山西省吕梁市文水县2020届九年级上期中考试数学试题含答案
- 格式:doc
- 大小:1.62 MB
- 文档页数:11
吕梁市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子中,不属于二次根式的是()A .B .C .D .2. (2分)方程x2=4的解为()A . x=2B . x=﹣2C . x1=4,x2=﹣4D . x1=2,x2=﹣23. (2分) (2015八上·南山期末) 下列计算正确的是()A . x7÷x4=x11B . (a3)2=a5C . 2 +3 =5D . ÷ =4. (2分) (2019九上·博白期中) 一元二次方程配方后化为()A . .B .C .D .5. (2分) (2019八下·谢家集期中) 下列四个算式中正确是()A . =2B .C .D .6. (2分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A . =20B . n(n﹣1)=20C . =20D . n(n+1)=207. (2分)如图,△ABC是直角三角形,S1 , S2 , S3为正方形,已知a,b,c分别为S1 , S2 , S3的边长,则()A . b=a+cB . b2=acC . a2=b2+c2D . a=b+2c8. (2分) (2018九上·西峡期中) 如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED =∠B,②∠ADE=∠C,③ ,④ ,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A . ①②④B . ②④⑤C . ①②③④D . ①②③⑤9. (2分)如图,在△ABC中,E,D,F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A . 10B . 20C . 30D . 4010. (2分)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A .B .C .D .二、填空题 (共5题;共6分)11. (1分)(2012·大连) 若二次根式有意义,则x的取值范围是________.12. (1分)已知x=1是方程x2+mx+3=0的一个实数根,则m的值是________ .13. (1分) (2018九上·郴州月考) 某班有一人患了流感,经过两轮传染后,班上有人被传染患上了流感,按这样的传染速度,若人患了流感,则第一轮传染后患上流感的人数是________.14. (2分) (2016九上·广饶期中) 如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为________米.15. (1分)如图,平行四边形ABCD中,点E在AD上,以BE为折痕,把△ABE向上翻折,点A正好落在CD 边的点F处,若△FDE的周长为6,△FCB的周长为20,那么CF的长为________ .三、解答题 (共8题;共76分)16. (10分)(2016·梅州) 计算:.17. (10分)解下列方程:(1)2x=1-2x2 (2)2(x-3)2=x2-918. (5分)(2018·兰州) 先化简,再求值:,其中.19. (10分) (2016九上·平潭期中) 已知一元二次方程x2﹣2x+m=0.(1)当一个根x=3时,求m的值和方程的另一个根;(2)若该方程一定有实数根,求m的取值范围.20. (10分)(2019·海宁模拟) 定义:从三角形的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中有一个与原三角形相似,那么我们称这条线段为原三角形的相似线,记此小三角形与原三角形的相似比为k.(1)【理解】如图1,△ABC中,已知D是AC边上一点,∠CBD=∠A.求证:BD是△ABC的相似线;(2)【探究】如图2,△ABC中,AB=4,BC=2,AC=2 .请用尺规作图法在平面内找一点D、使BC是以A、D为其中两个顶点的三角形的相似线,并直接写出k的值,(提醒:保留作图痕迹,在确认无误后用黑色签字笔将作图痕迹描黑)(3)【应用】如图3,扇形AOB中,∠AOB=90°,AO=OB=2,C,D分别是OA,OB的中点,P是弧AB上的一个动点,求PC+2PD的最小值.21. (10分) (2020九下·无锡月考) 现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?22. (6分)(2019·新华模拟) 如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,点C是⊙O上任意一点,连接BC,OC.将OC绕点O按顺时针方向旋转90°,交⊙O于点D,连接AD.(1)当AD与⊙O相切时,①求证:BC是⊙O的切线;②求点C到OB的距离。
山西省2020届九年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·信阳月考) 若点(x1 , y1)、(x2 , y2)、(x3 , y3)都是反比例函数y= 的图象上的点,并且x1<0<x2<x3 ,则下列各式中正确的是()A . y1<y3<y2B . y1<y2<y3C . y3<y2<y1D . y2<y3<y12. (2分) (2016九上·西青期中) 下列方程是关于x的一元二次方程的是()A . ax2+bx+c=0B . =2C . x2+2x=x2﹣1D . 3(x+1)2=2(x+1)3. (2分)如果代数式4y2-2y+5的值为7,那么代数式-2y2+y-1的值为()A . -3B . 2C . -2D . 04. (2分)(2013·衢州) 若函数y= 的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A . m<﹣2B . m<0C . m>﹣2D . m>05. (2分)反比例函数y=的两个点(x1 , y1)、(x2 , y2),且x1>x2 ,则下式关系成立的是()A . y1>y2B . y1<y2C . y1=y2D . 不能确定6. (2分)(2016·达州) 下列说法中不正确的是()A . 函数y=2x的图象经过原点B . 函数y= 的图象位于第一、三象限C . 函数y=3x﹣1的图象不经过第二象限D . 函数y=﹣的值随x的值的增大而增大7. (2分) (2019九上·高州期末) 下列四条线段中,不能成比例的是()A . a=4,b=8,c=5,d=10B . a=2,b=2 ,c=,d=5C . a=1,b=2,c=3,d=4D . a=1,b=2,c=2,d=48. (2分)如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米 ,CA=1米,则树的高度为()A . 4.5米B . 6米C . 3米D . 4米9. (2分)(2020·许昌模拟) 如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF 面积的,则AO:AD的值为()A . 2:3B . 2:5C . 4:9D . 4:1310. (2分)三角形两边长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A . 24B . 24或C . 48D .11. (2分)如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B(1,3)两点,若y1>y2 ,则x的取值范围是()A . ﹣1<x<0B . ﹣1<x<1C . x<﹣1或0<x<1D . ﹣1<x<0或x>112. (2分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A . (2,2)B . (1,2)C . (, 2)D . (2,1)二、填空题 (共6题;共6分)13. (1分)已知a、b为有理数,下列说法:①若a、b互为相反数,则;②若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;③若|a﹣b|+a﹣b=0,则b >a;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的有________(填序号).14. (1分) (2019九上·龙湖期末) 已知:是反比例函数,则m=________.15. (1分)(2017·海珠模拟) 若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2﹣b2+5的最小值为________.16. (1分)已知x=1是一元二次方程x2﹣mx+2=0的一个根,则m=________ .17. (1分)已知一元二次方程x2﹣6x+c=0的一个根为x1=2,另一根x2=________x2=________.18. (1分)在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________三、解答题 (共8题;共62分)19. (10分)用你喜欢的方法解下列方程(1) x2﹣5x﹣6=0(2) 2(x﹣3)=3x(3﹣x)(3) 2x2﹣x﹣3=0.20. (5分) (2016七上·临河期中) 把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.21. (10分)(2013·玉林) 工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?22. (15分)如图,分别按下列要求作出四边形ABCD以O点为位似中心的位似四边形A′B′C′D′.①沿OA的方向放大为原图的2倍;②沿AO的方向放大为原图的2倍.23. (5分)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个②结论是否成立,若成立,请给予证明;若不成立,请说明理由.24. (5分) (2016九上·扬州期末) 在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.25. (10分)(2019·武昌模拟) 如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8 ,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点 D.(1)用t表示点D的坐标________;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.26. (2分)如图,一次函数的图象与反比例函数的图象交于点和点C,与y轴交于点B,的面积是6.(1)求一次函数与反比例函数的表达式;(2)当时,比较与的大小.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共62分) 19-1、19-2、19-3、20-1、21-1、21-2、22-1、24-1、25-1、25-2、25-3、26-1、26-2、。
2020年吕梁市初三数学上期中第一次模拟试题带答案一、选择题1.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°2.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D . 3.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -=B .213()24x +=C .215()24x +=D .215()24x -= 4.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .85.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .26.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 7.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1 B .-1 C .±1 D .28.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 9.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 10.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧¼AMB 上一点,则∠APB 的度数为( )A .45°B .30°C .75°D .60° 11.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 12.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.15.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.19.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.20.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.三、解答题21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.23.已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF 的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)24.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?25.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.2.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x+x=12x+x+14=1+14 215()24x+=.故选C【点睛】考点:配方的方法. 4.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m >0,然后解不等式得到m <4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m >0,解得:m <4,所以m 可以取3,不能取5、6、8. 故选A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 7.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 8.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】本题考查扇形面积的计算. 9.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.10.D解析:D【解析】【分析】【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD =CD ,OD =12OC =12OA , ∴∠OAD =30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB =120°,∴∠APB =12∠AOB =60°.(圆周角等于圆心角的一半) 故选D.11.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.12.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x因为经过两年时间让市区绿地面积增加44则有(1+x)2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算【详解】设圆锥底面圆的半径为r则2πr=解得:r=10所以圆锥的底面半径为10故答案为:10【点睛】考查了圆锥的计算及扇形的弧长的计算的知识解析:10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算.【详解】设圆锥底面圆的半径为r,则2πr=12030 180π⋅,解得:r=10,所以圆锥的底面半径为10.故答案为:10.【点睛】考查了圆锥的计算及扇形的弧长的计算的知识,解题关键是牢固掌握和弧长公式.15.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 16.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.根据题意,得100(1-x)2=64,即(1-x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.17.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.-18.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.19.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x 的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b 2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x 的方程x 2-6x+m=0有两个相等的实数根,∴△=b 2-4ac=0,即(-6)2-4×1×m=0, 解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P 的位置4次一个循环解析:(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),…发现点P 的位置4次一个循环,∵2017÷4=504余1, P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053,∴P 2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.三、解答题21.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD.【详解】解:(1)证明:如图,连接OD,∵BO=BD=DO,∴△OBD是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC,∴∠BDC=12∠OBD=30°.∴∠ODC=90°.∴OD⊥CD.∵OD为⊙O的半径,∴CD是⊙O的切线.(2)∵AB为⊙O的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4.∴2223AD AB BD=-=.23.(1)见解析;(2)503 25π-.【解析】【分析】(1)作OC⊥AB于点C,由OC⊥AB可知AC=BC,再根据AE=BF可知EC=FC,因为OC⊥EF,所以OE=OF,再由∠EOF=60°即可得出结论.(2)在等边△OEF中,因为∠OEF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的长,根据S阴影=S扇形AOD﹣S△AOF即可得出结论.【详解】解:(1)证明:作OC⊥AB于点C,∵OC⊥AB,∴AC=BC.∵AE=BF,∴EC=FC.∵OC⊥EF,∴OE=OF.∵∠EOF=60°,∴△OEF是等边三角形.;(2)∵在等边△OEF中,∠OEF=∠EOF=60°,AE=OE,∴∠A=∠AOE=30°.∴∠AOF=90°.∵AO=10,∴OF=3103 tan10AO AOE⋅∠==.∴110350310233ACFS=⨯=V,2901025360AODSππ⋅⋅==扇形.∴503253ACFAODS S Sπ∆=-=-阴影扇形.24.每件衬衫应降价20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=20.答:每件衬衫应降价20元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.25.每个粽子的定价为5元时,每天的利润为800元.【解析】试题分析:首先设每个粽子的定价为x元,然后根据题意得出方程,从而求出x的值,然后根据售价不能超过进价的200%,从而得出x的取值范围,从而得出答案.试题解析:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.考点:一元二次方程的应用。
吕梁市九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。
山西省吕梁市2020年(春秋版)九年级上学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020九上·思明期末) 已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()A . 1B . 0C . -5D . 52. (2分) (2017九上·十堰期末) 若关于x的一元二次方程有实数根,则k的取值范围是()A . k≥1B . k>1C . k<1D . k≤13. (2分)(2018·来宾模拟) 某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x名同学,根据题意,列出方程为()A . x(x+1)=1892B . x(x−1)=1892×2C . x(x−1)=1892D . 2x(x+1)=18924. (2分)(2017·娄底模拟) 抛物线y=2(x﹣3)2的顶点在()A . 第一象限B . 第二象限C . x轴上D . y轴上5. (2分)由函数y=-12x2的图像平移得到函数y=-12(x-4)2+5的图像,则这个平移是()A . 先向左平移4个单位,再向下平移5个单位B . 先向左平移4个单位,再向上平移5个单位C . 先向右平移4个单位,再向下平移5个单位D . 先向右平移4个单位,再向上平移5个单位6. (2分) (2020九上·河池期末) 二次函数的图象的顶点坐标为()A .B .C .D .7. (2分) (2018九上·郴州月考) 已知反比例函数的图象如图,则一元二次方程根的情况是()A . 有两个不等实根B . 有两个相等实根C . 没有实根D . 无法确定8. (2分)(2014·宜宾) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x﹣2=0B . x2﹣3x+2=0C . x2﹣2x+3=0D . x2+3x+2=09. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0②b<0③c>0④4a+2b+c=0,⑤b+2a=0 ⑥ b2-4ac>0其中正确的个数是()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()A . 2B . 1C . 0D . -1二、填空题 (共6题;共6分)11. (1分) (2019九上·抚顺月考) 一元二次方程的解为________.12. (1分)已知集合A中的数与集合B中对应的数之间的关系是某个二次函数.若用x表示集合A中的数,用y表示集合B中的数,由于粗心,小聪算错了集合B中的一个y值,请你指出这个算错的y值为________ .13. (1分) (2018七上·天台期中) 已知丨x-3丨+(y+2)2=0,则xy=________.14. (1分)(2020·云南模拟) 已知二次函数 (其中是常数)的图象过点,则 ________.15. (1分)下列式子是方程的是________ .①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=816. (1分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是________ .三、解答题(一) (共3题;共20分)17. (5分)(2017·西固模拟) 解方程:(x﹣1)(x﹣3)=8.18. (10分)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.19. (5分)用反证法证明:若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.四、解答题(二) (共6题;共66分)20. (10分) (2016九上·滨州期中) 在国家的宏观调控下,某市的商品房成交价由今年3月分的5000元/m2下降到5月分的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.21. (10分) (2018九上·泰州期中) 已知:关于x的方程,(1)求证:当时,方程有两个实数根;(2)若方程的两根的平方和等于2,求k的值.22. (10分) (2019九上·武威期末) 某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?23. (6分) (2019九上·丹东月考) 如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为________米;(2)若此时花圃的面积刚好为45m2 ,求此时花圃的长与宽.24. (15分) (2018九上·辽宁期末) 已知,如图,抛物线与x轴交点坐标为A(1,0),C(-3,0),(1)若已知顶点坐标D为(-1,4)或B点(0,3),选择适当方式求抛物线的解析式.(2)若直线DH为抛物线的对称轴,在(1)的基础上,求线段DK的长度,并求△DBC的面积.(3)将图(2)中的对称轴向左移动,交x轴于点p(m,0)(-3<m<-1),与线段BC、抛物线的交点分别为点K、Q,用含m的代数式表示QK的长度,并求出当m为何值时,△BCQ的面积最大?25. (15分) (2017八上·云南期中) 已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(一) (共3题;共20分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:四、解答题(二) (共6题;共66分)答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
山西省吕梁市2020年九年级上学期数学期中试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 等腰梯形D . 菱形2. (2分) (2019九上·厦门期中) 如图,AB是半圆的直径,点D是弧AC的中点,∠ABC =50°,则∠DAB等于()A . 55°B . 60°C . 65°D . 70°3. (2分) (2020九上·博罗期末) 下列事件中是不可能事件的是()A . 三角形内角和小于180°B . 两实数之和为正C . 买体育彩票中奖D . 抛一枚硬币2次都正面朝上4. (2分) (2016九下·邵阳开学考) 已知反比例函数y=的图象经过点P(-1,2),则这个函数的图象位于()A . 第二、三象B . 第一、三象限C . 第二、四象限D . 第三、四象限5. (2分) (2019九上·思明期中) 对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A . 开口向下B . 对称轴是 x=﹣1C . 与 x 轴有两个交点D . 顶点坐标是(1,2)6. (2分)徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是()A . 8.5%B . 9%C . 9.5%D . 10%7. (2分)如图,△ABC是直角三角形,S1 , S2 , S3为正方形,已知a,b,c分别为S1 , S2 , S3的边长,则()A . b=a+cB . b2=acC . a2=b2+c2D . a=b+2c8. (2分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A . y3<y1<y2B . y1<y2<y3C . y2<y1<y3D . y3<y2<y19. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0,其中正确的个数()A . 4个B . 3个C . 2个D . 1个10. (2分)(2018·衢州) 如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A . 3cmB . cmC . 2.5cmD . cm二、填空题 (共6题;共6分)11. (1分) (2019九上·香洲期中) 已知方程x2+kx+5=0的一个根是﹣1,则另一个根为________.12. (1分)(2017·盐城) 如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.13. (1分)(2017·商丘模拟) 如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为________.14. (1分) (2019九上·龙泉驿月考) 抛物线y=ax2+bx+c经过点A(﹣5,0),对称轴是直线x=﹣2,则a+b+c=________.15. (1分) (2019八上·江汉期中) 如图,四边形ABCD中,∠A = ∠B = 90°,AB边上有一点E,CE,DE分别是∠BCD和∠ADC 的角平分线,如果ABCD的面积是12,CD = 8,那么AB的长度为________.16. (1分)(2020·宁波) 如图,经过原点O的直线与反比例函数 (a>0)的图象交于A,D两点(点A 在第一象限),点B,C,E在反比例函数 (b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则的值为________,的值为________.三、解答题 (共9题;共75分)17. (10分)计算(1) x2+7x﹣18=0;(2)﹣(﹣).18. (5分)已知点A(x1 , y1),B(x2 , y2)在二次函数y=x2+mx+n的图象上,当x1=1,x2=3时,y1=y2 .(1)①求m的值;②若抛物线与x轴只有一个公共点,求n的值;(2)若P(a,b1),Q(3,b2)是函数图象上的两点,且b1>b2 ,求实数a的取值范围.19. (5分)已知y=y1﹣y2 , y1与x2成正比例,y2与x+3成反比例,当x=0时,y=2;当x=2时,y=0,求y与x的函数关系式,并指出自变量的取值范围.20. (10分) (2019八上·凤山期中) 如图,已知和A、B两点.求作点P,使P到A、B两点的距离相等,且P到两边距离也相等(不写作法,保留作图痕迹, 写出结论).21. (10分) (2017七下·农安期末) 如图,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分线BD交AC于点D,∠ACB的平分线CP交BD于点D.(1) BD与AC的位置关系是________.(2)求∠BPC的度数.22. (5分) (2018九上·郑州开学考) 因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T恤,定价为60元,每天大约可卖出300件,经市场调查,每降价1元,每天可多卖出20件,已知这种T恤的进价为40元一件,在鼓励大量销售的前提下,商场还想获得每天6080元的利润,应将销售单价定位在多少元?23. (10分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图象,直接比较得出s甲2和s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.24. (10分)(2019·宜兴模拟) 如图,在平面直角坐标中,点D在y轴上,以D为圆心,作⊙D交x轴于点E、F,交y轴于点B、G,点A在上,连接AB交x轴于点H,连接 AF并延长到点C,使∠FBC=∠A.(1)判断直线BC与⊙D的位置关系,并说明理由;(2)求证:BE2=BH·AB;(3)若点E坐标为(-4,0),点B的坐标为(0,-2),AB=8,求F与A两点的坐标.25. (10分)(2017·集宁模拟) 如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC 沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共75分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共11 页。
山西省吕梁市2020版九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共14分)1. (1分)在平面直角坐标系中,若点P(m - 3 ,m+1)在第一象限,则m的取值范围是()A . -1 < m < 3B . m > 3C . m < - 1D . m> -12. (2分) (2020八下·姜堰期末) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .3. (1分)(2017·新疆) 如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A . 12B . 15C . 16D . 184. (2分) (2019九上·龙山期末) 若二次函数y=ax2+bx+c的图象如图所示,则点(a+b,ac)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (1分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,AB=12cm,AO=8cm,则OC 长为()cmA . 5B . 4C .D .6. (1分)(2017·涿州模拟) 如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A . y=5﹣xB . y=5﹣x2C . y=25﹣xD . y=25﹣x27. (1分) (2020九上·浉河期末) 天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是()A . 100(1+2x)=150B . 100(1+x)2=150C . 100(1+x)+100(1+x)2=150D . 100+100(1+x)+100(1+x)2=1508. (1分)已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a<0;②a+b+c>0;③->0.其中正确的结论有()A . 只有①B . ①②C . ①③D . ①②③9. (2分)(2017·兰州) 如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A .B .C .D .10. (2分)(2019·拱墅模拟) 已知点A(t,y1),B(t+2,y2)在抛物线的图象上,且﹣2≤t≤2,则线段AB长的最大值、最小值分别是()A . 2 ,2B . 2 ,2C . 2 ,2D . 2 ,2二、解答题 (共8题;共16分)11. (2分) (2020八下·香坊期末) 我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.12. (2分)如图,⊙O的半径均为R.(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中画出弦AB,CD,使图②仍为中心对称图形(2)如图③,在⊙O中,AB=CD=m(0<m<2R),且AB与CD交于点E,夹角为锐角α.求四边形ACBD的面积(用含m,α的式子表示)(3)若线段AB,CD是⊙O的两条弦,且AB=CD=R,你认为在以点A,B,C,D为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.13. (1分) (2020八上·海珠期中) 如图,在平面直角坐标系中,点O为坐标原点,已知三个定点坐标分别为,, .(1)画出关于x轴对称的 ________,点的对称点分别是点,则的坐标:(________,________),(________,________),(________,________);(2)画出点C关于y轴的对称点,连接,,,则的面积是________.14. (2分)(2020·广州) 平面直角坐标系中,抛物线过点,,,顶点不在第一象限,线段上有一点,设的面积为,的面积为,.(1)用含的式子表示;(2)求点的坐标;(3)若直线与抛物线的另一个交点的横坐标为,求在时的取值范围(用含的式子表示).15. (2分) (2016九上·昆明期中) 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?16. (2分)(2020·昆明) 如图,两条抛物线,相交于A,B两点,点A 在x轴负半轴上,且为抛物线的最高点.(1)求抛物线的解析式和点B的坐标;(2)点C是抛物线上A,B之间的一点,过点C作x轴的垂线交于点D,当线段CD取最大值时,求 .17. (2分) (2020七下·重庆期末) 小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?18. (3分) (2019九下·镇原期中) 如图,矩形ABCD中,AC=4,AB=2,将矩形ABCD绕点A旋转得到矩形AB'C'D',使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C'上取点F,使B'F=AB.(1)求证:AE=C'E;(2)求BF的长.三、填空题 (共5题;共7分)19. (2分) (2018九下·厦门开学考) 在平面直角坐标系中,点P关于原点及点(0,﹣1)的对称点分别为A,B,则AB的长为________.20. (2分) (2020七下·松江期末) 已知:如图,直线a∥b ,直线c与a , b相交,若∠2=115°,则∠1=________度.21. (1分) (2019九上·抚顺月考) 关于x的方程x2﹣m2x+3m=0的两个实数根的和为4,则m的值是________.22. (1分) (2016九上·西湖期末) 若二次函数的图象经过点(﹣2,0),且在x轴上截得的线段长为4,那么这个二次函数图象顶点的横坐标为________.23. (1分)(2017·临高模拟) 如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A,B两点,已知P (4,2)和A(2,0),则点B的坐标是________.参考答案一、单选题 (共10题;共14分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、解答题 (共8题;共16分)答案:11-1、答案:11-2、考点:解析:答案:12-1、答案:12-2、答案:12-3、考点:解析:答案:13-1、答案:13-2、考点:解析:答案:14-1、答案:14-2、答案:14-3、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:。
山西省吕梁市2020年九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八上·延边期末) 下列大学的校徽图案中,是轴对称图形的是()A .B .C .D .2. (2分)三角形两边长分别为3和6,第三边是方程x 2-6x+8=0的解,则这个三角形周长是()A . 11B . 13C . 11或16D . 11和133. (2分) (2020九上·秦都期末) 若关于x的一元二次方程有两个相等的实数根,则k的值为()A .B .C .D .4. (2分)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A . 向上平移4个单位B . 向下平移4个单位C . 向左平移4个单位D . 向右平移4个单位5. (2分) (2019八下·莲都期末) 用配方法解一元二次方程x2-8x+3=0时,可将方程化为()A . (x-8)2=13B . (x+4)2=13C . (x-4)2=13D . (x+4)2=196. (2分) (2020九上·衢州期中) 已知A(-3,y1),B(-2,y2),C(2,y3)是抛物线y=-(x+1)2+3上的三点,则y1 , y2 , y3的大小关系为()A . y1<y2<y3B . y1<y3<y2C . y3<y2<y1D . y3<y1<y27. (2分)若关于x的一元二次方程(m﹣1)x2+5x+m2﹣5m+4=0有一个根为0,则m的值等于()A . 1B . 4C . 1或4D . 08. (2分)在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A .B .C .D .9. (2分)如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A . y=B . y=﹣C . y=﹣D . y=10. (2分)已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转90°得OA1 ,则点A1的坐标为()A .B .C .D .11. (2分)下列方程中两根之和为﹣1的是()A . x2﹣x+5=0B . x2﹣x﹣5=0C . x2+x+5=0D . x2+x﹣5=012. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,给出以下结论,其中正确的结论的个数是()①abc<2;②当x=1时,函数有最大值;③当x=-1或x=3时,函数y的值都等于0;④4a+2b+c<0.A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)13. (1分)点(-2,1)关于原点的对称点的坐标是________.14. (1分) (2019九上·长葛开学考) 将一元二次方程4x2=-2x+7化为一般形式,其各项系数的和为________.15. (1分) (2016九上·北京期中) 写出一个二次函数y=2x2的图象性质(一条即可)________.16. (1分)(2017·成华模拟) 定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+ m=0的两实数根,则b*b﹣a*a的值为________.17. (1分) (2019九上·朝阳期中) 已知抛物线的对称轴是x=n,若该抛物线与x轴交于(1,0),(3,0)两点,则n的值为________.18. (1分) (2020九上·龙湖期末) 抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为________.19. (1分) (2018八下·镇海期末) 如果关于x的方程有实数根,则m的取值范围是________.20. (1分)(2020·铁岭模拟) 如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是________.三、解答题 (共7题;共80分)21. (10分)(2019·安徽模拟) 如图是2019年1月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11-3×17=48,13×15-7×21=48.不难发现,结果都是48(1)请证明发现的规律;(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否符合题意.22. (10分)(2019·慈溪模拟) 践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具。
山西省吕梁市2020年(春秋版)九年级上学期数学期中试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·红安月考) 下列是方程3x2+x-2=0的解的是()A . x=-1B . x=1C . x=-2D . x=22. (2分)如图,△ABC与△A′B′C′是成中心对称,下列说法不正确的是()A . S△ABC=S△A′B′C′B . AB=A′B′,AC=A′C′,BC=B′C′C . AB∥A′B′,AC∥A′C′,BC∥B′C′D . S△ACO=S△A′B′O3. (2分)已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定4. (2分) (2019九上·梁子湖期末) 若圆锥的侧面展开图是个半圆,则该圆锥的侧面积与全面积之比为()A .B .C .D .5. (2分) (2020八下·福田期中) 如图,是由绕点顺时针旋转后得到的图形,若点恰好落在上,且的度数为()A .B .C .D .6. (2分)(2017·独山模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc<0;②当x=1时,函数有最大值.③当x=﹣1或x=3时,函数y的值都等于0.④4a+2b+c<0.其中正确结论的个数是()A . 1B . 2C . 3D . 47. (2分)当二次函数取最小值时,的值为A .B . 1C . 2D . 98. (2分) (2019七上·海淀期中) 某校初一年级计划初中三年每年参加植树活动,2019年已经植树a亩,如果以后每年比上一年植树面积增长20%,那么2021应植树的面积为()A . a(1+20%)B . a(1+2×20%)C . a(1+20%)2D . 2a(1+20%)9. (2分)如图,在Rt△ABC中,∠C=90°,,BC=1,如果以C为圆心,以CB长为半径的圆交AB于点P,那么AP的长为()A .B .C .D . 310. (2分) (2018九上·武威月考) 已知二次函数的图象如图,其对称轴为直线,给出下列结论:① ;② ;③ ;④ ,则正确的结论个数为()A . 1B . 2C . 3D . 4二、填空题 (共7题;共8分)11. (1分)(2020·无锡) 请写出一个函数表达式,使其图象的对称轴为轴:________.12. (1分)若等腰三角形的两边长分别为和,则底角的正切值为________.13. (1分)(2018·滨湖模拟) 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE,在点D变化的过程中,线段BE的最小值是________cm.14. (1分)把抛物线y=(x+3)2向下平移3个单位,再向右平移1个单位,所得到的抛物线解析式是________.15. (1分) (2020九上·长春月考) 如图.在边长为的3×5正方形网格中,点A、B、C、D都在格点上,则是________.16. (1分) (2020七下·陇县期末) 如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为________.17. (2分) (2016八上·东营期中) 在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有________个.三、解答题 (共7题;共61分)18. (10分) (2019九上·汉滨月考) 用适当方法解下列方程:(1)(x-4)2-81=0;(2) 3x(x-3)=2(x-3);(3) .(4)解方程:2x2-10x=3.19. (5分)已知关于x的方程kx2+(2k+1)x+2=0.求证:无论k取任何实数时,方程总有实数根.20. (10分)(2019·西藏) 如图,在中. ,以为直径的⊙ 分别交于点,点在的延长线上,且 .(1)求证:是⊙ 的切线;(2)若,求点到的距离.21. (7分)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x=________;(2)扇形统计图中m=________,n=________,C等级对应的扇形的圆心角为________度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1 , a2表示)和两名女生(用b1 , b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.22. (6分) (2020九下·宝山期中) 如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B左侧),经过点A的直线:与轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.23. (3分)(2020·锦州模拟) [阅读理解]构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.[经验运用]请运用上述阅读材料中所积累的经验和方法解决下列问题.(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.求证:①G是EF的中点;②CG= BE;(2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,( 2)中的其它条件不变,请直接写出GH的长.24. (20分)(2017·安顺模拟) 如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共61分)18-1、18-2、18-3、18-4、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-3、24-1、24-2、24-3、。
2017-2018学年山西省吕梁市文水县九年级(上)期中数学试卷
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合要求,请选出并填到表格内)
1.已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,
二次函数的个数为()
A.1个B.2个C.3个D.4个
2.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()
3.下列命题中的真命题是()
A.全等的两个图形是中心对称图形
B.关于中心对称的两个图形全等
C.中心对称图形都是轴对称图形
D.轴对称图形都是中心对称图形
4.对于抛物线y=﹣(x+1)2+3,下列结论:
①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y 随x的增大而减小,其中正确结论的个数为()
A.1 B.2 C.3 D.4
5.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x…﹣1013…
y…﹣5131…
则下列判断中正确的是()
A.抛物线开口向上
B.抛物线与y轴交于负半轴
C.当x=4时,y>0
D.方程ax2+bx+c=0的正根在3与4之间
6.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)
所示,那么她所旋转的牌从左起是()
A.第一张、第二张B.第二张、第三张
C.第三张、第四张D.第四张、第一张
7.抛物线y=﹣x2﹣x的顶点坐标是()
A.(1,﹣)B.(﹣1,)C.(,﹣1)D.(1,0)
8.关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围
是()
A.B.C.D.
9.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位
置,若AC⊥A′B′,则∠BAC的度数是()
A.50°B.60°C.70°D.80°
10.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点
A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)
若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()
A.2个B.3个C.4个D.5个
二、填空题(每题3分,共15分)
11.三角形两边长分别为3和6,第三边是方程x2﹣13x+36=0的根,则三角形的周长为.
12.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=度.
13.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“”交通标志(不画图案,只填含义)
14.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.15.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.
三、解答题(共75分)
16.(10分)解一元二次方程
(1)x2﹣2x﹣1=0
(2)(2x﹣3)2=(x+2)2.
17.(7分)实践与操作:
一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角,请根据上述规定解答下列问题:
(1)请写出一个有一个旋转角是90°旋转对称图形,这个图形可以是;
(2)尺规作图:在图中的等边三角形内部作出一个图形,使作出的图形和这个等边三角形构成的整体既是一个旋转对称图形又是一个轴对称图形(作出的图形用实线,作图过程用虚线,保留痕迹,不写做法).
18.(8分)如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
19.(8分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?20.(8分)某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图)做成立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.
(1)求此抛物线的解析式;
(2)计算所需不锈钢管的总长度.
21.(8分)某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.
(1)求日均销售量y与销售单价x的函数关系式;
(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x 之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?
22.(12分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
23.(14分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示,抛物线y=ax2+ax﹣2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等
腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
2017-2018学年山西省吕梁市文水县九年级(上)期中数学试卷
参考答案
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合要求,请选出并填到表格内)
1.B;2.B;3.B;4.C;5.D;6.A;7.B;8.B;9.C;10.B;
二、填空题(每题3分,共15分)
11.13;12.70;13.靠左侧通道行驶;14.﹣1或2或1;15.y=x2﹣2x﹣3;。