铝电解电容器化学品、锂离子电池化学品、固态高分子电容器化学品、超级电容四个项目投资的可行性研究报告
- 格式:pdf
- 大小:248.97 KB
- 文档页数:5
铝电解电容和固态电容1. 前言电容是电子电路中最基本的元件之一,其贮存能量的特性使得它在直流和交流电路中都有着广泛的应用。
不同类型的电容在电路中的作用和用途也不尽相同。
本文主要介绍铝电解电容和固态电容这两种常见类型的电容器,包括它们的结构、特性、优劣以及常见的应用场景等。
2. 铝电解电容铝电解电容是一种常见的极性电容器,其结构包括阳极箔、阴极涂层、电解质和外壳。
几乎所有的电解电容器的电极都由两个铝箔构成。
其中,阳极箔以铝箔为主,阴极涂层包含一层薄的金属层,用以提高电容器的工作电压和耐腐蚀性能。
两层箔之间夹着一层纸油膜或者塑料薄膜,用作电解质。
电极两端连接着钩子头,以便与电路连接。
外观通常为圆柱形或扁圆形。
铝电解电容具有以下几个特点:- 容量大(基本与尺寸成正比),电压高,电容器更适合长时间稳定的储能。
- 极性明显(正、负极区别明显),能够分辨出电容器的极性,并且需要注意电路中电容器的极性。
- 感性较低(基本与频率成反比),在高频电路中需要注意谐振的问题。
- 电解质易于老化,使用寿命较短。
铝电解电容器通常用于以下几个场景:- 直流或低频电路,如逆变器或功率放大器等。
- 需要大电容容量的场合,如电源电路和电机电路。
- 一次性的电路,如LED灯具和音响中的滤波器。
3. 固态电容固态电容是一种非极性电容器,其结构主要包括电介质、金属电极和连线。
固态电容器是由一种具有正、负离子流动能力的半导体材料构成的,通常是在一片单晶硅上面制备的。
固态电容具有以下几个特点:- 体积较小,适合集成电路制造工艺;- 无极性,不需要考虑负极和正极的区别,电容器的安装更加简便;- 低泄漏电流,适合于硬件集成电路的应用;- 性能稳定,使用寿命长。
固态电容器通常用于以下几个场景:- 高频电路和数字电路,如计算机处理器和内存等;- 大批量生产和集成电路组装;- 易受振动和温度变化的场合,如汽车电子电路和无人机电路等。
4. 总结从以上内容可以看出,铝电解电容和固态电容各有所长。
超级电容基本参数概念寿命Lifetime超级电容器具有比二次电池更长的使用寿命,但它的使用寿命并不是无限的,超级电容器基本失效的形式是电容内阻的增加( ESR)与(或) 电容容量的降低.,电容实际的失效形式往往与用户的应用有关,长期过温(温度)过压(电压),或者频繁大电流放电都会导致电容内阻的增加或者容量的减小。
在规定的参数范围内使用超级电容器可以有效的延长超级电容器的寿命。
通常,超级电容器具有于普通电解电容类似的结构,都是在一个铝壳内密封了液体电解液,若干年以后,电解液会逐渐干涸,这一点与普通电解电容一样,这会导致电容内阻的增加,并使电容彻底失效。
电压Voltage超级电容器具有一个推荐的工作电压或者最佳工作电压,这个值是根据电容在最高设定温度下最长工作时间来确定的。
如果应用电压高于推荐电压,将缩短电容的寿命,如果过压比较长的时间,电容内部的电解液将会分解形成气体,当气体的压力逐渐增强时,电容的安全孔将会破裂或者冲破。
短时间的过压对电容而言是可以容忍的。
极性Polarity超级电容器采用对称电极设计,也就说,他们具有类似的结构。
当电容首次装配时,每一个电极都可以被当成正极或者负极,一旦电容被第一次100%从满电时,电容就会变成有极性了,每一个超级电容器的外壳上都有一个负极的标志或者标识。
虽然它们可以被短路以使电压降低到零伏,但电极依然保留很少一部分的电荷,此时变换极性是不推荐的。
电容按照一个方向被充电的时间越长,它们的极性就变得越强,如果一个电容长时间按照一个方向充电后变换极性,那么电容的寿命将会被缩短。
温度Ambient Temperature超级电容器的正常操作温度是-40 ℃~70℃,温度与电压的结合是影响超级电容器寿命的重要因素。
通常情况下,超级电容器是温度每升高10℃,电容的寿命就将降低30%~50%,也就说,在可能的情况下,尽可以的降低超级电容器的使用温度,以降低电容的衰减与内阻的升高,如果不可能降低使用温度,那么可以降低电压以抵清高温对电容的负面影响。
导电聚合物固体电解质铝电解电容器简介1. 概述导电聚合物固体电解质铝电解电容器是一种新型的高能量密度电容器,它采用导电聚合物固体电解质作为介质,铝作为电极材料。
与传统的电容器相比,导电聚合物固体电解质铝电解电容器具有更高的能量密度、更长的使用寿命和更好的安全性能。
2. 导电聚合物固体电解质的特点•高离子导电性:导电聚合物固体电解质具有良好的离子传导性能,能够有效地输送电荷。
•良好的热稳定性:导电聚合物固体电解质能够在高温环境下保持较好的离子传导性能,不易发生热失控现象。
•较低的电解液损失:相比于传统的液态电解质,导电聚合物固体电解质具有较低的电解液损失,能够提高电容器的使用寿命。
•更好的安全性:导电聚合物固体电解质在受损或过充电的情况下,不会导致电解质泄漏或爆炸等安全事故。
3. 铝电极的优势铝作为电解电容器的电极材料有以下优势:•高比表面积:铝电极具有较高的比表面积,能够提高电容器的电容量。
•良好的电化学稳定性:铝电极能够在较宽的电位窗口下保持良好的电化学稳定性,不易发生氧化或还原反应。
•低成本:铝是一种广泛使用的金属材料,成本较低,有助于降低电容器的制造成本。
4. 导电聚合物固体电解质铝电解电容器的应用导电聚合物固体电解质铝电解电容器在以下领域具有广泛的应用前景:•储能系统:导电聚合物固体电解质铝电解电容器可用于储能系统,提供高能量密度的储能解决方案。
•电动车辆:导电聚合物固体电解质铝电解电容器可作为电动车辆的能量存储设备,提供高性能和长寿命的电源。
•可穿戴设备:导电聚合物固体电解质铝电解电容器的小型化和柔性特性使其适用于可穿戴设备,满足电源需求。
•电子产品:导电聚合物固体电解质铝电解电容器可用于各类电子产品,提供高能量密度和稳定可靠的电源。
5. 结论导电聚合物固体电解质铝电解电容器是一种具有广泛应用前景的新型电容器。
它的特点包括高离子导电性、良好的热稳定性、较低的电解液损失和更好的安全性能。
固态铝电解电容
固态铝电解电容也称为固态电解电容,是一种新型的电容器,由于其独有的特性,在微波、通信、射频、小功率放大器中应用比较广泛。
它是一种以铝片为电极,绝缘材料为介质的电容器,一般用于高频或中频电路。
固态铝电解电容由电解铝片、绝缘层和外壳组成,其中,电解铝片是由电解精炼铝制成,表面形成一层膜状铝氧化膜,该膜可以抗酸、抗碱、抗水,有良好的耐久性能。
电解铝片两端连接有铝带,作为电极,再将电解铝片两端的铝带和外壳之间的空隙填充上绝缘材料,即可形成一个完整的电容器。
固态铝电解电容有很多优点,如长期使用效率高、可靠性强、损耗低、耐电压高、体积小、温度稳定性好等。
它与普通电解电容相比有着明显的优势,有效的抑制了电子设备的高频噪声,在高频电路中有着很好的表现。
此外,固态电解电容还具有可编程、自动调整等独特功能,可以根据需要在后期调整电容量,满足不同电子设备的工作要求。
固态铝电解电容在使用时需要满足一定的要求,如在温度变化范围内保持稳定,耐湿度较好,不易受湿潮、温
度和振动等环境变化的影响,抗热脱焊性能好,对侧面压力不敏感等。
固态铝电解电容的应用领域十分广泛,它广泛应用于电视机、手机、笔记本电脑、MP3、DVD播放器、摄像头、汽车音响系统等电子设备。
因此,固态铝电解电容在电子行业中占据着重要地位。
铝电解电容超级电容铝电解电容(Aluminum Electrolytic Capacitor)是一种电容器,以铝箔作为正极、氧化铝膜作为介质层、和电解液作为负极构成。
它具有大容量、高电压、低成本等特点,被广泛应用于电子设备中。
而超级电容(Supercapacitor)则是一种高能量密度、高功率密度的电容器,能够在短时间内存储和释放大量的能量。
铝电解电容和超级电容在不同的应用场景下有不同的特点和优势。
铝电解电容的主要特点是容量大、电压高、成本低。
它具有较高的电容值,可以存储较多的电荷,并且能够承受较高的电压。
由于其结构简单,生产成本相对较低,因此在大容量电容器的领域中得到广泛应用。
铝电解电容常用于电源滤波、电源耦合、直流隔离等电路中,能够平稳供应电流和稳定电压。
而超级电容则是一种具有高能量密度和高功率密度的电容器。
它的能量密度相比传统电解电容器更高,能够存储更多的能量。
超级电容的电荷和放电速度非常快,能够在短时间内释放出大量的能量。
这使得超级电容在需要瞬时高功率输出的场合下具有独特的优势。
超级电容常用于储能系统、电动车辆、能量回收等领域。
由于其特殊的电化学原理,超级电容的寿命较长,循环次数可以达到几万次甚至几十万次。
铝电解电容和超级电容在结构上有所不同。
铝电解电容的正极和负极分别是铝箔和电解液,通过氧化铝膜作为介质层来隔离两者。
而超级电容则是由两个电极和电解质组成,两个电极之间的介质可以是电解质、聚合物或者其他特殊材料。
超级电容的电极材料通常选择活性炭、金属氧化物或者导电聚合物等,以提高电容器的能量存储能力。
总的来说,铝电解电容和超级电容在电容器领域中扮演着不同的角色。
铝电解电容以其大容量、高电压、低成本的特点广泛应用于电子设备中;而超级电容则以其高能量密度和高功率密度的特点在储能系统和电动车辆等领域具有重要地位。
随着科技的进步和应用需求的不断增加,铝电解电容和超级电容在未来的发展中将继续发挥重要作用,并且有望在容量、功率和寿命等方面得到进一步的提升和改进。
铝电解电容从20世纪中期以来,铝电解电容(Al-Ely)就开始被引入电子元件行业,以满足对高品质、龙头型电子元件的需求。
铝电解电容的出现有助于解决传统的瓷胶偶电容(tantalum capacitors)和高压瓷片线圈电容(high voltage ceramic chip inductors)的技术问题,如高温性能、高频率、高可靠性、低损耗等,实现了电子元件发展的重大跳跃。
本文就铝电解电容的结构、特点、性能及应用等进行综述。
1.铝电解电容的结构铝电解电容一般由两个极板(一正一负)、一个液体绝缘作为隔板和一个玻璃封装盒组成,在极板表面没有直接电解质电极,而是通过液体绝缘来实现电容作用。
铝电解电容采用先进的封装技术,能够提供良好的绝缘性能和耐久性,不易受到环境污染,使用寿命长。
2.铝电解电容的特点铝电解电容具有高价值的特点,它们的尺寸小、体积小、重量轻,且容量范围广,可满足不同的应用要求。
另外,它们的高价值还体现在它们的性能上,如有良好的抗电磁干扰性能,抗温度变化能力强,容量稳定性好,有着出色的耐压性能等。
此外,铝电解电容的工作电压可达到200V,它们的无损耗范围也很宽,满足了不同应用要求。
3.铝电解电容的性能铝电解电容的特点及性能已经在前文中提到,其中最重要的就是它们具有极佳的耐压性能,可以有效降低电子产品因内部结构引起的热损耗,从而实现高效率、高可靠性和低损耗的系统解决方案。
此外,铝电解电容的工作温度范围也很广,抗湿度性能优异,使它们能够应用在恶劣的环境条件下,寿命更长。
4.铝电解电容的应用铝电解电容主要应用于微处理器技术、计算机、智能电子设备、电源、汽车和航空等领域,可以满足不同产业系统能源管理的需求。
在微处理器技术方面,铝电解电容能提供极低的损耗、极高的电压和电流,在实现平衡状态和保护电子设备方面发挥着不可替代的作用。
此外,在航空发动机和车辆电子电源系统方面,铝电解电容也成为不可或缺的关键组件,能够有效控制系统的电压和电流,保证系统的高安全性和可靠性。
超级电容器是20世纪60年代发展起来的一种新型储能器件,并于80年代逐渐走向市场。
自从1957 年美国人Becker申报的第一项超级电容器专利以来,超级电容器的发展就不断推陈出新,直到1983 年,日本NEC公司率先将超级电容器推向商业化市场,使得超级电容器引起人们的广泛兴趣,研究开发热潮席卷全球,不但技术水平日新月异,而且应用范围也不断扩大。
一、超级电容器的原理超级电容也称电化学电容,与传统静电电容器不同,主要表现在储存能量的多少上。
作为能量的储存或输出装置,其储能的多少表现为电容量的大小。
根据超级电容器储能的机理,其原理可分为:1.在电极P 溶液界面通过电子和离子或偶极子的定向排列所产生的双电层电容器。
双电层理论由19 世纪末H elm h otz 等提出。
关于双电层的代表理论和模型有好几种,其中以H elm h otz 模型最为简单且能够充分说明双电层电容器的工作原理。
该模型认为金属表面上的静电荷将从溶液中吸收部分不规则的分配离子,使它们在电极P 溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。
于是,在电极上和溶液中就形成了两个电荷层,这就是我们通常所讲的双电层。
双电层有储存电能量的作用,电容器的容量可以利用以下公式来计算:式中,E为电容器的储能大小;C为电容器的电容量;V 为电容器的工作电压。
由此可见,双电层电容器的容量与电极电势和材料本身的属性有关。
通常为了形成稳定的双电层,一般采用导电性能良好的极化电极。
2.在电极表面或体相中的二维与准二维空间,电活性物质进行欠电位沉积,发生高度可逆的化学吸附、脱附或氧化还原反应,产生与电极充电电位有关的法拉第准电容器。
在电活性物质中,随着存在于法拉第电荷传递化学变化的电化学过程的进行,极化电极上发生欠电位沉积或发生氧化还原反应,充放电行为类似于电容器,而不同于二次电池,不同之处为:(1)极化电极上的电压与电量几乎呈线性关系;(2)当电压与时间成线性关系d V/d t=K时,电容器的充放电电流为一恒定值I=Cd V/d t=CK.此过程为动力学可逆过程,与二次电池不同但与静电类似。
电解电容器的技术资料电解电容器的知识电解电容器的生产过程1,电解电容器的构造腐蚀Etching 阳极和阴极金属箔是由高纯度的,很薄的只有0.02—0.1mm铝箔做成的,为了增加盘面积和电容量,与电解液接触的表面积的增加是通过蚀刻金属箔去溶解铝,使整个铝箔的表面形成一个高密度的网状的有几十亿个精细微管道的结构. 化成Forming 阳极箔上有电容器的电介质.电介质是一层很薄的铝氧化物,AL2O3,那是一个在阳极箔上的化学生长过程,这个过程叫“化成”. 这个电压是最后电容器额定电压的135%-200%. 阴极箔不用化成,它保持着很高的表面积和高密度的蚀刻模式. 氧化膜的耐电压不足和电解液自身的闪火放电都会造成短路. 卷绕Winding 电容元件的卷绕是一层隔离纸,一层阳极箔,另一层隔离纸和阴极箔.这些隔离纸防止箔之间接触形成短路,这些隔离物后来保留住电解液. 在卷绕铝箔芯子或卷绕过程中为后来连接电容器端子附上箔.最好的方法是通过冷焊,把箔焊上带子,冷焊可以减少短路失效,有更好的高纹波电流性能和放电性能. 内引出端面切口、与引出端铆接的箔条和电极箔剖面的切口都会有毛刺,从而造成相对电极间短路. 电容器发热芯包膨胀和安全阀打开时的压力冲击,芯包发生变形,导致电极间短路. 封口Sealing 电容元件被密封在一个罐子里. 为了释放氢,密封圈不是密闭的,它经常是压力封闭的即将罐子的边沿滚进一个橡胶垫圈,一个橡胶末端插销或滚进压成石碳酸薄板的橡胶. 太则紧密封会导致压力增加,太松则密封会因为电解液的可允许的流失而导致缩短寿命. . 2, 电容量电容量公差Capacitance Tolerance 电容量的公差是指可允许的电容量的最大值和最小值,用相对于额定电容量的百分数的增加和减少来表示,即ΔC/C. 电容量的温度特性Capacitance Temperature characteristics 电容量随温度的变化而变化.这个变化的本身很小程度上是依赖于额定电压和电容的尺寸的. 从25℃到限制的最高温度电容量的增加量小于5%. 大部份电容在-20℃至-40℃時,容值下降很快, 对於標稱-40℃的產品,在-40℃時低压的电容,电容值一般下降20%,高压电容下降40% . 对于额定温度为-55℃的电容,在-40℃时电容值的下降量一般小于10%,在-55℃时电容值的下降量一般小于20% . 电容量的频率特性Capacitance frequency characteristics 等效电容值随频率的增加而降低.根据电容量自谐振频率一般低于100kHz. 電容量和電壓關係Capacitance vs Voltage 例如: 如果我们有一个20V 1.2F 尺寸为3×8.63的电容器,我想用400V 同样尺寸的电容器去代替,那我们选用的容量是多少? 1.2×(400/20)1.5=13000uF --- 0.013F@400V 即:C1*V1^1.5=C2*V2^1.5 3,电压额定DC电压Rated DC voltage 额定直流电压时标示在电容上的电压,它是包括纹波电压的最大峰值电压,这个电压可能在额定温度范围内在端子之间持续的被供给.较高额定电压的电容可能代替较低额定电压的电容所只要外形尺寸,DF和ESR的额定值是兼容的. 工作电压(working voltage)简称WV 应为标称安全值,也就是说应用电路中,不得超过此标称电压. 电解电容工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致电解电容的极化而降低涟波电流,增大ESR,从而提早老化.但是这个说法的前提是“远低于额定工作电压”,综合一些长期的实践经验来看,选取额定工作电压标称值的2/3左右为正常工作电压,是比较合理的. 额定浪涌电压Rated surge voltage 额定浪涌电压是最大的直流过电压,即25℃时时间不超过30秒偶然的间隔不少于5分钟电容可能承受的的电压. 浪涌电压的测量Surge voltage measurement 在正常的室温下给电容通过一个1000Ω±10%的电阻加上额定浪涌电压(如果电容量是2500uF或更高,则使用2500,000/CΩ±10%的电阻,C是电容单位是uF).循环加电压1/2分钟开接着41/2分钟关,当处于关状态时,每个电容通过充电电阻或等效电阻放电.重复循环120小时.公布测试的必要条件是为了DCL,ESR,DF满足最初的条件,且没有机械损坏或电解液的泄漏的迹象.没有小滴或可视的流动的电解液残留物是允许的. 瞬态过压Transient over-voltage 铝电解电容一般能承受限制能量的非常高的瞬态过压. 超过电容浪涌电压额定值50V以上的应用将造成高的漏电流和固定电压工作模式就像齐纳二极管的反向击穿. 如果电解液不能承受电压的压力,电容可能损坏短路,但是即使电解液能承受电压的压力,这种操作模式也不能维持很长时间,因为由电容所产生的氢气和压力的积累将造成损坏. 冗余电压铝电解电容器先充电,再放电,而后将引线短接,再将其放置一段时间后,两端子间存在电压上升的现象;由这种现象所引起的电压称之为再生电压. 当电压施加在介质之上时,在介质内部引起电子的转移,从而在介质内部产生感应电场,其方向与电压的方向相反,这种现象称之为极化反应. 在施加电压引起介质极化后,如果两端子进行放电一直到端子间的电压为零,尔后将其开路放置一段时间后,一种潜在的电势将出现在两端子上,这样就引起了再生电压.再生电压在电容器开路放置10天~20天时达到峰值,然后逐渐降低,再生电压有随着元件变大而增大的趋势. 如果电容器在产生再生电压后,两端子短路,瞬间高压放电可能引起组装线上的操作员工的恐惧感,并且,有可能导致一些低压驱动元件被击穿的危险,预防出现这种情况的措施是在使用前加100ohm~1Kohm的电阻进行放电,或者在产品包装中用铝箔覆盖引起两端子间短路放电. 极性-反向电压Polar-Reversed Voltage 在电路设计和安装时要检查每一个电容的极性.在电容上会标示极性.尽管电容能持续承受1.5V的反向电压,超过这个值就会因为过热,压力过大或介质损坏而损坏电容.这会造成相关联的开路或短路故障和电容压力释放口的破裂. 充电-放电Charge-Discharge 铝电解电容没有被设计成可以频繁快速的充电和放电,频繁快速的充电和放电会使电容因为过热,压力过大或崩溃而损坏,随后的故障是开路或短路. 对于充电-放电的应用使用电容设计成这种应用,不要超过制造商所建议的放电速率. 电压分配Voltage Sharing 在充电期间,每个串联电容的电压与实际的电容量的倒数成正比.但是达到最终电压时,每个电容上的电压与电容的漏电流的倒数成正比.当然串联回路上所有的漏电流是相同的,趋向于更高漏电流的电容将获得比较小的电压.因为漏电流随所提供的电压的增加而增加,较低的电压会造成较高的漏电阻抗,使电压趋向相同.测试高压母线上的串联电容,供给电容多出额定电压两倍的10%的电压,在整个温度范围内显示出良好的电压分配, 没有电容电压曾经超过其额定值. 电压的降额Voltage Derating 电压的降额用百分比来表示,即给定电压小于额定电压的百分比,如一个450V的电容工作在400V将有11%的电压降额. 如用至少高于额定电压135%的化成电压和85℃的额定或更高温度鋁箔所制作的铝电解电容器,不需要过多的电压降额,降额可持续增加工作寿命. 在应用中,在温度小于45℃时工作不需要降额. 高于75℃,10%的降额是足够的. 对于更高的温度和高的纹波电流,15% 或20%的降额是合适的. 军事和空间的应用使用50%的电压降额. 在正常室温下,照相闪光(photoflash)电容可以在满额定电压下被使用,因为它们是为这样的职责而设计的. 至少10%的电压降额对于频闪(strobe)电容有好处,因为它们连续工作会使它们变热. . 例如: 如果我们有一个20V 1.2F 尺寸为3×8.63的电容器,我想用400V 同样尺寸的电容器去代替,那我们选用的容量是多少? 1.2×(400/20)1.5=13000uF --- 0.013F@400V 即:C1*V1^1.5=C2*V2^1.5 V1^1.5之间的符号意为 1.2×(400/20)1.5=13000uF --- 0.013F 400V 即:C1*V1^1.5=C2*V2^1.5 1.5全部是指数. .4,温度工作温度范围Operating Temperature Range 它是环境温度范围,在这个温度下电容被设计能持续工作. 很大程度上化成电压决定了高温限制值. 低温限制值很大程度上由电解液的低温电阻系数所决定. 105 ℃等级的化成电压要高于85 ℃.所以105 ℃等级的电容比85 ℃的电容具有更长的寿命或更高的承受纹波电流的能力. . 5, 纹波电流纹波电流Ripple Current 纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样. 纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命. 最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了. 纹波电流的技术规格Ripple current specification 纹波电流是由在额定温度下获得希望的温升所决定的. 通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃. 通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃. 纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同. 功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗. 这有一个例子,对于4700uF,450V,直径为 3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2 (388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03) 像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量. 纹波电流的温度特性Ripple current temperature characteristics 对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即: 纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2 高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损. 纹波电流的频率特性Ripple current frequency characteristics 工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗. 电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足 . 实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点. 涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感. 在我们现有的摩滤波电容的文章中,推荐的大部分电容都是日本货,比如说elna,红宝石,nichicon(篮精灵),当然还有日本化工等品种,由于我们一入道就接触这些电容,因此先入为主的我们就认为这些电容就是最好的电容.当然,玩胆机的朋友,眼界更为开阔,他们决不轻易使用这些日本货,而是想方设法地去寻找欧美货.根据本人这些年的实践来看,在上面的那些日本货中,除了ENLA的极少数品种和欧美品种和能有一拼外,其他的品种根本不是欧美货的对手. 在胆机用滤波电容中,美国的cornell dubilier的效果不错,它的直径是35mm,高度要比日本货高一倍,但是相同耐压的RIFA电容的直径是75mm,无法安装.cornell dubilier电容的脚是2个较粗的接线柱,通过螺丝固定,而很多日本产品是四个脚,直接焊接,因此在替换的时候仍然比较麻烦 . 6,等效串联電阻ESR 等效串联电阻Equivalent Series Resistance 等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联. 用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压. ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大ESR愈低. 当容量固定时,选用高额定电压的品种可以降低ESR. 低频时ESR高, 高频时ESR低, 高温也会使ESR上升. ESR的测量ESR measurement 对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电. ESR的温度特性ESR Temperature characteristics ESR随温度的的增加而降低. 从25℃到限制的最高温度ESR大约降低35%到50%. 但是在限制的最低温度时ESR的增加超过10倍. 对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍. ESR的频率特性ESR Frequency characteristics 像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟: ESR=10,000(DFif) /2лfC +ESRhf 用ESR来表示,在低频时ESR随着频率的增加稳定的下降, 关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器. D.3 损耗因数- Dissipation Factor(DF) Tan& (损耗角正切) 在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为Tan& ,其测量条件与电容量相同. Tan&=R(ESR)/(1/ wC)= wC R(ESR) 其中:R(ESR)= ESR(120HZ) w =2 X 3.14 f F= 120Hz Tan& 随着测量频率的增加而变大,随着测量温度的下降而增大. 损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示: DF=2лfC(ESR)/10,000 DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω. DF的测试DFmeasurement DF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关. DF的温度特性DF Temperature characteristics 损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍. DF的频率特性DF Frequency characteristics、损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟: DF=DFif+2лfC(ESRhf)/10,000 DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低. 上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多. DF 值是高还是低,与温度、容量、电压、频率……都有关系; 当容量相同时,耐压愈高,DF值就愈低. 频率愈高,DF 值愈高, 温度愈高, DF值也愈高. DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方面并无不妥,但从DF值方面考虑就欠缺一些.使用63V或71V耐压的会有更好的表现的.当然再高了性价比上就不合算了. 含浸Impregnation 电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容. 在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时, 水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出. . 7,漏电流DCL漏电流DC Leakage Current(DCL) DC漏电流是指在给定的额定电压下流过电容的直流电流值.漏电流的值依赖于给定的电压,充电周期和电容的温度. 电容器的介质对直流电具有很大的阻碍作用. 由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流, 刚施加电压时,漏电流较大,随着时间的延长,漏电流会逐渐减小并最终保持稳定. 测试温度和电压对漏电留具有很大的影响. 漏电流会随着温度和电压的升高而增大DCL的测试方法DCL Method of measurement 漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值. 铝电解电容都存在漏电的情况,这是物理结构所决定的. 漏电流当然是越小越好. 电容器容量愈高,漏电流就愈大. 降低工作电压可降低漏电流. 选用更高耐压的品种也会有助于减小漏电流. 相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命.真是好处多多,唯价格上会高一些. 而漏电流值大小的控制是电容器三个参数中的重点,漏电流值大小是判断电容器质量的一个重要标志. 影响铝电解电容漏电流值的主要因素有: (1)所用原材料的纯度情况, 包括正极箔的含杂质情况, 负极箔纯度、去离子水的纯度, 电解纸的杂质含量以及其它结构材料、密封材料等等 . (2)工作电解液的成分、粘度、P H 值、比电阻 . (3)工作和贮存环境的影响 . (4)电容器生产的环境和制造工艺的控制, 特别是老炼工艺, 电容器内部氧化膜的修补过程等 . 把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小.DCL的温度特性DCL Temperature characteristics 随温度的增加而增加DCL的测试方法DCL Method of measurement 漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值.把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小. DCL的电压特性DCL Voltage characteristics 漏电流的值随着提供的电压的降低会迅速的减少. . 8,外部气压External Pressure 对于固体电解液的电容没有关联.铝电解电容能在80000英尺(20320m)和3kPa低的气压下工作.最大的空气压力依赖于尺寸和电容的类型.超过最大值会通过压坏外壳,打开压力释放口或产生一个短路电路使电容损坏. . 9,电感Inductance 电感是等效串联电感,对于温度和频率相对独立.对于SMT典型值的范围是从2到8nH,对于径向引线的类型其典型值的范围是从10到30nH,对于螺丝端子的类型其典型值的范围是从20 nH到50nH,对于轴向引线的类型其典型值高达200nH.这些低的值是通过制表区域和介质接触几何学的固有的低的电感量所获得的.电容元件具有小于2nH的典型的电感量. CDE 电感的简单计算公式: ( 直径/2) +5 < 电感(nH)< 直径-8 . 10,绝缘和接地Insulation and Grounding 非固态电解液铝电解电容的铝外壳通过与电解液接触与负极相连.所产生的绝缘电阻从几个欧姆到几千个欧姆.对于轴向端子的电容和扁平组件封装外壳与负极端子连接.如果同外壳接触的器件有一定电平而不是负极端子,使用带绝缘套的电容. 塑料绝缘(UL224VW-1 )能承受3000Vdc或2500Vac,60Hz1分钟,电压加在外壳和一个1/4英寸宽围绕绝缘套的金属薄膜之间.给电容安装上满意的尼龙螺母和间隔孔. 在薄膜和电容外壳之间加电100V 2分钟以后,绝缘电阻不小于100MΩ. . 11,平衡电阻Balancing Resistors 在额定温度时,串联的两个电容漏电流的差异能被估计为0.0015CVr单位是uA,C是额定电容量单位是uF,Vb是通过两个电容的电压单位是Vdc.使用这种估计数值,使用下面的公式来为每个电容选取平衡电阻的值. R=(2Vr-Vb)/(0.0015CVr) R使平衡电阻单位是MΩ,Vr是你想要加在每一个电容上的最大电压,Vb是通过两个电容的最大母线电压. 对于三个或更多的电容串联可使用下面的公式,n是串联电容的个数: R=(Vr-Vb/n)/(0.00075CVr) 当两个电容串联时,电压的分配很少使用平衡电阻.在使用平衡电阻作为电压放电以前,应考虑到不使用平衡电阻通常会增加系统的可靠性因为不使用平衡电阻可降低电容周围的温度,除去比电容可靠性低的元器件就意味着保护.作为替代,使用相同生产的一批电容以确保相同的漏电流或使用更高的额定电压以允许不同生产商的电容电压的不均衡.确保串联的电容有相同的热的环境. 12,放置寿命Self Life 存储5到10年以上的铝电解电容可能会增加DC漏电流.在使用之前检查DCL是否满足应用的需要.经过1,000Ω的电阻加上额定电压30分钟来重新限定高DCL个体的条件. 存储寿命是测量电容如何维持长时间的存储尤其在高温下.为了测试存储寿命,将电容放在一个炉中,设置存储寿命测试温度为-0+3℃作为存储寿命测试周期.完成实验在25℃下稳定电容24h或更长时间.提供额定电压30分钟,确认测试后的限制值.如果没有另外的指标,则电容量,DCL和ESR将满足开始的要求. (1) 在温度为5~30℃,湿度为75%以下的室内储存(2) 不要保存在组装使用中禁用的环境及同等条件下. 13,母线结构Bus Structure 当电容并联时,在头脑中要用这些特性来设计连接母线.最小串联电感量需要一个薄片状的母线或带状的结构.例如,用电路板的一块地方来连接所有电容的正极,用另一块地方来连接电容的所有的负极.对于每一个电容的线路阻抗将是相等的以确保相同的电流分流.尽管对于低频纹波,纹波电流在电容之间的分配与电容量的值成正比,但是高频纹波电流的分配与ESR的值和线路阻抗成正比. . 14,振动Vibration 铝电解电容一般能承受10g的振动力.在技术指标中会给出限制值.调整过程使振动力小于单个类型的技术指标所要求的值. 为了测试振动阻抗,将电容固定在振动平台上,是电容承受一个简单的谐波运动即最大的峰峰幅值是0.06英寸最大的加速度根据给定是10g或15g.在10到55 Hz之间线性的改变振动频率.在1分钟内通过整个的频率范围. 除非另外指定,在与电容轴向平行的运动方向上振动电容1.5个小时,然后放置电容使其运动方向与轴向相垂直,再接着振动1.5个小时.在最后的1.5个小时测试时,将电容同整流桥相连观察3分钟的周期. 在接下的实验中当用手晃动时,在容器内电容元件将没有明显的松动.当然在3分钟的观察周期内,电容也没有断断续续连接或短路的迹象. . 15,自谐振频率Self-resonant Frequency 自谐振频率是当容性阻抗(1/2лfC)等于感性阻抗(2лfL)时的频率.因为在这个频率上,容性阻抗与感性阻抗相位相差180度,两个电抗相减,剩下的阻抗就是纯阻性的,且等于ESR. 高于自谐振频率器件是感性的.铝电解电容的自谐振频率典型发生在小于100kHz.自谐振频率等于1/[2л(LC)^1/2].基于120Hz的电容自谐振频率要高于预期的频率,因为电容量是随频率的增加而减少的,而温度的增加会阻止电容量的降低所以它会随温度的增加减少. . 16,压力释放口Pressure-Relief vent 在非固态电解液的铝电解电容工作时,气体的压力一般会增加.这种气体。
深圳新宙邦科技股份有限公司
关于追加对铝电解电容器化学品、锂离子电池化学品、固态高分子电容器化学品、超级电容器化学品四个项目投资的可
行性研究报告
一、项目名称及建设地点
1、项目名称:铝电解电容器化学品、锂离子电池化学品、固态高分子电容器化学品、超级电容器化学品四个项目
2、建设地点:惠州市大亚湾经济技术开发区石化区
二、项目实施主体
本项目由深圳新宙邦科技股份有限公司全资子公司惠州市宙邦化工有限公司具体实施。
详见招股说明书“第十一节募集资金运用”。
三、项目建设内容
本次追加投资后项目的技术、设备、产能规模及人力资源配置等相关内容没有发生变化。
详见招股说明书“第十一节募集资金运用”。
四、项目建设的的可行性及必要性
本次追加投资后项目建设的可行性及必要性没有发生变化,详见招股说明书“第十一节募集资金运用”。
五、项目建设进度情况
本项目从2010年一季度开始建设,到2011年10月份,主体建设已经全部完工,目前,主要生产线联调联试状况良好,部分工序尚在进一步完善。
六、本次追加投资的原因
以上四个项目2007年开始筹划,2008年编制可研报告,公司2007年6月30日与惠州市国土资源局签订了(合)字441304-D-[2007]第0254号《国有
土地使用权出让合同》受让项目建设用地,但由于土地平整等原因,实际交地时间在2009年11月。
由于土地交付时间滞后的原因,本项目实际动工时间为2010年初。
本项目从可研、审批到建设跨度超过4年,使项目实施与原规划有一定的差距,主要表现在以下方面:
1、建设造价发生变化
以上四个项目2007年开始筹划,2008年编制可研报告,公司2007年6月30日与惠州市国土资源局签订了(合)字441304-D-[2007]第0254号《国有土地使用权出让合同》受让项目建设用地,但由于土地平整等原因,实际交地时间在2009年11月。
由于土地交付时间滞后的原因,本项目实际动工时间为2010年初。
本项目从可研、审批到建设跨度超过4年,使项目实施与原规划有一定的差距,主要表现在以下方面:
1、建设造价发生变化
本项目可研报告编制时间为2008年,2009年-2011年,国内经济形势发生了较大的变化,物价指数连创新高,建筑材料、相关工业品、人工成本大幅上升,原有的投资预算不能满足预定的建设规模,不追加投资难以完成预定效果。
2、建设要求和标准发生变化
考虑到未来人工成本将持续上涨,项目建设时提高了生产线的自动化水平,增加了DCS控制及其配套设施等;考虑到生产的安全和环保标准未来将不断提高,项目建设时提高了安全和环保设施的级别,如:采用防爆电梯,增加反应釜等压力容器的安全等级,增加乙烯基防腐地坪,增加了中水回用系统等;考虑到改善员工的工作环境,增加了办公室环境投入,增加了厂区园林绿化的投入等。
3、惠州二期项目配套增加
公司上市后,利用超募资金规划了惠州二期项目,考虑到二期项目将会与募投项目统一运营,为减少对公共基础设施的重复建设,公司在建设募投项目的时候增加了对公共基础设施建设的投资,如:扩大了办公室、实验室的建设面积、提高了环保设施和给排水系统的设计处理能力等。
七、本次追加投资的资金投向
本次拟对募投项目追加投资6,000万元,全部用于铝电解电容器化学品、锂离子电池化学品、固态高分子电容器化学品、超级电容器化学品四个项目,具体投向情况如下:
单位:万元
八、追加投资后的经济效益分析
本次追加投资后,项目的建设规模和产能规模没有发生变化,但项目的自动化水平和产能潜力将显著提高,在未来人工成本不断上升的情况下能有效降低公司的劳动力成本,在未来市场需求扩大的情况下能有足够的产能扩展空间。
同时,近年来,公司产品结构明显优化,市场竞争力得到大幅提高。
追加投资预计对公司年营业收入及税后净利润均有一定的积极影响,具体经济效益指标变化如下:
(上述经济效益预测并不代表公司对未来盈利的保证,能否实现受到宏观经济和市场状况的变化等多种因素的影响,存在着一定的不确定性,请投资者注意投资风险。
)
九、追加投资的风险分析
1、本次追加投资仅是因为建安成本提升及增加部分配套设施,没有改变募集资金的使用方向,不会对本公司实施该项目造成实质性的影响。
2、本项目所面临的风险与本公司在《招股说明书》中所提示的风险仍基本相同。
但上市后,公司各主营业务均得到了快速发展,巩固了公司在电容器化学品和锂电池化学品行业的领先地位,抗风险能力较上市前大幅提升。
十、结论
本次追加投资后,项目的建设规模和产能规模没有发生变化,但项目的自动化水平和产能潜力将显著提高,在未来人工成本不断上升的情况下能有效降低公司的劳动力成本,在未来市场需求扩大的情况下能有足够的产能扩展空间。
项目达产后,年均可实现营业收入7.0亿元,净利润1.1亿元。
因此,项目实施是可行,也是必要的。
深圳新宙邦科技股份有限公司
二〇一二年一月。