泵浦的泵浦光以及产生激光受每段泵浦点的耦合效率以及传输效率的影响ꎬ即泵浦点越多ꎬ泵浦光以及信号光损耗的功率就越多ꎮ由图5(b)可以明显看出ꎬ在不考虑外部散热条件下ꎬ在传统前向泵浦及双端泵浦方案中ꎬ当泵浦光总功率达到千瓦级别时ꎬTDF外包层边界最高温度分别为693.21ħ和360.71ħꎮ但一般双包层TDF外包层外起保护作用的涂覆层在温度达到200ħ时就会被烧毁ꎮ分段泵浦的最高温度为173.29ħꎬ而且整体分布均匀ꎬ可以达到TDF工作时涂覆层对于温度的要求ꎮ由此可见ꎬ采用分段泵浦的方式可以大大降低光纤外包层边界的温度并且使温度大致均匀地分布在光纤中ꎮ另外ꎬ前向㊁双端㊁分段泵浦的斜率效率分别为32.68%㊁32.27%㊁26.47%ꎬ可见采用分段泵浦斜率效率下降了6%左右ꎮ这有望通过进一步分析得到分段泵浦的最佳光纤长度后得以改善ꎬ而且在提高斜率效率的同时ꎬ有望进一步减小泵浦光在每个泵浦点的沉积从而降低光纤中的最高温度ꎮ3.2㊀泵浦吸收系数分析除光纤长度外ꎬ从公式(7)㊁(8)可以看出ꎬ光纤工作温度也与平均泵浦吸收系数βp密切相关ꎬ长度为L的TDF光纤的βp可以定义为:βp=12L[lgP+p(0)P+p(L)+lgP-p(L)P-p(0)]ˑ10ꎬ(9)双端泵浦可以看作一种特殊的分段泵浦方式ꎬ故以双端泵浦为例ꎬ找到兼顾激光器输出性能以及温度的最佳泵浦吸收系数ꎬ为接下来分析分段泵浦提供数据依据ꎮ在总泵浦功率为1000W(前㊁后向分别为500W)条件下ꎬ泵浦吸收系数为3.1844㊀发㊀㊀光㊀㊀学㊀㊀报第41卷dB/m时ꎬ泵浦光及放大信号光功率分布及信号光输出功率与光纤总长度的关系分别如图6(a)㊁(b)所示ꎮ1L /mP o w e r /W400Forward pump 30020010002034311.0 4.5L /mP o u t /W310.0309.5309.0308.55.05.56.0310.5(b )(a )Backward pump Forward signal Backward signal500656.57.07.5图6㊀(a)双端泵浦方式下TDF中各功率成分分布图ꎻ(b)输出功率与光纤长度关系ꎮFig.6㊀(a)DistributionofeachpowercomponentintheTDFunderdual ̄endpumpingmode.(b)Relationshipbe ̄tweenlaseroutputpowerandfiberlengthused.由于双端泵浦方式下增益光纤两端都有泵浦源ꎬ所以当光纤长度一定时ꎬ信号光功率在光纤上的分布整体呈增长趋势ꎬ无法直观判断出最优光纤长度ꎬ需要通过比较不同长度的光纤后才能得出结果ꎮ如图6(b)所示ꎬ在泵浦吸收系数为3.1dB/m时ꎬ光纤最优长度为5.75mꎬ其他泵浦吸收系数及其对应的最优光纤长度研究方法与此相同ꎮ光纤最优长度与泵浦吸收系数的关系及光纤最优长度时对应的放大信号激光输出功率㊁光纤外包层边界最高温度及平均温度与泵浦吸收系数的对应关系如图7所示ꎮ从图7(a)中可以看出ꎬ随着泵浦吸收系数的增大ꎬ光纤最优长度减小ꎮ图7(b)㊁(c)显示ꎬ在利用图7(a)中得到的βp对应的光纤最优长度时ꎬ随着βp增大ꎬ放大信号激光的输出功率逐渐增大ꎬ光纤的最高温度及平均温度也逐渐升高ꎮ当βpȡ3.1dB/m时ꎬ信号输出功率增加逐渐趋于平缓ꎬ斜率效率大于32%且不再明显增加ꎬ但此时光纤的温度依然处于线性升高状态ꎬ所以此时不应过于追求增加斜率效率ꎮ由双端泵浦可以得出βp=3.1dB/m为泵浦吸收系数的最佳取值ꎬ以此为条件来提高分段泵浦的斜率效率ꎮ806014βp /(dB ·m -1)L o p t /m53270(a )5040302010034030014βp /(dB ·m -1)P o u t /W5320320(b )26024020018022028016050014βp /(dB ·m -1)T ℃532(c )2004000100300600T max T ave图7㊀光纤最优长度(a)㊁激光输出功率(b)㊁TDF外包层边界最高温度与平均温度(c)与泵浦吸收系数的对应关系ꎮFig.7㊀Correspondencebetweentheoptimizedfiberlength(a)ꎬlaseroutputpower(b)ꎬmaximumtemperatureandaveragetemperatureatTDF soutercladdingboundary(c)andpumpabsorptioncoefficientofTDF.㊀3.3㊀分段泵浦分析由以上分析可知ꎬ分段泵浦存在一个最佳光纤长度使得光光转换效率最高并且可以减小泵浦光的沉积ꎮ图8表示了在总泵浦功率为1000W㊁泵浦吸收系数为3.1dB/m条件下ꎬ分㊀第7期张㊀轲ꎬ等:高功率掺Tm3+光纤放大器热效应管理的泵浦方式优化理论研究845㊀段泵浦的TDFA中放大信号激光输出功率ꎬ以及光纤外包层边界最高温度随光纤长度变化的趋势ꎮ图中3条曲线分别表示分段数为4ꎬ5ꎬ6时的情况ꎬ其中每段的光纤长度㊁注入的泵浦光功率都相等ꎮ280614L /mP o u t /W285275270265260(a )n =4n =5n =648121016140614L /mT m a x /℃12010080(b )n =4n =5n =64812101660180160图8㊀分段泵浦方式下ꎬ激光输出功率(a)与TDF外包层边界最高温度(b)随使用TDF光纤长度的变化关系ꎮFig.8㊀Relationshipbetweenthelaseroutputpower(a)ꎬmaximumtemperatureatTDF soutercladdingboundary(b)andthelengthofTDFusedunderseg ̄mentallypumpingmethod.从图8(a)可以看出ꎬ随着光纤长度的增加ꎬ信号光的输出功率逐渐增大ꎬ达到最大功率后逐渐下降ꎬ存在一个最佳长度ꎮ逐渐增大对应泵浦光转换为信号光的过程ꎬ再减小是由于光纤过长时信号光会被吸收而在其他波段产生自发辐射ꎮ经过计算可知ꎬ3种分段方式下ꎬ最佳长度分别为8.5ꎬ9.6ꎬ11.1mꎬ而且可以发现段数越多ꎬ最佳长度越长ꎬ这是因为泵浦点越多就需要更长的光纤来吸收泵浦光ꎻ同时可以看出ꎬ随着分段数的增加ꎬTDFA信号光的最大功率逐渐减小ꎬ分段数为4ꎬ5ꎬ6时对应的最大信号功率分别为281.64ꎬ276.78ꎬ272.61Wꎮ这是因为每个泵浦点处泵浦光并不能完全耦合入光纤中ꎬ即耦合效率不是100%ꎬ存在泵浦光损耗的因素ꎮ其次ꎬ在分段光纤熔接处ꎬ即使熔接质量很好ꎬ也会存在一定程度的激光泄露ꎮ功率损耗会随着分段数进行叠加ꎬ分段越多ꎬ损耗越大ꎮ所以在光纤温度处于正常时ꎬ在满足功率输出要求下ꎬ尽可能采取分段少的方式进行热管理ꎮ图8(b)表明随着光纤长度的增加ꎬ光纤最高温度逐渐降低ꎬ这也验证了之前关于光纤过短时泵浦光在泵浦点累积导致光纤最高温度升高的观点ꎮ25028L /mP o u t /W2001501000(a )0469028L /mT /℃807065(b )n =546953005010Forward pumping Backward pumping Forward signal Backward signal75100105108560图9㊀未优化时ꎬ分段泵浦方式下ꎬ各功率成分(a)与TDF外包层边界温度(b)沿光纤轴向分布图ꎮFig.9㊀Distributionofeachpowercomponent(a)andtem ̄peratureatTDF soutercladdingboundary(b)alongtheTDFundersegmentallypumpingmethodwithoutoptimization㊀接下来以5段泵浦方式为例ꎬ分析其在最佳泵浦吸收系数以及最佳光纤长度下功率与温度的分布ꎮ图9为泵浦光与信号光以及光纤温度在βp=3.1dB/m对应的最佳长度时沿光纤的轴向分布ꎮ图9(a)表明信号光的输出功率为276.78Wꎬ大于未在最优长度时的264.73Wꎬ斜率效率为27.6%ꎬ相比其他泵浦方式只下降5%ꎮ从图9(b)中可以看出光纤最高温度为100.28ħꎬ低于未在最优长度时的173.29ħꎮ但是可以发现光纤每段的最高温度分布不均匀ꎬ最大为100.28ħꎬ最小为76.45ħꎬ这主要是因为泵浦光功率分布未优化ꎬ泵浦光沉积现象依然存在ꎮ846㊀发㊀㊀光㊀㊀学㊀㊀报第41卷25028L /mP o w e r /W2001501000(a )0468028L /mT /℃60(b )n =54630050Forward pumping Backward pumping Forward signal Backward signal65851175n =5101255709001359107图10㊀优化后ꎬ分段泵浦方式下ꎬ各功率成分(a)与TDF外包层边界温度(b)沿光纤轴向分布图ꎮFig.10㊀Distributionofeachpowercomponent(a)andtem ̄peratureatTDF soutercladdingboundary(b)alongtheTDFundersegmentallypumpingmethodafteroptimization㊀3.4㊀温度分布优化由公式(7)㊁(8)可以看出在ηh不变时ꎬ解决温度分布不均匀的主要方法有对分段光纤设置非均匀的泵浦吸收系数㊁不同的泵浦光功率㊁光纤长度等ꎮ本文主要通过对每段光纤设置不同的泵浦光功率以及光纤长度来达到温度分布均匀的目的ꎮ具体方法为:使用遗传算法同时对光纤长度和泵浦光功率进行选择ꎬ在实现温度均匀分布的同时获得较大的斜率效率ꎮ其基本方法为:设置优化参数LiꎬP+pꎬiꎬP-pꎬiꎬi=1ꎬ2ꎬꎬnꎬP-pꎬi-1=P+pꎬiꎬ即前后相邻的泵浦光功率设置相等ꎻn是光纤段数ꎬL2=L3= =Ln-1ꎬ除首尾两端外ꎬ中间分段光纤的长度相同ꎬ这是因为首尾端的光纤要充分吸收前向㊁后向泵浦功率ꎮ遗传算法的目标函数为参数优化后最终要达到的目的ꎬ其定义为:-1nðni=1(Ti-Tave)2)[]1/2-1Poutꎬ(10)其中ꎬTi为光纤每段中最高温度ꎬTave为每段的平均温度ꎬPout为输出功率ꎮ目标函数的第一部分为光纤中最高温度的标准方差ꎬ第二部分为输出功率的倒数ꎻ遗传算法优化时采用搜索目标函数最大值机制ꎬ所以取两项的相反数ꎬ同时满足得到最小标准方差和最大输出功率的结果ꎬ实现温度的均匀分布及获得较高的斜率效率ꎮ对分5段泵浦的情况进行优化计算得到结果为L1=2.4mꎬL5=2.6mꎬ其他分段长度为2mꎬ总长11mꎮ泵浦功率设置分别为P+pꎬ1=115W㊁P-pꎬ5=89W㊁P-pꎬ1=P+pꎬ2=108W㊁P-pꎬ2=P+pꎬ3=100W㊁P-pꎬ3=P+pꎬ4=94W㊁P-pꎬ4=P+pꎬ5=96WꎮTDF中各功率成分和外包层边界温度沿光纤轴向分布分别如图10(a)㊁(b)所示ꎮ可得TDFA的输出功率为284.5Wꎬ斜率效率28.45%ꎬ相比单向及双端泵浦方式仅下降了4%ꎮ但光纤中最高温度仅为86.28ħꎬ且每段最高温度间最大差值仅为1.97ħꎬ实现了温度的均匀分布ꎬ并且与优化前相比降低了光纤最高工作温度ꎮ4㊀结㊀㊀论本文对基于分段泵浦的高功率TDFA热效应管理进行理论研究ꎬ利用龙格库塔法以及牛顿迭代法求解不同泵浦方式下TDFA的稳态速率方程ꎬ并根据热传导方程ꎬ模拟TDF温度沿径向和轴向的分布ꎬ通过对比得出分段泵浦对于热效应管理的优势ꎮ结合遗传算法理论ꎬ以5段泵浦为例ꎬ经过参数优化ꎬ当给定功率为5W的种子光输入时ꎬ将吸收系数为3.1dB/m㊁总长度为11m的TDF分为2.4ꎬ2ꎬ2ꎬ2ꎬ2.6m的5段进行泵浦ꎬ在总功率为1000W的793nm激光泵浦下ꎬ得到激光输出功率为284.5W㊁斜率效率为28.45%㊁光纤外包层边界最高温度为86.28ħ且温度总体分布均匀ꎬ总体热效应较传统前向泵浦㊁双端泵浦以及未优化前的分段泵浦TDFA均有明显改善ꎮ本文的研究工作及研究方法为2μm波段高功率TDFL的热效应管理及功率的进一步提升提供了重要的研究基础ꎮ参㊀考㊀文㊀献:[1]龙井宇ꎬ白晋涛ꎬ任兆玉ꎬ等.2μm掺Tm3+石英光纤激光器的泵浦效率分析和研究进展[J].激光杂志ꎬ2009ꎬ㊀第7期张㊀轲ꎬ等:高功率掺Tm3+光纤放大器热效应管理的泵浦方式优化理论研究847㊀30(4):1 ̄3.LONGJYꎬBAIJTꎬRENZYꎬetal..Pumpingefficiencyanalysisandprogressof2μmTm3+dopedsilicafiberlasers[J].LaserJ.ꎬ2009ꎬ30(4):1 ̄3.(inChinese)[2]MAQLꎬBOYꎬZONGNꎬetal..Lightscatteringand2μmlaserperformanceofTmʒYAGceramic[J].Opt.Commun.ꎬ2011ꎬ284(6):1645 ̄1647.[3]WANGXꎬZHOUPꎬZHANGHWꎬetal..100W ̄levelTm ̄dopedfiberlaserpumpedby1173nmRamanfiberlasers[J].Opt.Lett.ꎬ2014ꎬ39(15):4329 ̄4332.[4]刘江ꎬ刘晨ꎬ师红星ꎬ等.342W全光纤结构窄线宽连续掺铥光纤激光器[J].物理学报ꎬ2016ꎬ65(19):194209 ̄1 ̄5.LIUJꎬLIUCꎬSHIHXꎬetal..342Wnarrow ̄linewidthcontinuous ̄wavethulium ̄dopedall ̄fiberlaser[J].ActaPhys.Sinicaꎬ2016ꎬ65(19):194209 ̄1 ̄5.(inChinese)[5]胡志涛ꎬ何兵ꎬ周军ꎬ等.高功率光纤激光器热效应的研究进展[J].激光与光电子学进展ꎬ2016ꎬ53(8):080002 ̄1 ̄10.HUZTꎬHEBꎬZHOUJꎬetal..Researchprogressinthermaleffectofhighpowerfiberlasers[J].LaserOptoelectron.Progr.ꎬ2016ꎬ53(8):080002 ̄1 ̄10.(inChinese)[6]王郡婕ꎬ冯晓强ꎬ冯选旗ꎬ等.掺铥双包层光纤激光器的热效应分析和实验研究[J].激光杂志ꎬ2013ꎬ34(1):4 ̄6.WANGJJꎬFENGXQꎬFENGXQꎬetal..ThermaleffectandexperimentalresearchforTm3+ ̄dopeddouble ̄cladfiberla ̄ser[J].LaserJ.ꎬ2013ꎬ34(1):4 ̄6.(inChinese)[7]WANGYꎬXUCQꎬPOH.Thermaleffectsinkilowattfiberlasers[J].IEEEPhotonicsTechnol.Lett.ꎬ2004ꎬ16(1):63 ̄65.㊀[8]WANGY.Heatdissipationinkilowattfiberpoweramplifiers[J].IEEEJ.QuantumElectron.ꎬ2004ꎬ40(6):731 ̄740. [9]HEXLꎬLIAOLꎬZHANGFFꎬetal..Analysisoflaserefficiencyandthermaleffectsinkilowattfiberlasersbasedondis ̄tributedside ̄coupledfibers[J].Opt.Eng.ꎬ2018ꎬ57(9):096108 ̄1 ̄12.[10]楼祺洪ꎬ周军ꎬ漆云凤ꎬ等.千瓦级双包层光纤激光器冷却方案设计理论和实验研究[J].物理学报ꎬ2008ꎬ57(8):4966 ̄4971.LOUQHꎬZHOUJꎬQIYFꎬetal..Theoreticalandexperimentalresearchoncoolingschemedesignofkilowattdouble ̄cladfiberlaser[J].ActaPhys.Sinicaꎬ2008ꎬ57(8):4966 ̄4971.(inChinese)[11]薛冬ꎬ周军ꎬ楼祺洪ꎬ等.高功率双包层光纤激光器热效应及功率极限[J].强激光与粒子束ꎬ2009ꎬ21(7):1013 ̄1018.XUEDꎬZHOUJꎬLOUQHꎬetal..Thermaleffectandpowerlimitinhighpowerdouble ̄cladfiberlaser[J].HighPowerLaserPart.Beamsꎬ2009ꎬ21(7):1013 ̄1018.(inChinese)[12]陈金宝ꎬ曹涧秋ꎬ潘志勇ꎬ等.全国产分布式侧面抽运光纤激光器实现千瓦输出[J].中国激光ꎬ2015ꎬ42(2):0219002.CHENJꎬCAOJQꎬPANZYꎬetal..Nationallyproduceddistributedsidepumpedfiberlaserstoachievekilowattoutput[J].Chin.J.Lasersꎬ2015ꎬ42(2):0219002.(inChinese)[13]陈爽ꎬ冯莹.高功率光子晶体光纤激光器温度分布研究[J].光子学报ꎬ2008ꎬ37(6):1134 ̄1138.CHENSꎬFENGY.Temperaturedistributioninhighpowerphotoniccrystalfiberlaser[J].ActaPhoton.Sinicaꎬ2008ꎬ37(6):1134 ̄1138.(inChinese)[14]代守军ꎬ何兵ꎬ周军ꎬ等.高功率散热技术及高功率光纤激光放大器[J].中国激光ꎬ2013ꎬ40(5):13 ̄18.DAISJꎬHEBꎬZHOUJꎬetal..Coolingtechnologyofhigh ̄powerandhigh ̄powerfiberlaseramplifier[J].Chin.J.La ̄sersꎬ2013ꎬ40(5):13 ̄18.(inChinese)[15]TANGYLꎬLIFꎬXUJQ.Highpeak ̄powergain ̄switchedTm3+ ̄dopedfiberlaser[J].IEEEPhotonicsTechnol.Lett.ꎬ2011ꎬ23(13):893 ̄895.[16]WANGYꎬYANGJLꎬHUANGCYꎬetal..Highpowertandem ̄pumpedthulium ̄dopedfiberlaser[J].Opt.Expressꎬ2015ꎬ23(3):2991 ̄2998.[17]MELESHKEVICHMꎬPLATONOVNꎬGAPONTSEVDꎬetal..415Wsingle ̄modeCWthuliumfiberlaserinall ̄fiberfor ̄mat[C].Proceedingsof2007EuropeanConferenceonLasersandElectro ̄OpticsandTheInternationalQuantumElectronics848㊀发㊀㊀光㊀㊀学㊀㊀报第41卷ConferenceꎬMunichꎬGermanyꎬ2007:1.[18]CREEDENDꎬJOHNSONBRꎬRINESGAꎬetal..HighpowerresonantpumpingofTm ̄dopedfiberamplifiersincore ̄andcladding ̄pumpedconfigurations[J].Opt.Expressꎬ2014ꎬ22(23):29067 ̄29080.[19]黎大军ꎬ杜戈果ꎬ闫培光.LD泵浦掺铥(Tm3+)光纤激光器的数值分析[J].应用光学ꎬ2007ꎬ28(4):439 ̄444.LIDJꎬDUGGꎬYANPG.NumericalanalysisofTm3+ ̄dopedsilicafiberlaserspumpedbyLD[J].J.Appl.Opt.ꎬ2007ꎬ28(4):439 ̄444.(inChinese)[20]JACKSONSDꎬKINGTA.TheoreticalmodelingofTm ̄dopedsilicafiberlasers[J].J.LightwaveTechnol.ꎬ1999ꎬ17(5):948 ̄956.[21]欧攀ꎬ贾豫东ꎬ白明ꎬ等.高等光学仿真:MATLAB版:光波导 激光[M].第2版.北京:北京航空航天大学出版社ꎬ2014:7.OUPꎬJIAYDꎬBAIMꎬetal..AdvancedOpticalSimulation:MATLABVersion:OpticalWaveguide Laser[M].2nded.Beijing:BeijingUniversityofAeronauticsandAstronauticsPressꎬ2014:7.(inChinese)张轲(1995-)ꎬ男ꎬ山西运城人ꎬ硕士研究生ꎬ2017年于中国石油大学(华东)获得学士学位ꎬ主要从事2μm波段光纤激光器方面的研究ꎮE ̄mail:17120162@bjtu.edu.cn冯亭(1986 ̄)ꎬ男ꎬ河北张家口人ꎬ博士ꎬ副教授ꎬ2014年于北京交通大学获得博士学位ꎬ主要从事光纤激光㊁光纤传感器及其应用等方面的研究ꎮE ̄mail:wlxyft@hbu.edu.cn延凤平(1966-)ꎬ男ꎬ山西兴县人ꎬ博士ꎬ教授ꎬ1996年于北方交通大学获得博士学位ꎬ主要从事光纤激光器㊁光纤传感器㊁光纤通信㊁基于太赫兹超材料等方面的研究ꎮE ̄mail:fpyan@bjtu.edu.cn。
第31卷 第9期光 学 学 报V ol .31,N o .92011年9月ACTA OPTICA SINICASeptember ,2011高功率光纤激光阵列被动相干组束技术研究周 军 何 兵 薛宇豪 漆云凤 刘 驰 丁亚茜 刘厚康 李 震 楼祺洪(中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室,上海201800)摘要 对高功率光纤激光的被动相干组束技术进行了理论和实验研究。
介绍了几种典型的被动相干组束技术,并对其功率可提升性进行了分析。
详细报道了课题组在光反馈环形腔结构光纤激光相干组束方面的研究进展,研究分析了该相干组束技术的输出光谱特性和路数可提升性,建立了4路和8路高功率光纤放大器的相干组束系统,并分别实现了1062和1090W 的相干耦合激光输出。
关键词 激光技术;光纤激光;相干组束;环形腔中图分类号 O436 文献标识码 A do i :10.3788/AO S 201131.0900129Study on Passive Coherent Be am Combination Technology ofHigh Powe r Fiber Lase r ArraysZhou Jun He Bing Xue Yuhao Qi Yunfeng Liu Chi Ding YaqianLiu Houkang Li Zhen Lo u Qiho ng(Shanghai Key Laboratory of All S olid -St at e Laser and Applied Techniques ,S hanghai Institut e of Optics andFine Mechanics ,Chinese Academy of Sciences ,Shanghai 201800,China )Abstract Passive coherent beam combination of high power fiber laser arrays is researched theoretically and experimenta lly .Some typic al technologies of passive coherent beam combination of fiber laser arrays are introduced ,and their power scaling is analyzed .The principle of passive coherent beam c ombination ba sed on ring cavity is analyzed .The coherent output spectrum characteristics and array size scalability of the passively coherently phased fiber laser arrays are explored .High power passive phase locking of 4-c hannel and 8-channel fiber amplifier arrays with ring cavity are experimentally dem onstrated ,a nd the maximum coherent output powers are up to 1062and 1090W ,respectively .Key wo rds la ser technology ;fiber laser ;coherent beam c ombination ;ring c avity OCIS co des 140.3510;140.3295;140.3298 收稿日期:2011-07-25;收到修改稿日期:2011-08-04基金项目:国家863计划(2011AA 030201)、国家重大科技专项(2010ZX04013)、国家自然科学基金(60908011)和上海科技启明星基金(09Q B1401700)资助课题。
GaN HEMTs射频功率器件热调控技术研究GaN HEMTs射频功率器件热调控技术研究近年来,无线通信技术的高速发展对射频功率器件的要求提出了更高的要求。
宽带、高功率、高效率的射频功率放大器是无线通信系统中不可或缺的关键元器件。
而氮化镓高电子迁移率晶体管(GaN HEMTs)作为一种新兴的射频功率器件,在其高换能率、高截止频率和优异的热传导特性方面表现出了极高的潜力。
然而,高功率射频功率器件的工作过程中会产生大量的热量,而热量的堆积会导致温度升高,从而限制了器件的性能和寿命。
因此,如何解决高功率射频功率器件的热问题成为研究的焦点之一。
为了有效应对高功率射频功率器件的热问题,研究者们提出了一种新的热调控技术。
该技术通过在GaN HEMTs器件的设计和制备过程中引入热管理结构和材料,实现对热量的有效控制和排放。
首先,研究者们研究了GaN HEMTs器件的热流分布情况,并发现了热流集中的问题。
为了解决这个问题,他们采用了微细加工技术,通过在GaN HEMTs器件的上下表面制作一系列的微细散热结构,以增加热传导的表面积,从而提高了器件的热传导效率。
其次,研究者们在GaN HEMTs器件的制备过程中,引入了热传导材料,以增加热量的传导性能。
他们选择了具有优秀热导率和电导率的材料,如石墨烯和金刚石薄膜,并将其集成到GaN HEMTs器件的上下表面,以增强器件的热传导性能。
此外,研究者们还探索了热量的有效排放方法。
他们设计了一种新型的散热结构,通过在器件的背面制作散热板和导热管,以提高器件的散热效果。
通过这种设计,热量能够迅速传导到散热板,并通过导热管排放到器件周围的环境中。
最后,研究者们对经过热调控处理的GaN HEMTs器件进行了性能测试。
实验结果表明,热调控技术显著提升了器件的散热性能和稳定性,使得器件能够在高功率工作状态下保持较低的温度,并具备更高的工作效率和可靠性。
综上所述,GaN HEMTs射频功率器件热调控技术的研究取得了显著的进展。
半导体器件的高功率微波毁伤阈值数值计算研究半导体器件在现代通信技术和微波领域扮演着重要角色,但是在高功率微波场景中,由于电磁辐射的强烈作用,半导体器件的毁伤阈值成为了关键问题。
本文将介绍半导体器件的高功率微波毁伤阈值数值计算的相关研究。
首先,为了理解高功率微波对半导体器件的毁伤机理,我们需要了解半导体器件的物理特性和微波的特性。
半导体器件通常由多个不同材料层组成,其中包括导电层、绝缘层和掺杂层等。
微波是一种高频电磁波,其特点是波长较短、频率较高。
当微波照射到半导体器件上时,会导致能量的吸收和散射。
根据之前的研究,半导体器件的高功率微波毁伤阈值数值与多个因素有关。
首先是器件的材料特性,不同的材料对高功率微波的敏感性不同。
例如,硅和砷化镓等半导体材料在高功率微波场景下容易受到损坏。
其次是器件的结构特性,器件的设计对于抵御高功率微波的毁伤也具有重要影响。
例如,设计合理的导电层和绝缘层能够减轻高功率微波对器件的影响。
最后是微波的参数,包括功率密度、频率和脉冲宽度等,这些参数决定了器件受到的微波能量。
为了计算半导体器件的高功率微波毁伤阈值数值,研究人员通常采用数值模拟和实验测试相结合的方法。
数值模拟可以通过建立器件的物理模型和微波传输方程,计算微波在器件中的分布和能量吸收情况。
实验测试则可以通过实际测量器件在高功率微波场景下的毁伤情况,来验证数值模拟的结果。
在进行数值模拟时,研究人员需要考虑到器件的具体结构和材料参数。
通过对不同参数的变化进行分析,可以得到器件在不同条件下的毁伤阈值数值。
而实验测试则需要利用高功率微波毁伤测试系统,对器件进行一定时间的微波照射,观察器件的损坏情况。
综上所述,半导体器件的高功率微波毁伤阈值数值计算研究是一项复杂而有意义的工作。
通过对器件的物理特性、微波特性以及数值模拟和实验测试的综合分析,我们可以得到半导体器件在高功率微波场景下的毁伤阈值数值。
这对于半导体器件的设计和应用具有重要的指导意义,可以提高器件的稳定性和可靠性。
高效率光纤合束器关键技术研究1.光束合并技术能够提高光纤激光器的功率密度。
Beam combining technology can improve the power density of fiber lasers.2.高效率的光束合束器可以实现光纤激光器的高效率输出。
High-efficiency beam combiners can achieve high-efficiency output of fiber lasers.3.采用适当的光束整形器件可以提高合束器的效率。
The use of appropriate beam shaping components can improve the efficiency of the combiner.4.光纤的准直器能够提高光束合束的质量。
Fiber collimators can improve the quality of beam combining.5.合理设计光路对准系统是光束合束器关键技术之一。
Properly designed optical alignment system is one of the key technologies of beam combiners.6.高稳定性的光路系统可以确保光束合束器的长时间稳定工作。
Highly stable optical systems can ensure the long-term stable operation of beam combiners.7.光路系统的自动校正功能对提高合束器的稳定性至关重要。
The automatic correction function of the optical system is crucial to improve the stability of the combiner.8.利用优质的偏振控制器件可以实现光束的优化合并。
The use of high-quality polarization control devices can achieve optimized beam combining.9.智能化的光束合束控制系统可以提高合束器的应用灵活性。
第45卷第7期激光与红外Vol.45,No.72015年7月LASER&INFRAREDJuly ,2015文章编号:1001-5078(2015)07-0786-04·激光器技术·高功率光纤合束器热阻系数的研究黄榜才,张鹏,龙润泽,韩桂云,张培培,王晓龙,张雪莲,梁小红(中国电子科技集团公司第四十六研究所,天津300220)摘要:报道了高功率光纤合束器热阻系数的研究。
实验研究了高功率光纤合束器热阻系数的测量方法,分别在被动制冷、主动制冷和消除背向反射光条件下,测量了加拿大ITF 公司系列高功率光纤合束器的热阻系数,分别为0.32ħ/W ,0.15ħ/W ,0.29ħ/W ;比较被动制冷和主动制冷两种条件下光纤合束器热阻系数的差异,表明主动制冷可以明显降低光纤合束器热阻系数;研究了光纤合束器背向反射光对热阻系数的影响,发现消除背向反射光有利于降低热阻系数。
研究结果对高功率光纤激光器结构设计具有重要意义。
关键词:光纤光学;激光器和放大器;光纤合束;主动制冷中图分类号:TN253;TN248文献标识码:ADOI :10.3969/j.issn.1001-5078.2015.07.011Study on thermal resistivity of high power fiber combinerHUANG Bang -cai ,ZHANG Peng ,LONG Run -ze ,HAN Gui -yun ,ZHANG Pei -pei ,WANG Xiao -long ,ZHANG Xue -lian ,LIANG Xiao -hong(Institute 46th of Chinese Electronic Technology Group Company ,Tianjin 300220,China )Abstract :The research on thermal resistivity of high power fiber combiner is reported.The measurement method of thermal resistivity is studied.The thermal resistivity of high power fiber combiner of the Canadian ITF company is 0.32ħ/W ,0.15ħ/W ,0.29ħ/W respectively under the conditions of passive cooling ,active cooling and without the backward reflected light.Comparing the measured results between passive cooling and active cooling ,it will be founded that the thermal resistivity under active cooling is lower.When the backward reflected light is eliminated ,the thermal resistivity will be decreased also.The results are very important for the design of high power fiber laser.Key words :fiber optics ;laser and amplifier ;fiber bundle ;active heat sinking作者简介:黄榜才(1976-),男,博士,工程师,主要研究方向为高功率光纤激光器及放大器研制技术。
E -mail :huang-bangcai@sohu.com收稿日期:2014-10-201引言高功率的双包层光纤激光器以其优越的性能获得了广泛关注并大量应用[1-3]。
其中,高功率光纤元器件的成熟和使用,是高功率光纤激光器研制的重要保证。
高功率光纤合束器是高功率光纤激光器泵浦光耦合的关键器件,在高功率光纤激光器结构设计中大量应用,因此国内外科研人员对高功率光纤合束器的研制及其性能研究非常重视[4-6]。
热阻系数(η,ħ/W )是表征高功率光纤合束器耐热性能的技术指标,其定义是通过光纤合束器的光功率(P ,W )每损耗1W ,在器件外壳所产生的温度变化值(ΔT ,ħ)。
计算如式(1)所示:η=ΔT /ΔP(1)根据定义,高功率光纤合束器热阻系数越高,相同光功率损耗产生的热量越多,光纤合束器越容易发热;反之,热阻系数越低,光纤合束器产生的热量越少,耐热性能越高。
因此,高功率光纤激光器结构设计时,应该选择热阻系数小的合束器产品。
但是目前市场上出售的产品都不能提供该技术指标,用户无法了解产品的耐热性能,因此高功率光纤合束器热阻系数的测量非常必要。
本文实验研究了高功率光纤合束器热阻系数的测量方法,分别在被动制冷、主动制冷和消除背向反射光条件下,测量了加拿大ITF 公司系列高功率光纤合束器的热阻系数,分别为0.32ħ/W ,0.15ħ/W ,0.29ħ/W ;研究了被动制冷和主动制冷两种条件下光纤合束器热阻系数的差异,表明主动制冷可以明显降低光纤合束器热阻系数;研究了光纤合束器背向反射光对热阻系数的影响,发现消除背向反射光有利于降低热阻系数。
2实验研究2.1实验装置及方法本实验测量对象为加拿大ITF 公司7ˑ1系列高功率多模光纤合束器,7根输入光纤是纤芯直径105μm 、包层直径125μm 的多模光纤,NA 值为0.22;输出光纤是纤芯直径200μm 、包层直径220μm 的多模光纤,NA 值为0.22。
该系列合束器采用了散热能力较好的方形小铝块封装方式,根据厂家产品资料,单根输入光纤最大承受功率为50W ,据此估算产品整体承受最大功率350W ,但是均未提供产品热阻系数值。
为了匹配合束器参数,实验采用了7个最大输出功率30W 多模单发射体半导体激光器作为测试光源,工作波长为915nm ,输出光纤也是纤芯直径105μm 、包层直径125μm 的多模光纤,NA 值为0.22。
多模单发射体半导体激光器全部安装在水冷板上,输出光纤与测试合束器输入光纤直接熔接。
测试合束器输出光纤输出到功率计进行测量。
合束器的表面温度采用热电偶进行测量。
整个实验装置如图1所示。
图1高功率光纤合束器测试装置图Fig.1Measure setup for the high power fiber combiners实验时,先行对7只单发射体半导体激光器加载1 10A 驱动电流I (i =1,2 10),并测量出每个整数安培驱动电流下7只单发射体半导体激光器的总输出功率,记为P in (i =1,2 10);该功率经过合束器之后会有部分损耗,剩余输出功率记为P out (i =1,2 10),由此可获得每个整数电流下合束器的损耗为:ΔP (i )=P in (i )-P out (i )(2)与此同时,采用热电偶测量1 10A 每个整数电流下光纤合束器的表面温度,记为T (i =1,2 10),由此可获得测量合束器的热阻系数值为:η=T (10)-T (1)ΔP (10)-ΔP (1)(3)2.2实验内容2.2.1被动制冷时合束器热阻系数的测量首先,在上述实验装置中高功率光纤合束器放置在光学平台上进行固定,完全依靠被动散热。
按照2.1节所述实验方法,测量了编号为2181941光纤合束器在1 10A 整数驱动电流I 时的P in (i ),P out (i ),T (i )值,并得到ΔP (i ),如表1所示。
表1不同驱动电流时实验测量数据I /A P in /W P out /W ΔP /W T /ħ112.5111.521.723329.43.622.6354.347.76.623478.570.67.923.55100.288.212246116.6102.61424.77143.3126.416.925.88163.4143.719.726.69182.6160.721.927.310196.7173.223.528.5根据公式(3),可得到编号为2181941光纤合束器的热阻系数值η为0.31ħ/W 。
在直角坐标系中,以T (i ,i =1,2 10)为纵坐标,ΔP (i )为横坐标,得到光纤合束器损耗与表面温度关系曲线如图2所示。
图2高功率光纤合束器表面温度与损耗Fig.2Graph of the outer temperature and power loss of the high power fiber combiners787激光与红外No.72015黄榜才等高功率光纤合束器热阻系数的研究2.2.2主动制冷对合束器热阻系数测量的影响在高功率光纤合束器的实际应用中,考虑到散热需要一般都按照主动制冷方式对其进行安装。
在主动制冷条件下,编号为2181941高功率光纤合束器安装于(20ʃ1)ħ恒温制冷片上。
实验其他装置如图1所示,按照2.1节所述实验方法,测量了1 10A 整数驱动电流I 时的P in (i ),P out (i ),T (i )值,并得到ΔP (i ),如表2所示。
表2主动制冷时不同驱动电流下实验测量数据I /A P in /W P out /W ΔP /W T /ħ112.511.11.420.523329.53.520.8354.348.65.721478.569.29.321.55100.287.612.621.86116.6105.710.922.27143.312518.322.68163.4142.720.7239182.6158.823.823.510196.7172.224.523.9根据公式(3),可得到编号为2181941光纤合束器的热阻系数值η为0.15ħ/W 。
在直角坐标系中,以T (i ,i =1,2 10)为纵坐标,ΔP (i )为横坐标,得到光纤合束器损耗与表面温度关系曲线如图3所示。
图3主动制冷时光纤合束器表面温度与损耗Fig.3Graph of the outer temperature and power loss of the fiber combiners with active heat sinking2.2.3背向反射光对合束器热阻系数测量的影响在2.2.1小节中,光纤合束器输出光纤端面采用了垂直切割的方式,由于输出端面4%的菲涅尔反射,必然有部分泵浦光重新回到合束器耦合区域。
为了研究背向反射光对高功率光纤合束器热阻系数的影响,实验对光纤合束器输出端面采用了8ʎ角切割处理以消除端面反射。