实验_6_连续信号时域分析的matlab计算
- 格式:doc
- 大小:52.00 KB
- 文档页数:4
MATLAB课程设计任务书姓名:秦** 学号:2012****0330题目:连续时间信号和系统时域分析及MATLAB实现初始条件:MATLAB 7.5.0 ,Windows XP系统实验任务:一、用MATLAB实现常用连续时间信号的时域波形(通过改变参数,分析其时域特性)。
1、单位阶跃信号,2、单位冲激信号,3、正弦信号,4、实指数信号,5、虚指数信号,6、复指数信号。
二、用MATLAB实现信号的时域运算1、相加,2、相乘,3、数乘,4、微分,5、积分三、用MATLAB实现信号的时域变换(参数变化,分析波形变化)1、反转,2、使移(超时,延时),3、展缩,4、倒相,5、综合变化四、用MATLAB实现信号简单的时域分解1、信号的交直流分解,2、信号的奇偶分解五、用MATLAB实现连续时间系统的卷积积分的仿真波形给出几个典型例子,对每个例子,要求画出对应波形。
六、用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形。
给出几个典型例子,四种调用格式。
七、利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形。
目录1 MATLAB简介 (1)1.1 MATLAB设计目的 (1)1.2 MATLAB语言特点 (1)2常用连续时间信号的时域波形 (1)2.1单位阶跃信号 (1)2.2单位冲激信号 (2)2.3正弦信号 (3)2.4实指数信号 (4)2.5虚指数信号 (5)2.6复指数信号 (6)3 连续时间信号的时域运算 (7)3.1相加 (7)3.2相乘 (8)3.3数乘 (9)3.4微分 (10)3.5积分 (11)4.1反转 (12)4.2时移 (13)4.3展缩 (14)4.4倒相 (15)4.5综合变化 (16)5连续时间信号简单的时域分解 (17)5.1信号的交直流分解 (17)5.2信号的奇偶分解 (19)6连续时间系统的卷积积分的仿真波形 (20)7连续时间系统的冲激响应、阶跃响应的仿真波形 (23)7.1 IMPULSE()函数 (23)7.2 STEP()函数 (27)8连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形 (31)8.1 正弦信号的零状态响应 (31)8.2 实指数信号的零状态响应 (32)9小结 (34)1 MATLAB简介1.1 MATLAB设计目的深入研究连续时间信号和系统时域分析的理论知识。
实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。
三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。
(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。
程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。
MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
实验教程目录实验一:连续时间信号与系统的时域分析-------------------------------------------------6一、实验目的及要求---------------------------------------------------------------------------6二、实验原理-----------------------------------------------------------------------------------61、信号的时域表示方法------------------------------------------------------------------62、用MATLAB仿真连续时间信号和离散时间信号----------------------------------73、LTI系统的时域描述-----------------------------------------------------------------11三、实验步骤及内容--------------------------------------------------------------------------15四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT -------------------------------------------------284、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------34四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49一、实验目的及要求--------------------------------------------------------------------------49二、实验原理----------------------------------------------------------------------------------491、连续时间LTI系统的频率响应-------------------------------------------------------492、LTI系统的群延时---------------------------------------------------------------------503、用MATLAB计算系统的频率响应--------------------------------------------------50三、实验步骤及内容----------------------------------------------------------------------51四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59一、实验目的及要求--------------------------------------------------------------------------59二、实验原理----------------------------------------------------------------------------------591、信号的抽样及抽样定理---------------------------------------------------------------592、信号抽样过程中的频谱混叠----------------------------------------------------------623、信号重建--------------------- ----------------------------------------------------------624、调制与解调----------------------------------------------------------------------------------645、通信系统中的调制与解调仿真---------------------------------------------------------66三、实验步骤及内容------------------------------------------------------------------------66四、实验报告要求---------------------------------------------------------------------------75 实验五:连续时间LTI系统的复频域分析----------------------------------------------76一、实验目的及要求------------------------------------------------------------------------76二、实验原理--------------------------------------------------------------------------------761、连续时间LTI系统的复频域描述--------------------------------------------------762、系统函数的零极点分布图-----------------------------------------------------------------773、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------784、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------795、系统函数的零极点分布与系统的滤波特性-------------------------------------------806、拉普拉斯逆变换的计算-------------------------------------------------------------81三、实验步骤及内容------------------------------------------------------------------------82四、实验报告要求---------------------------------------------------------------------------87 附录:授课方式和考核办法-----------------------------------------------------------------88实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
实验二 连续信号时域分析的MATLAB 实现一. 实验目的1. 熟悉MATLAB 软件平台;2. 掌握MATLAB 编程方法、常用语句和可视化绘图技术;3. 编程实现常用信号及其运算MATLAB 实现方法。
二. 实验原理信号一般是随时间而变化的某些物理量。
按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。
若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。
MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。
根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。
在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。
下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。
1.连续时间信号所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。
从严格意义上讲,MATLAB 并不能处理连续信号。
在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。
在MATLAB 中连续信号可用向量或符号运算功能来表示。
⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。
向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。
例如:对于连续信号sin()()()t f t Sa t t== ,我们可以将它表示成行向量形式,同时用绘图命令plot()函数绘制其波形。
实验一连续时间信号在Matlab 中的运算一、实验目的1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换。
2、学会运用Matlab 进行连续时间信号相加、相乘、微分、积分和卷积运算。
3、观察并熟悉这些信号的波形和特性。
二、实验原理1、连续时间信号的表示连续信号的表示方法有两种:符号推理法和数值法。
从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。
然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。
2、信号的时移、反褶和尺度变换信号的平移、反转和尺度变换是针对自变量时间而言的,其数学表达式和波形变换中存在着一定的变化规律。
从数学表达式上来看,信号的上述所有计算都是自变量的替换过程。
所以在使用Matlab 进行连续时间信号的运算时,只需要进行相应的变量代换即可完成相关工作。
3、连续时间信号的微分和积分连续时间信号的微分运算,可使用diff 命令函数来完成,其语句格式为:diff(function, ‘variable ',n) 。
其中,function 表示需要进行求导运算的函数,或者被赋值的符号表达式;variable 为求导运算的独立变量;n 为求导阶数,默认值为一阶导数。
连续时间信号积分运算可以使用int 命令函数来完成,其语句格式为:int(function, ‘variable ',a, b) 。
其中,function 表示被积函数,或者被赋值的符号表达式;variable为积分变量;a为积分下限,b为积分上限,a和b默认时则求不定积分。
4、信号的相加和相乘运算信号的相加和相乘是信号在同一时刻取值的相加和相乘。
因此Matlab 对于时间信号的相加和相乘都是基于向量的点运算。
5、连续信号的卷积运算卷积积分是信号与系统时域分析的重要方法之一。
定义为:f (t) f1(t) f2 (t) -f1( )f2(t )dMatlab 进行卷积计算可通过符号运算方法和数值计算方法实现。
课程设计任务书题目:连续时间信号和系统时域分析及MATLAB实现课题内容:一、用MATLAB实现常用连续时间信号的时域波形(通过改变参数,分析其时域特性)。
二、用MATLAB实现信号的时域运算三、用MATLAB实现信号的时域变换(参数变化,分析波形变化)1、反转,2、使移(超时,延时),3、展缩,4、倒相,5、综合变化四、用MATLAB实现信号简单的时域分解1、信号的交直流分解,2、信号的奇偶分解五、用MATLAB实现连续时间系统的卷积积分的仿真波形给出几个典型例子,对每个例子,要求画出对应波形。
六、用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形。
给出几个典型例子,四种调用格式。
七、利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形。
给出几个典型例子,要求可以改变激励的参数,分析波形的变化。
时间安排:学习MATLAB语言的概况第1天学习MATLAB语言的基本知识第2、3天学习MATLAB语言的应用环境,调试命令,绘图能力第4、5天课程设计第6-9天答辩第10天指导教师签名:年月日目录摘要 (Ⅰ)1.绪论 (1)2.对课题内容的分析 (2)2.1连续时间信号概述 (2)2.2采样定理 (2)2.3总体思路 (2)3.设计内容 (2)3.1用MATLAB实现常用连续时间信号的时域波形 (2)3.1.1单位阶跃信号和单位冲击信号 (2)3.1.2正弦信号 (4)3.1.3指数信号 (5)3.1.4实指数信号和虚指数信号 (6)3.2用MATLAB实现信号的时域运算 (7)3.2.1相加 (7)3.2.2相乘 (8)3.2.3数乘 (9)3.2.4微分 (10)3.2.5积分 (12)3.3用MATLAB实现信号的时域变换 (13)3.4用MATLAB实现信号简单的时域分解 (15)3.4.1 交直流分解 (15)3.4.2 奇偶分解 (16)3.5用MATLAB实现连续时间系统的卷积积分的仿真波形 (18)3.6用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形 (19)3.7利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形 (20)4.心得体会 (22)5.参考文献 (23)摘要本文介绍了基于MATLAB的连续时间信号与系统时域分析。
信号与系统实验报告连续时间信号的时域分析实验目的:通过对连续时间信号的时域分析,进一步加深对信号的理解和掌握时域分析的方法和技巧。
实验原理:连续时间信号在时域上可以用其函数形式表示。
通常所说的时域分析即指对该函数形式进行各种数学性质的分析,如:波形特征、奇偶性、对称性、周期性等等。
实验设备:计算机、MATLAB软件。
实验步骤:1. 打开MATLAB软件,新建空白文件,在文件中输入以下代码:t = -10:0.01:10;y = sin(t);subplot(2,1,1);xlabel('t'),ylabel('y');title('原始信号');grid on;plot(-t,-y);2. 点击运行,得到以下结果:图1 连续时间正弦信号及其翻折信号3. 对上述代码进行说明:t表示时间变量,取值范围为-10到10,以0.01为步长。
y表示信号变量,为sin(t)。
subplot(2,1,1)表示将画布分为两个部分,第一个部分为上部分。
plot(t,y)表示绘制t变量与y变量之间的图形。
xlabel('t')表示将x轴标注为t。
title('翻折信号')表示将图形命名为翻折信号。
4. 分别观察原始信号和翻折信号,并进行分析。
原始信号是一条正弦波,周期为2π。
该信号的奇偶性、对称性、周期性均为偶函数。
实验结论:本实验通过对连续时间信号的时域分析,掌握了分析信号的方法和技巧,并同时对信号的奇偶性、对称性、周期性等属性有了更深入的了解,为以后更深入的信号分析工作奠定了基础。
MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。
对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。
下面是一个关于连续LTI系统的时域分析的实验。
一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。
二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。
这可以通过使用MATLAB中的lti函数来完成。
我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。
2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。
在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。
3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。
这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。
4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。
这可以帮助我们理解系统的行为,并验证我们的模型是否正确。
三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。
对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。
通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。
2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。
这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。
这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。
实验六连续信号时域分析的MATLAB计算
一、实验目的
1、了解计算机的规章制度、说明考核方法。
2、复习matlab的基本知识、记忆常用语句的用法;
3、学习利用matlab软件实现连续信号时域分析中使用的计算——微分方程求解与卷积积分——的方法。
二、实验仪器
计算机(安装matlab软件)
三、实验原理
1、matlab中微分方程的求解
Matlab的符号工具箱中有一个可用于求解常微分方程的函数dsolve。
这个函数使用的格式为:
r=dsolve(’eq1,eq2,eq3……’,’cond1,cond2,……’,’v’)
或者:
r=dsolve(’eq1’,’eq2’,’eq3’……,’cond1’,’cond2’,……,’v’)
可以看到,两者的区别主要在单引号的范围方面。
在格式的表达式中,r表示我们需要求的函数,eq1——eqn这几项表示的是组成整个微分方程的,多个以等式方式出现的表达式。
cond1——condn这几项指的是对应微分方程的初始条件,只求方程的通解时可以不填。
v项为当变量不是默认的t时,自指定的自变量,一般可不填。
matlab在表示微分方程的时候,默认用D+数字的形式表示微分,例如Dy 表示y的一阶导数,D2y表示y的二阶导数等等。
由于大写的D用于表示微分,在这些表达式中,不能用D作为变量、函数等的名称。
例如:微分方程7y’+8y’+9=2t的表示方法为:
y=dsolve(‘7*d2y+8*dy+9=2*t’)
在求解微分方程时,可以通过设置不同的参数求得微分方程的的不同解。
仍然以微分方程7y’+8y’+9=2t为例,如果设初始条件为y(0)=0,y’(0)=3。
那么计算零输入响应时应该把x(t)处(也可以看做是方程右侧)取零,将初始条件列入表达式中:
y=dsolve(‘7*d2y+8*dy+9=0’,’y(0)=0,Dy(0)=3’)
求解零状态响应时,则将方程右侧的表达式填入,将初始条件取零。
如:y=dsolve(‘7*d2y+8*dy+9=2*t’,’y(0)=0,Dy(0)=0’)
2、matlab中对冲激响应以及阶跃响应的求解
Matlab中有两个函数专门用于计算函数的冲激响应和阶跃响应。
两者分别是:
Impulse(b,a,v)求冲激响应
Step(b,a,v)求阶跃响应
两个函数中的a代表用一个数组进行表示的,所求方程在等号y(t)一侧的各项系数,阶次由高到低。
b则为用一个数组进行表示的,代表所求方程在等号x(t)一侧的各项系数,阶次由高到低。
v处为变量值,这两个函数默认的变量为t,如果要求的变量不是t而是其他值,在这里填上。
注意:a与b都是数组,在使用前应先行定义,两数组均由各次项的系数构成。
例如求微分方程7y’+8y’+9=2x(t)的冲击响应
a=[7 8 9]
b=[2]
y=impulse(b,a)
3、用matlab计算卷积积分
卷积积分可以直接根据卷积积分的定义,利用符号积分函数的指令int实现。
积分函数指令的使用格式如下所示:
int(S,v,a,b)
其中S为被积函数的表达式,v为用sym函数定义的,在积分中使用的符号变量。
a、b为积分的上下限,可以取具体数字,也可以用前设的变量,使用时看具体情况而定,有a、b两个参数时该函数所计算的是定积分,没有时所计算的是不定积分。
注意:在matlab中,计算积分等无法使用数组代替函数的情况下要使用sym 定义符号变量,用表达式或已有函数表示信号。
卷积积分得到结果后还需对结果进行简化。
具体可看课本45页到46页的例2.24和例2.25。
四、预习要求
1、复习安全操作的知识。
2、复习matlab 软件的基本使用方法,主要看课本第一章的1.4与附录1两部分。
3、复习微分方程的建立与求解的过程,复习第三章的3.2部分。
并预先对实验中需要编程的题目进行理论计算,记录理论计算的结果和过程。
4、仔细阅读课本63页到66页。
5、撰写预习报告。
五、实验内容及步骤
1、讲授实验室的规章制度、强化安全教育、说明考核方法。
2、运行matlab ,并将M 文件编制功能打开。
3、利用matlab 进行计算程序的编制,计算如下的几项:
(1)已知方程各表达式和条件如下: 方程:dt t dx t y dt t dy dt t y d )
()(4)(7)
(322=++ 其中t e t x 3)(-=
初始条件: y(0)=0 y ’(0)=0
求该方程的零状态响应、零输入响应,冲激响应,阶跃响应。
(2)先将书上45页到46页的两个例子输入matlab 中,体会所用的命令与函数的效果,并以此为例,尝试用matlab 求下列信号的卷积:
①、t 010
1
)(1其他≥≥⎩⎨⎧=t t x ⎩⎨⎧≥≥=t 0203)(2其他t t t x ②、)(9)(1t u t x t -= )()(2t u t x =
六、实验报告
1、整理实验数据
手工解出来的微分方程的方程解,及其图形,手工计算的卷积积分结果,及其图形。
自行编制的程序。
2、实验总结。
手工计算的结果与matlab计算的结果对比,是否有不同?不同原因所在。
实验的心得体会。