高一物理万有引力与航天
- 格式:doc
- 大小:464.00 KB
- 文档页数:11
万有引力与航天科学知识点总结1. 万有引力的定义和原理- 万有引力是指质点之间的引力相互作用力,由牛顿于17世纪提出的普适物理定律。
- 万有引力的原理是质点间的引力与它们的质量成正比,与它们之间的距离成反比。
2. 万有引力公式- 万有引力公式表达了两个质点间的引力大小与它们质量和距离的关系:`F = G * (m1 * m2) / r^2`。
- 其中,F表示引力的大小,m1和m2分别是两个质点的质量,r是它们之间的距离,G为万有引力常数。
3. 航天科学中的万有引力应用- 万有引力是航天科学中至关重要的概念,对行星运行、地球轨道等都具有重要影响。
- 宇宙飞行器与地球的相对位置和角度,以及运动轨迹的计算都需要考虑万有引力的作用。
- 万有引力也是行星探测任务中的重要影响因素,科学家通过研究行星的引力场,获得行星的质量、结构和组成信息。
4. 航天科学的其他知识点除了万有引力,航天科学还涉及许多其他重要知识点,如:- 轨道力学:研究天体运动的力学原理和方法。
- 航天器设计:包括航天器的结构、推进系统、导航和控制等设计原理与技术。
- 火箭发动机:研究和设计用于航天器推进的火箭发动机。
- 航天器轨道控制:保持航天器在特定轨道上的运动稳定与精确控制。
5. 航天科学的前沿领域- 航天科学作为一个不断发展的领域,目前还有许多前沿研究领域,如:- 卫星导航与定位技术- 空间站和深空探测任务- 火星和月球探测- 太阳风与地球磁层相互作用研究以上是对万有引力与航天科学的知识点进行了简要总结。
了解这些基本概念和相关领域的发展情况,有助于更好地理解和探索航天科学的奥秘与魅力。
万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物:托勒密(欧多克斯、亚里士多德)2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:开普勒第三定律:K—与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
①②③2、表达式:3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r的二次方成反比。
4.引力常量:G=6.67×10-11N/m2/kg2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r为两物体质心间的距离。
6、推导:四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r处,质点受到的万有引力就等于半径为r的球体的引力。
五、黄金代换若已知星球表面的重力加速度g和星球半径R,忽略自转的影响,则星球对物体的万有引力等于物体的重力,有所以其中是在有关计算中常用到的一个替换关系,被称为黄金替换。
导出:对于同一中心天体附近空间内有,即:环绕星体做圆周运动的向心加速度就是该点的重力加速度。
六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M1:M2:相同的有:周期,角速度,向心力,因为,所以轨道半径之比与双星质量之比相反:线速度之比与质量比相反:七、宇宙航行:1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……3、卫星轨道:可以是圆轨道,也可以是椭圆轨道。
万有引力与航天中的几何关系
万有引力与航天中的几何关系主要表现在以下几个方面:
1. 向心力关系:同步卫星与近地卫星都是通过万有引力提供向心力。
对于赤道上的物体,万有引力的部分分力提供向心力。
2. 向心加速度关系:由于向心加速度的大小与轨道半径成反比,所以向心加速度的关系是近地卫星>同步卫星>赤道上的物体。
3. 周期关系:近地卫星和赤道物体的周期都为24小时,所以周期的大小关系是同步卫星=赤道物体>近地卫星。
4. 线速度关系:由于线速度与轨道半径成反比,所以线速度的大小关系是近地卫星>同步卫星>赤道物体。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
万有引力与航天(一)第一宇宙速度的理解与计算1.第一宇宙速度的推导 方法一:由G MmR 2=m v 12R得,v 1=GMR=7.9×103 m/s 。
方法二:由mg =m v 12R得,v 1==7.9×103 m/s 。
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s ≈85 min 。
2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。
(2)7.9 km /s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆。
(3)11.2 km /s ≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动。
(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
典例1.(2014·江苏高考)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km /sB .5.0 km/sC .17.7 km /sD .35.2 km/s1.随着我国登月计划的实施,我国宇航员登上月球已不是梦想:假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点。
已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R 2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0(二)卫星变轨道问题典例2.(多选)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示。
关于航天飞机的运动,下列说法中正确的有()A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度典例3.(多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1和2相切于Q点,轨道2和3相切于P点,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v1、v3和a1、a3,在2轨道经过P点时的速度和加速度为v2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T1、T2、T3,以下说法正确的是()A.v1>v2>v3B.v1>v3>v2C.a1>a2>a3D.T1<T2<T3[方法规律]卫星变轨的实质(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小。
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。
表达式为:)4(223πGM K K T R == k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式:rF MmG2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F F 向万= 即:222224n Mm v F Gma m mr mr r r Tπω=====万2.天体对其表面物体的万有引力近似等于重力:g m R MmG=2即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g9.8m/s 2③关系:22')(h R gRg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力与航天☆知识梳理1.内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成 ,与它们之间的距离r 的 成反比. 2.公式:221rm m GF =,其中G = N·m 2/kg 2叫引力常量. 3.适用条件:公式适用于 间的相互作用.也适用于两个质量分布均匀的球体间的相互作用,但此时r 是 间的距离,一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到 间的距离.☆要点深化1.万有引力和重力的关系万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转需要的向心力F 向,如图4-4-1所示,可知: (1)地面上的物体的重力随纬度的增大而增大.故重力加速度g 从赤道到两极逐渐增加.(2)在两极:重力等于万有引力,重力加速度最大.(3)在赤道:F 万=F 向+mg故22ωmR rMmGmg -= (4)由于地球的自转角速度很小,地球的自转带来的影响很小,一般情况下认为: mg RMm G=2,故GM =gR 2,这是万有引力定律应用中经常用到的“黄金代换”. (5)距地面越高,物体的重力加速度越小,距地面高度为h 处的重力加速度为: g hR R g 2/)(+= 其中R 为地球半径,g 为地球表面的重力加速度. 2.万有引力定律的基本应用(1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由 提供.(2)“万能”连等式⎪⎪⎪⎩⎪⎪⎪⎨⎧===ωπωmv T mr mr r v m ma mg r Mm G r 2222)2( 其中gr 为距天体中心r 处的重力加速度.☆针对训练1.假如一做圆周运动的人造地球卫星的轨道半径增加到原来的2倍,仍做圆周运动,则( ) A .根据公式v =ωr 可知卫星运动的线速度将增大到原来的2倍B .根据公式r v m F 2=,可知卫星所需的向心力将减小到原来的1/2C .根据公式2rMmG F =可知地球提供的向心力将减小到原来的1/4D .根据上述B 和C 中给出的公式可知,卫星运行的线速度将减小到原来的22☆知识梳理1.应用万有引力定律分析天体运动的方法把天体运动看成是 运动,其所需的向心力由天体间的万有引力提供.===ma mg r MmGr 2_________=_________=_________. 应用时可根据实际情况选用适当的公式进行分析和计算. 特别提醒三个近似近地卫星贴近地球表面运行,可近似认为做匀速圆周运动的半径等于地球半径; 在地球表面随地球一起自转的物体可近似认为其重力等于地球对它的万有引力; 天体的运动轨道可近似看作圆轨道. 2.关于同步卫星的五个“一定” (1)轨道平面一定:轨道平面与 共面. (2)周期一定:与地球自转周期 ,即T =24 h. (3)角速度一定:与地球自转的角速度 . (4)高度一定:由)()2()(22h R T m h R Mm G+=+π,得同步卫星离地面的高度 h = ≈3.6×107 m.(5)速度一定:v = =3.1×103 m/s.☆要点深化1.两种加速度——卫星的向心加速度和随地球自转的向心加速度的比较2. 两个半径——天体半径R和卫星轨道半径r的比较卫星的轨道半径是天体的卫星绕天体做圆周运动的圆的半径,所以r=R+h.当卫星贴近天体表面运动时,h≈0,可近似认为轨道半径等于天体半径.3.两种周期——自转周期和公转周期的比较自转周期是天体绕自身某轴线运动一周的时间,公转周期是卫星绕中心天体做圆周运动一周的时间.一般情况下天体的自转周期和公转周期是不等的,如:地球自转周期为24小时,公转周期为365天.但也有相等的,如月球,自转、公转周期都约为27天,所以地球上看到的都是月球固定的一面,在应用中要注意区别.☆针对训练2.2009年2月11日,俄罗斯的“宇宙2251”卫星和美国的“铱33”卫星在西伯利亚上空约805 km处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运动速率比乙的大,则下列说法中正确的是()A.甲的运动周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大3.我国正在自主研发“北斗二号”地球卫星导航系统,此系统由中轨道、高轨道和同步卫星等组成,可将定位精度提高到“厘米”级,会在交通、气象、军事等方面发挥重要作用.已知三种卫星中,中轨道卫星离地最近,同步卫星离地最远,则下列说法中正确的是() A.中轨道卫星的线速度小于高轨道卫星的线速度B.中轨道卫星的角速度小于同步卫星的角速度C.若一周期为8 h的中轨道卫星,某时刻在同步卫星的正下方,则经过24 h仍在该同步卫星的正下方D.高轨道卫星的向心加速度小于同步卫星的向心加速度特别提醒(1)三种宇宙速度均指的是发射速度,不能理解为环绕速度.(2)第一宇宙速度既是最小发射速度,又是卫星绕地球做匀速圆周运动的最大速度.☆要点深化1.如何推导出第一宇宙速度?由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,故人造卫星的最小发射速度对应将卫星发射到近地表面运行,此时发射时的动能全部转化为绕行的动能而不需要转化为重力势能. 根据论述可推导如下:R v m RMm G 212=,s km R GMv /9.71==或Rv m mg 21=, s km gR v /9.71==2.两种速度——环绕速度与发射速度的比较(1)不同高度处的人造卫星在圆轨道上运行速度即环绕速度rGMv =环绕,v 环绕其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,增大势能,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,此时v 发射>v 环绕.(2)人造地球卫星的最小发射速度应是卫星发射到近地表面运行,此时发射动能全部作为绕行的动能而不需要转化为重力势能.此速度即为第一宇宙速度,此时v 发射=v 环绕.☆针对训练4.2009年3月7日(北京时间)世界首个用于探测太阳系外类地行星的“开普勒”号太空望远镜发射升空,在银河僻远处寻找宇宙生命.假设该望远镜沿半径为R 的圆轨道环绕太阳运行,运行的周期为T ,万有引力恒量为G .仅由这些信息可知( ) A .“开普勒”号太空望远镜的发射速度要大于第三宇宙速度 B .“开普勒”号太空望远镜的发射速度要大于第二宇宙速度 C .太阳的平均密度D .“开普勒”号太空望远镜的质量5.已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响. (1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T .解题思路探究题型1 万有引力定律在天体运动中的应用【例1】 “嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的1/6,月球半径为地球半径的1/4,根据以上信息得( ) A .绕月与绕地飞行周期之比为 3 : 2 B .绕月与绕地飞行周期之比为3:2C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96以题说法 1.两条线索(1)万有引力提供向心力F 引=F 向. (2)重力近似等于万有引力提供向心力. 2.两组公式r T m r m r v m rMm G 2222)2(πω=== r Tm r m r v m mg r 222)2(πω=== (g r 为轨道所在处重力加速度) 3.应用实例(1)天体质量M 、密度ρ的估算测出卫星绕天体做匀速圆周运动的半径r 和周期T ,由r T m r Mm G 22)2(π=得2324GT r M π=,3233334R GT r R M V M ππρ===,R 为天体半径. 当卫星沿天体表面绕天体运行时,r =R ,则23GTπρ=(2)卫星的绕行速度、角速度、周期与半径R 的关系①由r v m rMm G 22=得r GMv =知:r 越大,v 越小.②由r m r Mm G22ω=得3r GM =ω知:r 越大,ω越小. ③由r T m rMm G 22)2(π=得GMr T 324π=知:r 越大,T 越大.变式训练1-1 2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来(如图4-4-2所示).“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的半径为2r ,则可以确定( )A .卫星与“神舟七号”的加速度大小之比为1∶4B .卫星与“神舟七号”的线速度大小之比为1∶ 2C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它做自由落体运动1-2 近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T ,则火星的平均密度ρ的表达式为(k 为某个常数)( )A .T k =ρ B .ρ=kT C .ρ=kT 2 D .2Tk =ρ 题型2 天体表面重力加速度【例2】 火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2gB .0.4gC .2.5gD .5g以题说法星体表面及其某一高度处的重力加速度的求法 设天体表面的重力加速度为g ,天体半径为R ,则2R Mm Gmg =,即)或22(gR GM RGM g == 若物体距星体表面高度为h ,则2/)(h R Mm G mg +=,即g h R R h R GM g 22/)()(+=+= 变式训练2-1 英国《新科学家(New Scientist)》杂志评选出了2008年度世界8项科学之最,在XTEJ1650500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M和半径R 的关系满足Gc R M 22= (其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( )A .108 m/s 2B .1010 m/s 2C .1012 m/s 2D .1014 m/s 2题型3 宇宙速度问题的分析【例3】 我国成功发射一颗绕月运行的探月卫星“嫦娥一号”.设该卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的811,月球的半径约为地球半径的41,地球上的第一宇宙速度约为7.9 km/s ,则该探月卫星绕月运行的速率约为( )A .0.4 km/sB .1.8 km/sC .11 km/sD .36 km/s以题说法(1)解决此类题的关键:要明确卫星的第一宇宙速度等于最大环绕速度.(2)解决万有引力定律的应用问题,尽管题目很多,但其基本方法是不变的,即把天体的运动看成圆周运动,万有引力提供向心力.变式训练3-1 北京时间2007年11月7号上午8点24分,在北京航天飞行控制中心的控制下,嫦娥一号卫星主发动机点火成功,工作10分钟后,发动机正常关机,嫦娥一号进入距月球表面约200公里的圆轨道.设月球半径约为地球半径的1/4,月球质量约为地球质量的1/81,不考虑月球自转的影响,据此完成下列问题.(地球表面处的重力加速度g 取10 m/s 2),地球半径R =6 400 km ,4.12=,计算结果保留两位有效数字)(1)在月球上要发射一颗环月卫星,则最小发射速度多大?(2)嫦娥一号卫星在距月球表面约200公里绕月做匀速圆周运动的速度大小约为多少?3-1 如图4-4-3所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )A .R r a a =21 B .221)(rR a a = C .R r v v =21 D .rRv v =21题型4 卫星变轨与对接10.如图4-4-4所示,我国发射了一颗地球资源探测卫星,发射时,先将卫星发射至距离地面50 km 的近地圆轨道1上,然后变轨到近地点距离地面50 km 、远地点距离地面1 500 km 的椭圆轨道2上,最后由轨道2进入半径为7 900 km 的圆轨道3,轨道1、2相切于P 点,轨道2、3相切于Q 点.忽略空气阻力和卫星质量的变化,则以下说法正确的是( )A .该卫星从轨道1变轨到轨道2需要在P 处点火加速B .该卫星在轨道2上稳定运行时,P 点的速度小于Q 点的速度C .该卫星在轨道2上Q 点的加速度大于在轨道3上Q 点的加速度D .该卫星在轨道3的机械能小于在轨道1的机械能11.美国宇航局的“信使”号水星探测器按计划将在2015年3月份陨落在水星表面.工程师找到了一种聪明的办法,能够使其寿命再延长一个月.这个办法就是通过向后释放推进系统中的高压氦气来提升轨道.如图4-4-5所示,设释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( ) A .探测器在轨道Ⅱ上A 点运行速率小于在轨道Ⅱ上B 点速率 B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率 C .探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少D .探测器在轨道Ⅰ和轨道Ⅱ上A 点加速度大小不同题型5 双星与多星问题12.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此圆周运动的周期为( ) A.nkT B.n 2kT C.n 3k 2T D.n 3kT 13.宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图4-4-6所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,下列说法正确的是( )图4-4-6A .每颗星做圆周运动的角速度为3Gm L 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D .若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍图4-4-4图4-4-5例1. 若已知某行星的一个卫星绕其运转的轨道半径为R,周期为T,引力常量为G,则可求得A.该卫星的质量B.行星的质量C.该卫星的平均密度D.行星的平均密度例2. 地球半径为R,地面附近的重力加速度为g0,则在离地面高度为h的地方的重力加速度的大小是A.22()h gR h+B.22()R gR h+C.02()gR h+D.0RgR h+例3. 一个质量分布均匀的球体,半径为2r,在其内部挖去一个半径为r的球形空穴,其表面与球面相切,如图所示。