(完整word)三角函数最全知识点总结,推荐文档
- 格式:pdf
- 大小:554.15 KB
- 文档页数:15
1.①与a (0°<cr<360°)终边相同的角的集合(角a 与角0的终边重合):{〃| 0*x36(T+a,展z}② 终边在龙轴上的角的集合:{0|0二Rxl80°,Rwz} ③ 终边在y 轴上的角的集合:0|0*xl8O°+9O°,展z} ④ 终边在坐标轴上的角的集合:{0|0 = £x9O°,/z} ⑤ 终边在尺轴上的角的集合:{01 0 = k x 180° + 45°" Z} ⑥ 终边在y = -x 轴上的角的集合:畅10 = Rx 180° -45°,展z}⑦ 若角a 与角0的终边关于兀轴对称,则角。
与角0的关系:a = 360°k-j3⑧ 若角a 与角0的终边关于y 轴对称,则角a 与角0的关系:^ = 3607 + 180°-0⑨ 若角a 与角0的终边在一条直线上,则角仅与角0的关系:Q = 18O°P + 0⑩角Q 与角0的终边互相垂直,则角a 与角0的关系:a = 36O7 + 0±9O 。
三角函数定义域f(x) = siav {x | xe R} fM = coy {x\xe R}f(x) = tanx彳 x | XG /?且xH k 兀+ — 7t 、kw Z >/(x) = coU{x | xe /?£Lx 丰 k 兀、ke Z}f(x) = secx V x| XG R 且k 兀+ —Z2>f(x) = cscx{x | xe R 且兀工k 兀、k G Z }三角函数的公式:(-)基本关系公式组一 公式组二sint • cscx=l sin xtanv" -------cosx •少2 <sin^v+cos 尸 1sin(23 + x) = sin x cos(2to + x) = cosx cosx • sccx=lcosxcotx=———sin xl+tan 2x=scc 2x tan(2^ + x) = tanx tanv • cotv=ll+cot 2x=csc 2xcot(2^ + x) = cotx(二)角与角之间的互换 公式组一公式组二cos(a + 0) = cos a cos 0 — sin a sin 0 sin 2a = 2 sin a cos a公式组三sin(-x) = - sin x cos(-x) = cos x tan(-x) = - tan x cot(-x) = - cot xSZCOS 三角函数值人小关系图 1、2. 3. 4表示第一、二、三、注意:①y = -sin 兀与y = sin x 的单调性正好相反;) = -cosx 与y = cosx 的单调性也同样相反•一般地,sin(a + 0) = sin a cos 0 + cos a sin 0 sin(a - 0) = sin a cos 0 — cos a sin 0tan 2a =2 tan cr1-tan 2 a .a , 11 - cos a sm — = ± J ---------2 V 2 1 - tan a tan pa , 11 + cos a cos — = ±y ------------------2 V 2z c 、tana-tan Btan(a —0) = --------------- J1 + tan a tan p公式组四sin cos a , 1-cosa sin a 1-coscr tan ——=± J= 2 Vl + cosa 1 + cosa公式组三sincr公式组五P = — [sin (a 4- 0)+sin(a_0)] 2 cos 6T sin p = g[sin("+ 0)_sin (Q-0)] cosacos^ = l[cos( a + 0)+cos(a-0)]sin as\n /3 = --- [cos(a + 0)- cos(a - 0)]・ q c ・ a + 0 a-0sin a + sin p = 2sin ----- - cos ---- —2 2 . a+0 . a-p sin cr-sin p = 2 cos -------- s in -------- 2 2Q 小 Q+# a~COS (7+cos p = 2cos — cos —Y~Q c ・ Q+# ・ a~Pcos a 一 cos 0 = -2 sin ------ s in ------- 2 2sin 15' =cos 75'=卫二返,sin 75° = cos 15、空土丄,tan 15 = cot 75 = 2 - VJ, tan 75 =cotl5° = 2 +VJ.44 c a2 tan —・ 2 sin a = ---------- —1 + tan — (2 a1-tan — cos a = ------------------- — 2 tan — 2 tan a = --------- — ■ 2 Q 1 - tan ~ —2coscos(+龙-G )二 sin 。
i ng si nt he i rb ei n ga re g三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质二、正切函数的图象与性质函数y =sin x y =cos x图象定义域RR 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+(k ∈Z )时,y max =1;π2x =2k π-(k ∈Z )时,y min =-1π2x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+,k ∈Zπ2对称中心:(k π+,0)(k ∈Z )π2对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π定义域{|,}2x x k k Z ππ≠+∈值域R单调性递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(含原点)(,0)()2k k Z π∈最小正周期π三、三角函数图像的平移变换和伸缩变换1. 由的图象得到()的图象x y sin =)sin(ϕω+=x A y 0,0A ω>>xy sin =方法一:先平移后伸缩方法二:先伸缩后平移操作向左平移φ个单位横坐标变为原来的倍1ω结果)sin(ϕ+=x y xy ωsin =操作横坐标变为原来的倍1ω向左平移个单位ϕω结果)sin(ϕω+=x y 操作纵坐标变为原来的A 倍结果)sin(ϕω+=x A y 注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。
假如角的终边在坐标轴上,就以为那个角别属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。
三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表:(2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=———-—1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—--2 2α+βα-βsinα-sinβ=2cos—--·sin--—22α+βα-βcosα+cosβ=2cos---·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—22sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α—β)]sinα·sinβ=-(1/2)[cos(α+β)—cos(α—β)]化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)函数变换360k+αsinαcosαtanαcotαsecαcscαcosαsinαcotαtanαcscαsecα90°—α90°+αcosα-sinα—cotα—tanα—cscαsecα180°—sinα-cosα—tanα-cotα—secαcscαα—sinα-cosαtanαcotα-secα—cscα180°+α270°--cosα—sinαcotαtanα-cscα—secαα270°+—cosαsinα-cotα-tanαcscα-secαα360°--sinαcosα-tanα-cotαsecα-cscαα﹣α—sinαcosα-tanα—cotαsecα-cscα反三角函数三角函数的反函数,是多值函数。
三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。
象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。
终边在坐标轴上的角不属于任何象限。
终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。
2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。
弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。
弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。
扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。
二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。
对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。
2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。
余弦函数y=cos x:一、四象限为正,二、三象限为负。
正切函数y = tan x:一、三象限为正,二、四象限为负。
三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。
2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。
四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。
三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。
正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。
经典三角函数公式及其图像大全三角函数是中学课程里,非常重要的一部分,应将其作为学习的一个重点。
⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π2.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C BA c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)3.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)4.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒌同角关系:⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y ,依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒖反三角函数: ⒗最简单的三角方程ax =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx = {}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π三角、反三角函数图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数y=sinx y=cosx y=tanxy=cotx定义域R R{x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z).反三角函数:arcsinx arccosx名称反正弦函数反余弦函数反正切函数反余切函数。
复习模块: 三角函数知识点1.逆时针方向旋转形成正角, 顺时针方向旋转形成负角, 不旋转形成零角.2、角的终边在第几象限, 就把这个角叫做第几象限的角(或者说这个角在第几象限).终边在坐标轴上的角叫做界限角3.与角终边相同的角所组成的集合为{︱}4.将等于半径长的圆弧所对的圆心角叫做1弧度的角, 记作1弧度或1rad.5、正角的弧度数为正数, 负角的弧度数为负数, 零角的弧度数为零.6.角的弧度数的绝对值等于圆弧长与半径的比, 即(rad)7、换算公式1°= (rad);1rad (度).30 45 60 90 120 150 180 270 3608、常用角的单位换算:角度制(o)弧度制(rad)9、点为角的终边上的任意一点(不与原点重合), 点P到原点的距离为,10、则角的正弦、余弦、正切分别定义为: = ; = ;= .11、三角函数值的正负:12.同角三角函数值的关系:,13、常用角的三角函数值:14.诱导公式:=+=++)cos()sin(απαπαπ=-=--)cos()sin(απαπαπ练习题1.将-300o 化为弧度为( )A.-43π; B.-53π; C.-76π; D.-74π;2.下列选项中叙述正确的是 ( ) A. 三角形的内角是第一象限角或第二象限角 B. 锐角是第一象限的角 C. 第二象限的角比第一象限的角大 D. 终边不同的角同一三角函数值不相等3.在直角坐标系中, 终边落在x 轴上的所有角是 ( ). A..B.00与180. C.. D.4.使 有意义的角 是..)A.第一象限的角B.第二象限的角C.第一、二象限的角D.第一、二象限或y 轴的非负半轴上的 5.如果 在第三象限, 则 必定在()A. 第一或第二象限B. 第一或第三象限C. 第三或第四象限D. 第二或第四象 6.若角 的终边落在直线y=2x 上, 则sin 的值为( ) . A.... B. ....C.....D.7.一钟表的分针长10 cm, 经过35分钟, 分针的端点所转过的长为 ( )A. 70 cmB. cmC. ( )cmD. cm8.“sinA=21”是“A=600”的 ( )A. 充分条件B. 必要条件C. 充分必要条件D. 既不充分也不必要条件 9.如果sin = , (0, ), 那么cos( - )= ( ) 1312.A135.B 1312.-C 135.-D 10.若A 是三角形的内角, 且sinA= , 则角A 为 ( )A .450B .1350C .3600k+450D )450或135011.在△ABC 中, 已知 , 则12. 终边在Ⅱ的角的集合是 13.适合条件|sin α|=-sin α的角α是第 象限角.14.sin = ( 是第二象限角), 则cos = ; tan = 15.sin(-314π)= ; cos 665π=16.已知2sinx+a=3,则a 的取值范围为 已知函数 y=asinx+b (a<0)的最大值为 、最小值为 , 求a 、b 的值. 18、已知tanx=2, 求sinx ·cosx 和 x x x x sin cos sin cos -+的值. 化简: .20.求ππππcos 3tan 314tan 34cos 2++-的值.(1)已知P(12, m)是角 终边上任意 一点, 且 , 求(2)已 知 , 求22.当x为何值时, 函数取得最大值和最小值?分别是多少?。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。