元调复习三 概率
- 格式:doc
- 大小:191.50 KB
- 文档页数:8
初三元调考试的考试范围通常按照《教学进度》的要求来确定。
具体范围可能包括语文、数学、外语、物理、化学、道法、历史等多个科目。
在语文科目中,考试内容可能包括基础知识、阅读理解、写作等方面。
在数学科目中,考试内容可能包括代数、几何、概率与统计等方面。
在外语科目中,考试内容可能包括听力、阅读、写作、翻译等方面。
在物理和化学科目中,考试内容可能包括基础知识、实验操作、分析解答等方面。
在道法和历史科目中,考试内容可能包括基础知识、历史事件、时事政治等方面。
请注意,具体的考试范围可能会因地区和学校的不同而有所变化。
因此,建议考生在备考时,除了了解基本的考试内容和要求外,还要关注官方发布的考试大纲和历年真题,以便更准确地把握考试内容和要求。
第三章 概率的进一步认识1 用树状图或表格求概率教学目标1.了解重复试验时频率可作为事件发生的概率的估计值.2.会借助树状图或列表法计算涉及两步试验的随机事件发生的概率.重点借助树状图或列表法计算涉及两步试验的随机事件发生的概率.难点学会选择适当的方法计算涉及两步试验的随机事件发生的概率.一、情境导入教师:抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?教师:你认为正面朝上和反面朝上的可能性相同吗?二、探究新知1.课件出示:小颖、小明和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?学生分小组进行试验,然后累计各组的试验数据,分别计算“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师巡视指导个别有困难的学生.教师:通过刚才的试验,你认为这个游戏公平吗?引导学生思考:在上面掷硬币的试验中,(1)(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)(3)在第一枚硬币正面朝上的情况下,在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?学生分小组讨论后给出答案,教师点评并进一步讲解:为了方便理解,我们通常借助画树状图或画表格列出所有可能出现的结果.①用树状图列出所有可能出现的结果:此图类似于树的形状,所以称为树状图.②用列表法列举所有可能出现的结果:第二枚硬币第一枚硬币 正 反正 (正,正正,正) ) (正,反正,反) )反 (反,正反,正) ) (反,反反,反) )共有4种结果,每种结果出现的可能性相同,其中,小明获胜的结果有1种:种:((正,正正,正)),所以小明获胜的概率是14;小颖获胜的结果有1种:种:((反,反反,反)),所以小颖获胜的概率是14;小凡获胜的结果有2种:种:((正,反正,反)()()(反,正反,正反,正)),所以小凡获胜的概率是24=12.因此,这个游戏对三人是不公平的.教师:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便? 引导学生得出:引导学生得出:(1)(1)(1)利用树状图或表格可以不重复、利用树状图或表格可以不重复、利用树状图或表格可以不重复、不遗漏地列出所有可能出现的结果,从而比较方不遗漏地列出所有可能出现的结果,从而比较方便地求出某些事件发生的概率.便地求出某些事件发生的概率.(2)(2)(2)当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在三步或三步以上时,用树状图法方便.2.课件出示:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.利用画树状图或列表的方法表示游戏所有可能出现的结果. (2)(2)游戏者获胜的概率是多少?游戏者获胜的概率是多少? 学生独立完成后汇报答案,教师点评. 3.课件出示:用如图所示的转盘进行“配紫色”游戏.(1)(1)小颖制作了下图,并据此求出游戏者获胜的概率是小颖制作了下图,并据此求出游戏者获胜的概率是12.(2)(2)小亮则先把转盘小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.B 盘 A 盘 红色蓝色红色1 (红1,红,红) ) (红1,蓝,蓝) ) 红色2 (红2,红,红) ) (红2,蓝,蓝) ) 蓝色(蓝,红蓝,红) )(蓝,蓝蓝,蓝) )教师:你认为谁做得对?说说你的理由.学生思考后举手回答,教师点评,并提出问题:用画树状图和列表的方法求概率时应注意些什么? 引导学生得出:用画树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 三、举例分析例1 (课件出示教材第62页例1)学生小组内讨论交流,教师板书规范书写过程.解:因为小明和小颖每次出现这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:种:((石头,石头石头,石头)()()(剪刀,剪刀剪刀,剪刀剪刀,剪刀)()()(布,布布,布布,布)),所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:种:((石头,剪刀石头,剪刀)()()(剪刀,布剪刀,布剪刀,布)()()(布,石头布,石头布,石头)),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:种:((剪刀,石头剪刀,石头)()()(布,剪刀布,剪刀布,剪刀)()()(石头,布石头,布石头,布)),所以小颖获胜的概率为39=13.因此,这个游戏对三人是公平的.例2 (课件出示教材第67页例2)学生独立完成,教师巡视指导,集体讲评.四、练习巩固1.教材第61页“随堂练习”.2.教材第64页“随堂练习”.3.教材第67页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.利用画树状图和列表的方法求概率时应注意些什么?六、课外作业1.教材第62页习题3.1第1,2题.2.教材第64页习题3.2第2题.3.教材第68页习题3.3第1题.教学反思本节课的内容是利用画树状图和列表的方法求概率.在教学过程中,让学生通过例子比较两种方法的使用条件.体现学生的主体地位,引导学生主动探讨新知识.创造轻松的课堂氛围,使学生愉快地学习.2 用频率估计概率教学目标1.能用试验的方法估计一些复杂随机事件发生的概率.2.理解当试验次数足够大时,试验频率将稳定于理论概率.3.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.重点掌握用频率估计概率的条件及方法. 难点用试验的方法估计复杂随机事件的概率. 一、复习导入1.用列举法求概率的条件是什么? 2.用列举法求概率的方法是什么? 3.A =(事件事件)),P(A)P(A)的取值范围是什么?的取值范围是什么?4.列表法、树状图法是不是列举法,在什么时候运用这种方法? 教师指名学生回答.教师点评:(1)(1)用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果发生的可能性相等.(2)(2)每次试验中,有每次试验中,有n 种可能结果种可能结果((有限个有限个)),发生的可能性相等;事件A 包含m 种结果,则P(A)P(A)==m n. (3)0≤P(A)≤1,其中不可能事件B ,P(B)P(B)==0,必然事件C ,P(C)P(C)==1.(4)(4)列表法、列表法、树状图法是列举法,在列出的所有结果很多或一次试验要涉及3个或更多的因素时采用这种方法.教师:前面的列举法只能在所有可能是等可能并且有限个的大前提下进行,如果不满足这两个条件,是否还可以应用以上的方法呢?这节课我们一起来探究.二、探究新知 1.课件出示:某林业部门要考察某种幼树在一定条件下的移植成活率. (1)(1)能够用列举法求出成活率吗?为什么?能够用列举法求出成活率吗?为什么? (2)(2)用什么方法求出成活率呢?用什么方法求出成活率呢? (3)(3)请完成下表,并求出移植成活率.请完成下表,并求出移植成活率.移植总数移植总数(n) (n)成活数成活数(m) (m)成活的频率成活的频率((mn )10 8 0.8 50 47 270 235 0.817 400 369 75 662 1 500 1 335 0.890 3 500 3 203 0.914 7 000 6 335 900 8 073 14 00012 6280.902学生思考后给出答案,教师点评:(1)(1)由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率.由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率. (2)(2)应该用频率来估计概率.应该用频率来估计概率. (3)(3)移植成活率大约是移植成活率大约是0.9. 2.课件出示:一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?学生分小组讨论交流并得出可行方案.方案1:每次随机摸出一球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.方案2:每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.3.课件出示:某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这种柑橘能够获得利润5 000元,那么在出售柑橘元,那么在出售柑橘((已经去掉损坏的柑橘已经去掉损坏的柑橘))时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.柑橘总 质量质量//千克损坏柑橘 质量质量//千克 柑橘损坏的频率 50 5.50 0.110 100 10.50 0.105 150 15.50 200 19.42 250 24.25 300 30.93 350 35.32 400 39.24 450 44.57 50051.540.103学生完成后给出答案,教师点评. 4.课件出示:一个学习小组有6名男生、名男生、33名女生,老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生、名男生、11名女生”的概率吗?学生分小组讨论后给出答案,教师点评分析:因为要做“从这9人中抽取3人”的试验的工作量很大,我们可用下面的方法来估计概率:取9张形状完全相同的卡片,在6张卡片上分别写上1~6来表示男生,在其余的3张卡片上分别写上7~9来表示女生,把9张卡片混合起来并搅拌均匀.从卡片中抽3次,随机抽取,每次抽取1张后放回,并记录结果,经大量重复试验,就能够计算相关频率,估计出“被抽取的3人中有2名男生、名男生、11名女生”的概率.教师:通过上面的学习,你能归纳出什么知识呢?引导学生得出:引导学生得出:(1)(1)(1)当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,可可以通过统计频率来估计概率.(2)(2)在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.三、练习巩固教材第70页“随堂练习”第1,2题. 四、小结1.通过本节课的学习,你有什么收获? 2.用频率估计概率的条件是什么? 3.用频率估计概率的方法是什么? 五、课外作业教材第71页习题3.4第1,2题.教学反思本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,由于此方法不受列举法求概率由于此方法不受列举法求概率的两个条件的限制,所以本节课要强调的是在什么情况下用这种方法,怎么用这种方法求概率也是本节的重点和难点之所在.在教学过程中,让学生通过复习和比较列举法引入:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法.使学生更清楚地明白这两种方法的使用方法及其特点.课堂上,运用生活中的例子,让学生体验生活中的数学.。
概率的初步一、填空题1.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是_____.2.从﹣3,﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是____________.3.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n)个图中随机取出一个球,是黑球的概率是____________.4.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.二、单选题5.下列事件为必然事件的是()A.抛一枚硬币,正面朝上B.打开电视,正在播放动画片C.3个人分成两组,每组至少1人,一定有2个人分在同一组D.随意掷两个均匀的骰子,上面的点数之和为66.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球7.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.12B.13C.310D.159.下列事件是随机事件的为( )A.一个图形旋转后所得的图形与原来的图形不全等B.元旦是晴天C.y=(a²+1)x²+bx+c(a,b,c是常数)是二次函数D.在圆中任意画一个圆内接四边形,对角互补10.“我的梦,中国梦”这句话六个字中,“梦”字出现的频率是()A.12B.13C.14D.1611.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.15B.14C.13D.1212.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.113.掷一枚质地均匀的骰子,骰子停止后,出现可能性大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数14.下面四个实验中,实验结果概率最小的是( )A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率15.把一个球任意投人A、B、C、D四个盒子内,则A号盒子无球的概率是()A.1B.12C.34D.1416.小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中左右记号的大约是()A.3只B.15只C.25只D.40只三、解答题17.如图,现有一个可以自由转动的转盘,盘面被平均分成6等份,分别标有2,3,4,5,6,7这六个数字.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).(1)转出数字10是________(填“随机事件”“必然事件”“不可能事件”中的一个);(2)转出的数字大于3的概率是_________;(3)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,该数字与两张卡片上的数字分别作为三条线段的长度.①这三条线段以有构成三角形的概率是___________;①这三条线段能构成等腰三角形的概率是_____________.18.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算19.某校随机选取了1000名学生,对他们喜欢的运动项目进行调查,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计该校学生同时喜欢短跑和跳绳的概率;(2)估计该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;20.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.21.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率答案1.32.2 53.4.205-16:CBAAB BCADC CA17.解:(1)转到数字10是不可能事件,故答案为:不可能事件;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,①转出的数字大于3的概率是42 = 63故答案为:23;(3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,①这三条线段能构成三角形的概率是56;①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,①这三条线段能构成等腰三角形的概率是21=63.18.(1)整个圆周被分成了16份,红色为1份,黄色为2份,蓝色为4份,所以获得-等奖的概率为116,二等奖概率为2= 1618,三等奖概率为416=14.(2)转转盘:118160504020146⨯+⨯+⨯=(元),20元15>元,∴转转盘划算.19.(1)同时喜欢短跑和跳绳的概率为:1503 100020=;(2)同时喜欢三个项目的概率为:2001507 100020+=.20.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率21 42 ==;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率82 123 ==.21.解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)①小明从龙平路同一侧出入站的有8种等可能结果,①小明从龙平路同一侧出入站的概率为816=12.。
人教版 数学 四年级 上册总复习九第3节 统计与概率1.填空题。
(1)条形统计图比统计表更能( 清楚直观 )地表示出数量的多少。
(2)我们学习了以一当( 一 )、以一当( 二 )、以一当( 五 )的条形统计图,具体数据需要具体分析。
(3)条形统计图分为( 纵向 )条形统计图和( 横向 )条形统计图两种。
通常以( 纵向 )条形统计图为主。
2.选择题。
( 把正确答案的选项填在括号里 )(1)我国长江、黄河、珠江和淮河的长度如下图。
( A )的长度最长。
A.长江B.黄河C.淮河D.珠江(2)四(5)班同学最喜欢的运动项目情况如下图,最喜欢( A )的同学最少。
A A.羽毛球 B.游泳 C.乒乓球 D.跑步(3)下面是王华、张兵、王芳和徐月去超市买算术本数量情况统计图。
则买的本数最多的是( D )。
A.王华B.张兵C.王芳D.徐月(4)某地区去年的各农作物面积如下图所示,则小麦的面积比大豆大约多( B )公顷。
A.12B.69C.50D.10(5)某空调专卖店2020年5~8月份空调销售情况如下图所示,若7月份销售的空调台数是5月份的2倍,则7月份销售空调 ( B )台。
B A.6 B.12 C.18 D.73.下面是四年级学生课外活动情况统计图,回答下面的问题。
(1)每格代表( 15 )人。
(2)做运动的学生比看电视的多( 45 )人。
(3)四年级一共有多少人?如果每班平均有40人,那么四年级一共有多少个班?360÷40=9(个)答:四年级一共有360人,一共有9个班。
(4)你还能得到哪些信息?75+90+105+60+30=360(人)360÷40=9(个)答:四年级一共有360人,一共有9个班。
(答案不唯一,合理即可)如做运动的人数最多。
4.下面是某牛奶店四周售出鲜奶情况的统计表。
周数第一周第二周第三周第四周数量/袋480500600690 (1)根据上表中统计的数据完成下面的条形统计图。
第3单元 概率的进一步认识复习教案【知识要点】1.频数:在数据统计中,每个对象出现的次数为频数.2.频率:每个对象出现的次数与总次数的比值为频率.总次数频数频率 3.概率就是表示某事件发生的可能性的大小.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间.4.求概率的方法:①画树状图法;②列表法.5.频率与概率的关系:随着试验次数的增多,随机事件发生的频率相对稳定于某一常数附近,这个常数就是随机事件发生的概率.【例题精讲】例1:如图1,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用所指的两个数字作乘法运算所得的积为奇数的概率为( )A .B .C .D .例2:5月12日为母亲节,小南和小开为各自的母亲买一束鲜花,现有三种不同类型的鲜花可供选择:康乃馨、百合和玫瑰,两人恰好选择到同种类型鲜花的概率为( )A .B .C .D .例3:如图2小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A.B.C.D.例4:如图3,4×2的正方形网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.0B.C.D.如图1 如图2如图3例5:桌上有4张分别画有等边三角形、正方形、正五边形、圆的卡片(卡片除图形外其余完全相同).并将它们背面朝上,小明和小亮先后随机抽出一张(先抽出的卡片不放回),则他们抽到的卡片上的图形都是中心对称图形的概率为.例6:某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两个抽奖方案:方案一:转动转盘A一次,转出红色可领取一份奖品:方案二:转动转盘B两次,两次都转出红色可领取一份奖品(两个转盘都被平均分成3份)(1)若转动一次A转盘,求领取一份奖品的概率;(2)如果你获得一次抽奖机会,你会选择哪个方案?请采用列表法或树状图说明理由.【巩固训练】一.选择题.1.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为().A.B.C.D.2.甲,乙两个不透明的袋子里,分别装有质地、大小完全一样的4个、3个小球,甲袋中的4个小球上分别标有数字﹣1、﹣2、1、2,乙袋中的3个小球上分别标有数字﹣1、0、1,若随机从甲袋和乙袋中各摸出一个小球,两球所标数字之和是正数的概率是().A.B.C.D.3.同时抛掷两枚质地均匀的正六面体骰子,向上两个数字之积为偶数的概率是().A.B.C.D.4.在长度分别为3,4,7,9的四条线段中,任意选取三条,能组成三角形的概率是().A.B.C.D.15.经过某十字路口的汽车,可能直行,也可能左转或右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,至少有一辆左转的概率是().A.B.C.D.6.四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则点(a,b)在直线y=x+1上方的概率是().A.B.C.D.7.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为().A.B.C.D.8.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是().A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃二.填空题.9.在不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别.每次从袋子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6,则袋中白球有.10.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.11.如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是,则转盘B中标有数字1的扇形的圆心角的度数是°.12.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是.第11题第12题三.解答题.13.为了提高学生的汉字书写能力,某学校连续举办了几届汉字听写大赛,今年经过层层选拔,确定了参加决赛的选手,决赛的比赛规则是每正确听写出1个汉字得2分,满分是100分,下面是根据决赛的成绩绘制出的不完整的频数分布表、扇形统计图和频数分布直方图.类别成绩x分频数(人数)A50≤x<605B60≤x<707C70≤x<80aD80≤x<9015E90≤x<10010请结合图表完成下列各题(1)表中a的值为,并把频数分布直方图补充完整;(2)学校想利用频数分布表估计这次决赛的平均成绩,谐你直接写出平均成绩;(3)通过与去年的决赛成绩进行比较,发现今年各类人数的中位数有了显著提高,提高了15%以上,求去年各类人数的中位数最高可能是多少?(4)想从A类学生的3名女生和2名男生中选出两人进行培训,直接写出选中1名男生和1名女生的概率是多少.14.在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)15.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样,便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;将条形统计图补充完整.(2)如果某个社区共有3000个人,那么选择微信支付的人约有;(3)在一次购物中,小明的小亮都想从“微信”、“支付宝”、”银行卡”三种支付方式中选一种方式,请用画树状图或列表表格的方法,求出两人恰好选择同一种支付方式的概率.。
专题限时集训(七) 回归分析、独立性检验(对应学生用书第91页)(限时:40分钟)1.(2017·某某一模)下列说法错误的是( )【导学号:07804050】A .回归直线过样本点的中心(x ,y )B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^就增加0.2个单位C [根据相关定义知选项A ,B ,D 均正确;选项C 中,对分类变量X 与Y ,随机变量K 2的观测值k 越大,对判断“X 与Y 有关系”的把握程度越大,故C 错误.选C.]2.(2017·某某名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为C .99.5%D .95%D [由图表中数据可得,当k >3.841时,有0.05的几率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的几率,也就是有95%的把握认为变量之间有关系,故选D.]3.(2017·某某七市联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为y ^=10.2x +a ^,据此模型,预测广告费为10万元时销售额约为( )【导学号:07804051】A .101.2万元B .108.8万元C .111.2万元D .118.2万元C [根据统计数据表,可得x =15×(2+3+4+5+6)=4,y =15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),∴50=10.2×4+a ^,解得a ^=9.2,∴回归方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.]4.(2017·某某二模)现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如图77所示的两个等高堆积条形图.图77根据这两幅图中的信息,下列哪个统计结论是不正确的( ) A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科D [由图2知,样本中的女生数量多于男生数量,样本中的男生、女生均偏爱理科;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故选D.] 5.(2016·某某模拟)对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )图78(1)图78(2)图78(3)图78(4)A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3A [由给出的四组数据的散点图可以看出,图(1)和图(3)是正相关,相关系数大于0,图(2)和图(4)是负相关,相关系数小于0,图(1)和图(2)的点相对更加集中,所以相关性要强,所有r 1接近于1,r 2接近于-1,由此可得r 2<r 4<r 3<r 1.故选A.] 6.(2017·某某一模)设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kgD [因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x ,y ),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加 1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.]7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是( )ABCDC[当残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的带状区域的宽度越窄.故选C.]8.(2017·某某南城一中、高安中学第九校3月联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线合计愿生452065不愿生132235合计5842100由K2=n ad-bc2a+b c+d a+c b+d,得K2=100×45×22-20×13265×35×58×42≈9.616.参照下表,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”C[K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选C.]二、填空题9.(2017·某某二模)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.【导学号:07804052】6 [x =5=5,y =5=5,代入回归直线方程,得14+c5=0.85×5-0.25,解得c =6.]10.(2017·某某百校联盟二模)已知x 、y 的取值为:从散点图可知y 与x 呈线性相关关系,且回归直线方程为y =1.2x +a ,则当x =20时,y 的取值为________.27.6 [由表格可知x =3,y =7.2,所以这组数据的样本点的中心是(3,7.2),根据样本点的中心在回归直线上,得7.2=a ^+1.2×3,得a ^=3.6,所以这组数据对应的回归直线方程是y ^=1.2x +3.6,将x =20代入,得y =1.2×20+3.6=27.6.]11.(2017·某某某某五中一模)某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:已知x ,y 的关系符合回归方程y =b x +a ,其中b =-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为________元. 3.75 [x =3.5,y =40,∴a ^=40-(-20)×3.5=110, ∴回归直线方程为:y ^=-20x +110,利润L =(x -2)(-20x +110)=-20x 2+150x -220, ∴x =15040=3.75元时,利润最大,故答案为3.75.]12.(2017·某某三中二模)以模型y =c e kx(e 为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z =ln y ,其变换后得到线性回归方程为z =0.4x +2,则c =________. e 2[∵y =c e kx,∴两边取对数,可得ln y =ln(c e kx )=ln c +ln e kx=ln c +kx , 令z =ln y ,可得z =ln c +kx , ∵z =0.4x +2, ∴ln c =2, ∴c =e 2.] 三、解答题13.(2017·某某一模)为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各20人组成一个样本,对他们的这项血液指标进行了检测,得到了如图79所示的茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.图79(1)依据上述样本数据研究此项血液指标与性别的关系,列出2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系? (2)以样本估计总体,视样本频率为概率,现从本地区随机抽取成年男性、女性各2人,求此项血液指标为正常的人数X 的分布列及数学期望. 附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.025 0.010 0.005 k 05.0246.6357.879正常 偏高 合计 男性 16 4 20 女性 12 8 20 合计281240K 2=n ad -bc 2a +bc +d a +cb +d =40×16×8-4×12220×20×28×12≈1.905<6.635,所以不能在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系. (2)由样本数据可知,男性正常的概率为45,女性正常的概率为35.此项血液指标为正常的人数X 的可能取值为0,1,2,3,4,P (X =0)=⎝⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫1-352=4625, P (X =1)=C 1245⎝⎛⎭⎪⎫1-45⎝⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-452C 1235·⎝ ⎛⎭⎪⎫1-35=44625, P (X =2)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-352+C 1245⎝ ⎛⎭⎪⎫1-45·C 1235·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫352=169625, P (X =3)=C 1245⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452C 1235·⎝⎛⎭⎪⎫1-35=264625, P (X =4)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫352=144625,所以X 的分布列为X 0 1 2 3 4 P462544625169625264625144625所以E (X )=0×625+1×625+2×625+3×625+4×625=2.8.14.(2017·某某三湘名校联盟三模)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y =C 1x 2+C 2与模型②:y =e C 3x +C 4作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.温度x /℃ 20 22 24 26 28 30 32 产卵数y /个6 10 21 24 64 113 322 t =x 2 400 484 576 676 784 900 1024 z =ln y1.792.303.043.184.164.735.77xtyz26692803.57错误! 错误! 错误! 错误!1157.540.430.32 0.00012其中t i =x 2i ,t =∑ni =1t i ,z i =ln y i ,z =∑ni =1z i ,附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=β^u +α^的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .图710(1)在答题卡中分别画出y 关于t 的散点图、z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).图711(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C 1,C 2,C 3,C 4与估计值均精确到小数点后两位)(参考数据:e 4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(3)若模型①、②的相关指数计算得分分别为R 21=0.82,R 22=0.96,请根据相关指数判断哪个模型的拟合效果更好.【导学号:07804053】[解] (1)画出y 关于t 的散点图,如图1;z 关于x 的散点图,如图2.图1 图2根据散点图可判断模型②更适宜作为回归方程类型. (2)对于模型①:设t =x 2,则y =C 1x 2+C 2=C 1t +C 2,其中C ^1=∑7i =1t i -ty i -y∑7i =1t i -t2=0.43,C ^2=y -C ^1t =80-0.43×692=-217.56,所以y =0.43x 2-217.56,当x =30时,估计温度为y 1=0.43×302-217.56=169.44. 对于模型②:y =e C 3x +C 4⇒z =ln y =C 3x +C 4,word 其中C ^3=∑7i =1 z i -z x i -x∑7i =1x i -x2=0.32,C ^4=z -C ^3x =3.57-0.32×26=-4.75.所以y =e 0.32x -4.75,当x =30时,估计温度为y 2=e0.32×30-4.75=e 4.85≈127.74. (3)因为R 21<R 22,所以模型②的拟合效果更好.。
2.简单的统计表【知识点睛】1.统计表定义:是表现数字资料整理结果的最常用的一种表格.是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.统计调查所得来的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.2.统计表构成及格式:一般由表头、行标题、列标题和数字资料四个主要部分组成,必要时可以在统计表的下方加上表外附加.(1)表头应放在表的上方,它所说明的是统计表的主要内容.(2)行标题和列标题通常安排在统计表的第一列和第一行,它所表示的主要是所研究问题的类别名称和指标名称,通常也被称为“类”.(3)表外附加通常放在统计表的下方,主要包括资料来源、指标的注释、必要的说明等内容.统计表分类:统计表形式繁简不一,通常是按项目的多少,分为单式统计表与复式统计表两种.只对某一个项目数据进行统计的表格,称为单式统计表,也称之为简单统计表.统计项目在2个或2个以上的统计表格,称之为复式统计表.1.按作用不同:统计调查表、汇总表、分析表.2.按分组情况不同:简单表、简单分组表、复合分组表.(1)简单表:即不经任何分组,仅按时间或单位进行简单排列的表.(2)简单分组表:即仅按一个标志进行分组的表.(3)复合分组表:即按两个或两个以上标志进行层叠分组的表.【小题狂做】一.填空题(共5小题)1.(2018秋•沈河区期末)王叔叔元旦乘火车从郑州出里程千米发去旅行,途经徐州、南京,最后到达无锡.结合图、表回答问题:里程/千米郑州﹣﹣﹣徐州349徐州﹣﹣﹣南京348南京﹣﹣﹣无锡301①徐州到无锡的里程是千米.(先在图上画一画,再计算.)②火车从郑州出发,平均每时行驶95千米,行驶7时后,距离最近.2.(2018秋•沈河区期末)周叔叔是一名司机,下表是他一周行驶的里程表读数.星期一星期二星期三星期四星期五160千米350千米555千米745千米758千米他周四一天行驶千米,他周二~周五一共行驶千米.3.(2018•南京)王大伯家今年栽了52垄大白菜,他已经收获了5垄,每垄的产量如下表.栽白菜的垄数第一垄第二垄第三垄第四垄第五垄产量/千克1029598100105按这5垄的平均产量计算,王大伯家今年一共可以收大白菜千克.4.(2017秋•二七区期末)下面是郑州科技馆周末接待参观人数的情况.周六907人次周日855人次(1)周末这两天冬今接待人次;(2)周六比周日冬今多接待人次.5.(2017秋•朝阳区期末)人正常的眨眼可以消除眼睛的疲劳.如果眨眼次数过少,对眼睛的健康不利.下表是人在正常状态下每分钟眨眼的次数.状态平常写字看书玩手机游戏每分钟眨眼次数24181510从上表可以看出,在状态下,眼睛最容易疲劳,看书状态下眨眼的次数比写字时眨眼次数少%.二.应用题(共9小题)6.(2018秋•海珠区期末)一辆载质量1吨的货车能一次将下面这些蔬菜全部运走吗?请列式说明.蔬菜黄瓜茄子白菜质量/千克300400280 7.(2017秋•重庆期末)荣盛公司去年第四季度用水和电情况如下:项目单价用量上季度读数本季度读数水 3.27元/吨618吨783吨电0.73元/吨464千瓦时629千瓦时该公司去年第四季度水和电一共应缴多少钱?8.(2018春•徐州期末)下表是儿童体重等级评价标准,根据表中提供的信息回答问题:实际比标准轻20%以上轻10%以上~20%请10%~重10%重10%以上~20%重20%以上等级消瘦偏瘦正常偏胖肥胖儿童标准体重估计法:年龄×2+5(2~10岁);年龄×3﹣2(11~15岁).小华今年10岁,体重28千克.请你通过列式计算,判断小华的体重属于哪个等级.9.(2018春•扬州期中)一套《四大名著》共四册,各册的单价如下表:《西游记》《红楼梦》《水浒传》《三国演义》48元76元44元52元学校买16套《四大名著》奖励给“爱心好少年”,一共要用多少元?10.(2018春•扬州期中)某小学四年级同学去动物园参观,门票价格规定如下:购票人数1~4041~100100以上票价22元/人20元/人18元/人一班有38人,二班有42人,三班有40人.(1)每班分别购票,各需要多少元?(2)三个班合起来购票比每班分别购票便宜多少元?11.(2018春•连云港期中)人民公园的游园票价格规定如下:购票人数(人)1﹣4041﹣8080以上票价(元/人)12108红旗小学五年级同学去公园春游,一班有38人,二班有40人,三班有44人.三个班购票最少要用多少钱?12.(2018秋•南通期中)小刚家去年四个季度用水情况如下表.季度一二三四用水量/吨113188206153小刚家去年平均每月用水多少吨?13.(2018秋•福田区期中)购物.电饭煲自行车录音机379元186元297元(1)买这三种商品一共需要多少元?(2)妈妈带了500元,买了一部录音机和一辆自行车,应找回多少钱?14.(2018秋•涡阳县校级期中)国庆假期小强一家要从格尔木到拉萨旅游.里程/千米格尔木﹣安多694格尔木﹣那曲820格尔木﹣当雄978格尔木﹣拉萨1142(1)请你计算出安多到当雄有多少千米?(2)如果列车从格尔木站开出,已行驶了899千米,请你在图上用“△”标出列车的大概位置,并算一算列车离拉萨还有多少千米?三.解答题(共6小题)15.(2019春•东莞市期中)下面是某校三年级同学最喜欢看的书籍情况统计.科普类动漫类文学类政史类童话类书籍人数/人性别男生5648162029女生2413396437(1)男生喜欢看类书的人数最多,喜欢类书的人数最少.(2)女生喜欢看类书的人数最多,喜欢类书的人数最少.(3)班上要购买一批新书,你有什么想法?16.(2017秋•重庆期末)下面是李师傅加工零件所用时间和个数的记录表.个数(个)90180210270时间(时)369(1)把上表补充完整.(2)照这样的速度,完成480个零件需要多少小时?17.(2018春•郑州期末)超市里购物.物品跳绳文具盒羽毛球元/个 4.810.20 6.80(1)明明要买一个羽毛球和一个文具盒.付给营业员20元钱,要找给他多少钱?(2)你还会提出什么数学问题?请提一个并解答.18.(2018秋•抚宁区期中)李叔叔种植的蔬菜,正好在春节期间上市,部分蔬菜品种和价格如表:品种黄瓜西红柿豆角单价(元/千克)141112卖出的克数(千克)354131256(1)每种蔬菜卖了多少钱?(2)一共收入多少元?(3)你从表中还能发现什么问题?19.(2017秋•天元区期末)欢乐世界的门票价格规定如下表.人数/人1﹣5051﹣100100以上每人票价/元14812898阳光小学4.1班和4.2班一起去欢乐世界秋游.4.1班有49人,4.2班有52人.(1)每班分别购票,各需要多少元?(2)两个班合起来购票,共需要多少元?20.(2017秋•靖州县期末)李老师带500元钱去超市买球,价格如下表.名称篮球足球排球单价(元)556535(1)如果他想买4个足球,8个排球,这钱够吗?(2)如果都买篮球,最多可以买多少个?还剩多少钱?(3)请你提出一个数学问题,并解答.。
7.扇形统计图【知识点睛】1.扇形统计图的特点:扇形统计图是用整个圆的面积表示总数,用院内的扇形面积表示各部分数量占总数的百分比.2.读懂扇形统计图:(1)获取信息的方法:运用综合、对比等多种观察方法,可以从扇形统计图中获取信息,还可以利用这些信息提出相应的问题.(2)扇形统计图的优点:它可以清楚地表示出部分数量与总数、部分数量与部分数量之间的关系.3.利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数应用题的解题思路和解题方法进行解答.【小题狂做】一.选择题(共1小题)1.(2018秋•深圳期末)如图是六(1)班“我最喜欢的科目”统计图.六(1)班有50人,最喜欢数学的有()人.A.10B.12C.16D.9【解答】解:50×32%=16(人)答:最喜欢数学的有16人.故选:C.二.填空题(共8小题)2.(2019•萧山区模拟)(1)如果用整幅图表示某小学共有学生800人,那么B表示该小学三四年级有学生240人.(2)如果用A表示“城乡手拉手,爱心传真情”活动中一二年级共捐书600本,那么C 代表的五六年级共捐书1080本.【解答】解:(1)800×30%=240(人)答:B表示该小学三四年级有学生240人.(2)90÷360=25%600÷25%=2400(本)2400×(1﹣25%﹣30%)=2400×45%=1080(本)答:C代表的五六年级共捐书1080本.故答案为:240,1080.3.(2019春•泗洪县期中)如图是六年一班期中数学成绩统计图,请根据下列信息解答相关问题.(1)不合格率为5%.(2)已知得优的有12人,全班有40人.(3)得良的比得合格的多6人.【解答】解:(1)1﹣(25%+30%+40%)=1﹣95%=5%答:不合格率为5%.(2)12÷30%=40(人)答:已知得优的有12人,全班有40人.(3)40×(40%﹣25%)=40×15%=6(人)答:得良的比得合格的多6人.故答案为:5,40,6.4.(2019春•南京月考)下面是新街生态园三种蔬菜种植面积的扇形统计图.(1)已知草莓园的面积是126平方米,三种蔬菜的总面积是225平方米.(2)黄瓜园的面积是67.5平方米,西红柿比草莓少75%.【解答】解:(1)126÷56%=225(平方米)答:三种蔬菜的总面积是225平方米.(2)225×30%=67.5(平方米)(56%﹣14%)÷56%=42%÷56%=0.75=75%答:黄瓜园的面积是67.5平方米,西红柿比草莓少75%.故答案为:225,67.5,75.5.(2019春•沛县月考)如图是一件毛线衣中各种材质占总质量的统计图,根据右图回答问题.(1)棉的含量占这件衣服的7%.(2)羊毛的含量最多,棉的含量最少.(3)兔毛含量比涤纶少占总数的17%.(4)这件毛衣重200克,羊毛有120克,兔毛有16克.如果羊毛含量120克,那么棉含量是14克.【解答】解:(1)答:棉的含量占这件衣服的7%.(2)答:羊毛的含量最多,棉的含量最少.(3)25%﹣8%=17%答:兔毛含量比涤纶少占总数的17%.(3)200×60%=120(克)200×8%=16(克)120÷60%×7%=200×7%=14(克)答:羊毛有120克,兔毛有16克.棉含量是14克.故答案为:7,羊毛,棉,17,120,16,14.6.(2018秋•郑州期末)如图的扇形统计图清楚地表示参加各社团人数与总人数之间的关系.【解答】解:如图如图的扇形统计图清楚地表示参加各社团人数与总人数之间的关系.故答案为:各社团人数,总人数.7.(2018秋•定西期末)如图:是某校六年级学生某次数学竞赛的成绩统计图,若获得优秀成绩有60人,那么全年级有200人,本次竞赛不及格10人.【解答】解:60÷30%=60÷0.3=200(人);200×(1﹣30%﹣40%﹣25%)=200×5%=200×0.05=10(人);答:全年级有200人,本次竞赛不及格的有10人.故答案为:200、10.8.(2019•吴川市模拟)一块菜地种植了4种蔬菜,分布情况如图.若油菜的种植面积是420m2.则(1)黄瓜的种植面积是630平方米;(2)芹菜的种植面积比油菜少105平方米.【解答】解(1)420÷20%×(1﹣15%﹣20%﹣35%)=2100×30%=630(m2)答:黄瓜的种植面积是630平方米.(2)420÷20%×(20%﹣15%)=2100×5%=105(m2)答:芹菜的种植面积比油菜少105平方米.故答案为:630,105.9.(2019春•雁塔区期末)六年级同学血型情况如图.AB型的占8%;如果O型的共有60人,那么六年级共有150人;A型的有42人.【解答】解:1﹣28%﹣24%﹣40%=8%60÷40%=150(人)150×28%=42(人)答:AB型的占8%;六年级共有150人;A型的有42人.故答案为:8,150,42.三.计算题(共1小题)10.(2018秋•河北区期末)看图回答问题如图是实验小学图书室藏书情况统计图(1)已知故事书有120本,这个图书室共藏书400本.(2)这个图书室科技书的本书占藏书总数的20%.(3)这个图书室的科技书比文艺书少80本.【解答】解:(1)120÷30%=400(本)答:这个图书室共藏书400本.(2)1﹣30%﹣40%﹣10%=20%答:这个图书室科技书的本书占藏书总数的20%.(3)400×(40%﹣20%)=400×20%=80(本)答:这个图书室的科技书比文艺书少80本.故答案为:400,20,80.四.应用题(共6小题)11.(2018秋•卢龙县期末)第三小学购买一批新书,数量如图所示.算一算,这个学校一共购进多少图书?【解答】解:320÷(1﹣50%﹣30%)=320÷20%=320÷0.2=1600(本)答:这个学校一共购进1600本图书.12.(2018秋•乳源县期末)如图是张叔叔家2017年的生活开支情况统计图.如果张叔叔家2017年购买服装用去了9750元,那么购买食品用去多少元?【解答】解:9750÷15%×35%=65000×35%=22750(元)答:购买食品用去22750元.13.(2018秋•黄埔区期末)如图是六年级学生“最喜欢球类运动”的统计图(1)喜欢其他球类的人数占全班人数的几分之几?(2)六年级学生共有300人,喜欢乒乓球的有多少人?比喜欢足球的人数多多少人?【解答】解:(1)1﹣19%﹣25%﹣32%﹣18%=56%﹣32%﹣18%=6%=答:喜欢其他球类的人数占全班人数的.(2)300×32%=96(人)300×18%=54(人)96﹣54=42(人)答:喜欢乒乓球的有96人,比喜欢足球的人数多42人.14.(2018秋•河东区期末)滨河学校对学生吃早餐的情况进行了调查,结果全校每天都坚持吃早餐的人数为360人,那么全校偶尔吃早餐的有多少人?【解答】解:360÷80%﹣360=450﹣360=90(人)答:全校偶尔吃早餐的有90人.15.(2018秋•河西区期末)下面是妙想根据妈妈去年一年购买的三种水果情况制成的扇形统计图,看图填空并回答问题:(1)橘子的质量占三种水果总质量的22%;(2)如果橘子的质量是44千克,那么这三种水果的总质量是多少千克?【解答】解:1﹣41%﹣37%=22%;答:橘子的质量占三种水果总质量的22%.(2)44÷22%=44÷0.22=200(千克);答:这三种水果的总质量是200千克.故答案为:22.16.(2018秋•盘龙区期末)一块菜地四种蔬菜的种植面积分布情况如下:①你获得哪些信息请逐条写下来.②如果种植黄瓜的面积有90平方米,你能提出哪些用百分数解决的问题?并解答.【解答】解:①可以获得的信息有:黄瓜的种植面积占总面积的30%;油菜的种植面积占总面积的20%;芹菜的种植面积占总面积的15%;西红柿的种植面积占总面积的35%.②可以选择下面其中的一、两个问题:问题一:种植的总面积是多少平方米?90÷30%=300(平方米)答:种植的总面积是300平方米.问题二:油菜的种植面积是多少平方米?300×20%=60(平方米)答:油菜的种植面积是60平方米.问题三:芹菜的种植面积是多少平方米?300×15%=45(平方米)答:芹菜的种植面积是45平方米.问题四:西红柿的种植面积是多少平方米?300×35%=105(平方米)答:西红柿的种植面积是105平方米.五.解答题(共5小题)17.(2018秋•抚宁区期末)李大伯在一块地里种植蔬菜,下面统计图分别统计了2014年四种蔬菜的收入情况和近四年来种植蔬菜的收入情况.(1)2014年种植萝卜的收入是多少元?(2)2013年的收入比2012年增加了百分之几?【解答】解:(1)4×(1﹣35%﹣20%﹣21%)=4×24%=4×0.24=0.96(万元),0.96万元=9600(元);答:2014年种植萝卜的收入是9600元.(2)(3﹣2.3)÷2.3=0.7÷2.3≈0.304=30.4%;答:2013年的收入比2012年增加了30.4%.18.(2018秋•天河区期末)为开展阳光体育活动,坚持让中小学生“每天锻炼1小时”,调查组随机调查了600名学生,调查内容是“每天锻炼的时间”,所得数据制成了以下的扇形统计图和条形统计图.(1)把扇形统计图中的括号和条形统计图补充完整.(2)锻炼时间不超过1小时的人数与超过1小时的人数比为1:2.【解答】解:(1)600﹣75﹣375=150(人)75÷600=12.5%375÷600=62.5%150÷600=25%如图:(2)75:150=1:2答:锻炼时间不超过1小时的人数与超过1小时的人数比为1:2.故答案为:1;2.19.(2018秋•中山市期末)光明小学对六年级全体学生进行了血型统计,王老师根据统计数据制作了一幅扇形统计图和一幅条形统计图.(1)光明小学六年级共有学生400人.(2)根据以上数据,把扇形统计图和条形统计图补充完整.【解答】解:(1)92÷23%=400(人)答:光明小学六年级共有学生400人.(2)400﹣92﹣100﹣168=40(人)光明小学六年级学生有AB型血40人1﹣23%﹣42%﹣10%=25%光明小学B型血人数占25%完成扇形统计图、条形统计图如下:故答案为:400.20.(2018秋•阿克苏市期末)六(1)班参加课外活动的情况统计如下:先算出六(1)班学生的总人数,再将统计图和统计表填写完整.【解答】解:(8+10)÷(1﹣64%)=18÷0.36=50(人)音乐组占总人数的百分比:8÷50×100%=0.16×100%=16%美术组占总人数的百分比:10÷50×100%=0.2×100%=20%体育组的人数:50﹣8﹣10=32(人)统计表如下:统计图如下:21.(2018秋•白云区期末)下面是红英学校美术小组血型情况统计表.血型A型B型O型AB型人数(人)2201414(1)算出B型和O型人数各占总人数的百分之多少?(2)请根据统计表补充完整扇形统计图.(3)请提出一个数学问题并解答.【解答】解:(1)2+20+14+14=50(人)B型人数占总人数的:20÷50=0.4=40%;O型人数占总人数的:14÷50=0.28=28%;(2)作图如下:(3)红英学校美术小组B型人数比A型人数多多少人?20﹣2=18(人),答:红英学校美术小组B型人数比A型人数多18人.。
第三节 模拟方法—概率的应用[考纲传真] 1.了解随机数的意义,能运用随机模拟方法估计概率.2.了解几何概型的意义.1.模拟方法对于某些无法确切知道的概率问题,常借助模拟方法来估计某些随机事件发生的概率.用模拟方法可以在短时间内完成大量的重复试验.2.几何概型(1)向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.(2)几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.[常用结论] 几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率. ( ) (2)与面积有关的几何概型的概率与几何图形的形状有关. ( ) (3)在一个正方形区域内任取一点的概率为0. ( ) (4)从区间[1,10]内任取一个数,取到1的概率是110.( )[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A .12B .134B [坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.]3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A B C DA [∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]4.已知正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ABCD 的体积小于16的概率为________.12 [在正方体ABCD A 1B 1C 1D 1中,设M ABCD 的高为h ,则13×S 四边形ABCD×h =16.又S四边形ABCD=1,所以h =12.若体积小于16,则h <12.即点M 在正方体的下半部分,所以P =12.]5.如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.0.18 [由题意知,S 阴S 正=1801 000=0.18,∵S 正=1,∴S 阴=0.18.]与长度(角度)有关的几何概型1.在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形的面积大于20 cm 2的概率为 ( )63C .23D .45C [设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2<x <10,故所求概率P =10-212=23.] 2.(2017·某某高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.59[由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P =59.]3.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.34[过点C 作交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠A 内时,AM <AC .又∠A =45°,所以∠A =67.5°,故所求概率为P =67.5°90°=34.] [规律方法] 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).与面积有关的几何概型►考法1 与平面图形面积有关的问题【例1】 (2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .π8C .12D .π4B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8.故选B.]►考法2 与线性规划知识交汇命题的问题【例2】 在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A .14B .12C .23D .34A [依题意作出图像如图,则P (y ≤2x )=S 阴影S 正方形=12×12×112=14.][规律方法] 1.与平面几何、解析几何等知识交汇问题的解题思路利用平面几何、解析几何等相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率.2.与线性规划交汇问题的解题思路先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.(1)已知实数m ∈[0,1],n ∈[0,2],则关于x 的一元二次方程4x 2+4mx -n2+2n =0有实数根的概率是( )A .1-π4B .π4C .π-32D .π2-1(2)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0-2x 0”,那么事件A 发生的概率是( )A .14 B .34 C .13D .23(1)A (2)B [(1)方程有实数根,即Δ=16m 2-16(-n 2+2n )≥0,m 2+n 2-2n ≥0,m 2+(n -1)2≥1,画出图形如图所示,长方形面积为2,半圆的面积为π2,故概率为2-π22=1-π4.(2)作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面区域即△ABC ,其面积为4,且事件A =“y 0<2x 0”表示的区域为△AOC ,其面积为3,所以事件A 发生的概率是34.]与体积有关的几何概型1.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率是( ) A .78 B .34 C .12D .14A [当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.]2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A .34B .23 C .13D .12D [由题图可知V F AMCD =13×S四边形AMCD×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD内的概率为14a 312a 3=12.][规律方法] 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.1.(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13B .12C .23D .34B [如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.]2.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A .710B .58C .38D .310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.]3.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n mB .2n mC .4m nD .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.]六概率与统计中的高考热点问题[命题解读] 1. 统计与概率是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量,该类问题以应用题为载体,注重考查学生的数学建模及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立是概率计算的核心. 统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,统计与概率内容相互渗透,背景新颖.统计与统计案例以统计图表或文字叙述的实际问题为载体,通过对相关数据的分析、抽象概括,作出估计、判断. 常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力与运算能力及应用意识.【例1】已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.(1)求n的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析能否在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”?附:P(χ2≥x0)0.100.050.0100.005 x0 2.706 3.841 6.6357.879χ2=n ad-bc2a+b c+d a+c b+d.[解](1)依题意得⎩⎪⎨⎪⎧10×0.035+0.025+c +2b +a =1,2b =a +c ,解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人,于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人.于是本次测试的及格情况与性别的2×2列联表如下:及格 不及格 总计 男 22 8 30 女 26 4 30 总计481260所以χ2=60×22×4-8×26230×30×48×12=1.667<2.706,故不能在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”.[规律方法] 独立性检验的方法 (1)构造2×2列联表; (2)计算χ2;(3)查表确定有多大的把握判定两个变量有关联.易错提示:查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的临界值与求得的χ2相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1-p .近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将如图的列联表补充完整.若用分层抽样的方法在患三高疾病的人群中抽9人,其中女生抽多少人?(2)为了研究患三高疾病是否与性别有关,请计算出统计量χ2,并说明是否可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.患三高疾病 不患三高疾病总计 男630女 总计36下面的临界值表供参考:P (χ2≥x 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 x 02.0722.7063.8415.0246.6357.87910.828(参考公式χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d )[解] (1)完善补充列联表如下:患三高疾病不患三高疾病总计 男 24 6 30 女 12 18 30 总计362460在患三高疾病人群中抽9人,则抽取比例为936=14,所以女性应该抽取12×14=3(人).(2)根据2×2列联表,则 χ2=60×24×18-6×12230×30×36×24=10>7.879.所以可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.常见概率模型的概率概率. 解决简单的古典概型试题可用直接法(定义法),对于较为复杂的事件的概率,可以利用所求事件的性质将其转化为互斥事件或对立事件的概率求解.【例2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数216362574(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.[规律方法] 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖,其余结果为不中奖.(1)求中二等奖的概率; (2)求不中奖的概率.[解] (1)记“中二等奖”为事件A .从五个小球中一次任意摸出两个小球,不同的结果有{0,1},{0,2},{0,3},{0,4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共10个基本事件.记两个小球的编号之和为x ,由题意可知,事件A 包括两个互斥事件:x =5,x =6. 事件x =5的取法有2种,即{1,4},{2,3},故P (x =5)=210=15;事件x =6的取法有1种,即{2,4},故P (x =6)=110.所以P (A )=P (x =5)+P (x =6)=15+110=310.(2)记“不中奖”为事件B ,则“中奖”为事件B ,由题意可知,事件B 包括三个互斥事件:中一等奖(x =7),中二等奖(事件A ),中三等奖(x =4).事件x =7的取法有1种,即{3,4},故P (x =7)=110;事件x =4的取法有{0,4},{1,3},共2种,故P (x =4)=210=15.由(1)可知,P (A )=310.所以P (B )=P (x =7)+P (x =4)+P (A )=110+15+310=35.所以不中奖的概率为P (B )=1-P (B )=1-35=25.统计与概率的综合应用统计和概率知识相结合命题统计概率解答题已经是一个新的命题趋向,概率和统计知识初步综合解答题的主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键,在此基础上掌握好样本数字特征及各类概率的计算.【例3】 (本小题满分12分)(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数13249265日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6)频数151310165(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)[信息提取]看到作频率分布直方图,想到作频率分布直方图的作图规则; 看到求概率,想到利用频率分布直方图求概率的方法; 看到估计节水量,想到求使用节水龙头前后的用水量. [规X 解答] (1)如图所示.4分(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,6分因此该家庭使用节水龙头后,日用水量小于0.35 m 3的概率的估计值为0.48.7分 (3)该家庭未使用节水龙头50天日用水量的平均数为x -1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.9分该家庭使用了节水龙头后50天日用水量的平均数为x -2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.11分估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).12分 [易错与防X] 作频率分布直方图时注意纵轴单位是“f iΔx i”,计算平均数时运算要准确,避免“会而不对”的失误.[通性通法] 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)你能否估计哪个班级平均每周上网时间较长?(2)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.[解] (1)A 班样本数据的平均值为15(9+11+14+20+31)=17,由此估计A 班学生每周平均上网时间为17小时;B 班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B 班学生每周平均上网时间为19小时. 所以B 班学生上网时间较长.(2)A 班的样本数据中不超过19的数据a 有3个,分别为9,11,14,B 班的样本数据中不超过21的数据b 也有3个,分别为11,12,21.从A 班和B 班的样本数据中各随机抽取一个共有9种不同的情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),其中a >b 的情况有(14,11),(14,12),2种,故a >b 的概率P =29.[大题增分专训]1.某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:分数 段(分) [50,70) [70,90) [90,110) [110,130) [130,150] 总计 频数b 频率 a0.25(1)求表中a ,b 的值及成绩在[90,110)X 围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)X 围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.[解] (1)由茎叶图知成绩在[50,70)X 围内的有2人,在[110,130)X 围内的有3人,∴a =0.1,b =3.∵成绩在[90,110)X 围内的频率为1-0.1-0.25-0.25=0.4, ∴成绩在[90,110)X 围内的样本数为20×0.4=8. 估计这次考试全校高三学生数学成绩的及格率为P =1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差小于或等于10的结果为(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128),共10个,∴P (A )=1021.2.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期 12月1日12月2日12月3日12月4日12月5日温差x (℃)101113128程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y =bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x .)[解] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况共有4种,所以P (A )=1-410=35,故选取的2组数据恰好是不相邻的2天数据的概率为35. (2)由数据,求得x =13×(11+13+12)=12,y =13×(25+30+26)=27,∑3i =1x i y i =11×25+13×30+12×26=977,∑3i =1x 2i =112+132+122=434,所以b =∑3i =1x i y i -3x y∑3i =1x 2i -3x2=977-3×12×27434-3×122=52,a =27-52×12=-3. 所以回归直线方程为y =52x -3.(3)当x =10时,y =22,|22-23|<2,同理当x =8时,y =17,|17-16|<2. 所以该研究得到的线性回归方程是可靠的.。
元调专题复习一:概率一.选择题1.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.14B.16C.15D.3202.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是3 53.将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生4.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃,梅花,黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生5.有人预测2018年世界杯足球赛巴西国家队夺冠的概率是70%,他们的理解正确的是()A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小二.填空题6.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.三,解答题1.甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关于x的方程x2+px+q=0有实数解的概率;(2)求(1)中方程有两个相同实数解的概率.3.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.4.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形.(1)请在方框中再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并写出构成的汉字进行说明.5.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少(请画树状图或列表计算).6在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.7.如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.8.为丰富学生的校园文化生活,振兴中学举办了一次学生才艺比赛,三个年级都有男、女各一名选手进入决赛,初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭档的结果;(2)求同一年级男、女选手组成搭档的概率;(3)求高年级男选手与低年级女选手组成搭档的概率.9.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.10.在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.11.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入;②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?12.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)14.四张扑克牌的牌面如图1所示,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.15四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.16.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.17.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.18.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.19.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.20.某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?21.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率;(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.(2)同时转动A,B两个转盘,转盘停止后,指针各指向一个数字,将所指的两个数字作和,用列表法列举所有可能得到的数字之和;(3)分别求(2)中事件“数字之和为奇数”发生的概率与事件“数字之和为偶数”发生的概率.24.小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.25.下图是由转盘和箭头组成的两个装置,装置A、B的转盘分别被分成三个面积相等的扇形,装置A上的数字分别是1,6,8,装置B上的数字分别是4,5,7,这两个装置除了表面数字不同外,其它构造完全相同.现在你和另外一个人分别同时用力转动A、B两个转盘中的箭头,如果我们规定箭头停留在较大数字的一方获胜(若箭头恰好停留在分界线上,则重新转动一次,直到箭头停留在某一数字为止),那么你会选择哪个装置呢?请借助列表法或树状图法说明理由.。