轻松破解三角形证明题,一道题10种解题方法让你豁然开朗!
- 格式:docx
- 大小:703.95 KB
- 文档页数:6
八下《三角形的证明》难题30题 (解析版)1.如图,已知在△ABC 中,CD 是AB 边上的高线, BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4【答案】C.作EF BC ⊥于F ,BE 平分,,,ABC DE AB EF BC ∠⊥⊥2,EF DE ∴==1152 5.22ABCSBC EF ∴=⋅=⨯⨯=故选C. 2.已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 的度数是( ) A .30° B .40° C .50° D .60° 【答案】A.试题解析:∵CM 是斜边AB 上的中线,∴CM=AM=12AB ,∴∠A=∠MCA (设为α);由翻折变换的性质得:∠DCM=∠MCA=α;∵CD ⊥AB ,∴∠DCA+∠A=90°,即3α=90°,∴∠A=α=30°.故选A. 3.如图,OP 平分∠AOB ,PA ⊥OA 于A ,PB ⊥OB 于B ,下列结论不一定成立的是( ) A .PA=PB B .PO 平分∠APB C .OA=OB D .AB 垂直平分OP【答案】D.试题解析:∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴DE=CE ,∠DOE=∠COE ,∠EDO=∠ECO=90°,在△DOE 和△COE 中DOE COEEDO ECO OE OE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△DOE ≌△COE ,∴∠DEO=∠CEO ,OD=OC ,∴OE 平分∠DEC ,OE 垂直平分DC , ∴只有选项D 错误;选项A 、B 、C 都正确;故选D .4.如图,已知OP 平分∠AOB ,∠AOB=︒60, PC⊥OA 于点C , PD ⊥OB 于点D , EP ∥OA,交OB 于点E ,且EP=6.若点F 是OP 的中点,则CF 的长是( )A .6 B .23 C .32 D .33 【答案】D 分析:根据PE=6,根据Rt △PDE 可得PD=33,根据角平分线的性质可得PC=PD=33,根据Rt △OPC 可得OP=63,根据直角三角形斜边上的中线的性质可得CF=33.5.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB ,垂足为E .若PE=3,则两平行线AD 与BC 间的距离为 ( )A .3 B .5 C .6 D .不能确定 【答案】C .试题解析:作PF ⊥AD 于F ,PG ⊥BC 于G ,∵AP 是∠BAD 的角平分线,PF ⊥AD ,PE ⊥AB , ∴PF=PE=3, ∵BP 是∠ABC 的角平分线,PE ⊥AB ,PG ⊥BC , ∴PG=PE=3, ∵AD ∥BC , ∴两平行线AD 与BC 间的距离为PF+PG=6, 故选C .6.如图,分别以△ABC 的三边为边在BC 的同侧作正△BCE 、正△ABF 和正△ACD ,已知BC=3,高AH=1,则五边形BCDEF 的面积是( )A .3493+B .3293+C .6D .3398+ 【答案】A .∵正△ABF 和正△BCE ,∴AB=BF ,BC=BE ,∠ABC=∠FBE=60°-∠EBA ,∴△ABC ≌△FBE ,同理,∵正△ACD 和正△BCE ,∴AC=DC ,BC=EC ,∠ACB=∠DCE=60°-∠ECA ,∴△ABC ≌△DEC ,∴△ABC ≌△FBE ≌△DEC ,∴S △ABC =S △FBE =S △DEC =12×3×1=32,又∵S △BCE =12×3×3×sin60°=943,∴五边形BCDEF 的面积=S △BCE +S △FBE +S △DEC =943+32+32=3+943.故选A .7.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B=AB ,B 1C=BC ,C 1A=CA ,顺次连接A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,…按此规律,要使得到的三角形的面积超过2015,最少经过( )次操作.A .6 B .5 C .4 D .3 【答案】C 试题分析:先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可. 解:△ABC 与△A 1BB 1底相等(AB=A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A1B1B =2.同理可得,S △C1B1C =2,S △AA1C =2,∴S △A1B1C1=S △C1B1C +S △AA1C +S △A1B1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401. 故按此规律,要使得到的三角形的面积超过2015,最少经过4次操作.故选C .8.如图,△ABC 中,∠BAC=60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE=DF;②DE+DF=AD;③DM 平分∠ADF ;④AB+AC=2AE;其中正确的有( )A .1个 B .2个 C .3个 D .4个【答案】C 试题分析:①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=,DF=,从而可证明②正确;③若DM 平分∠ADF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④. 解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .∴①正确. ②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°, ∴ED=AD .同理:DF=.∴DE+DF=AD .∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠ADF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠ADF .故③错误. ④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中,∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE ﹣BE+AF+FC 又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .9.如图,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A .90° B.75° C.70° D.60° 【答案】D 解:∵AB=BC=CD=DE=EF ,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°, ∴∠BCD=180°﹣(∠CBD+∠BDC )=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD ﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED )=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE ﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFC )=180°﹣120°=60°.故选D .10.在△ABC 中,∠ABC=120°,若DE 、FG 分别垂直平分AB 、BC ,那么∠EBF 为( ) A .75° B .60° C .45° D .30°【答案】B 解:∵DE 、FG 分别垂直平分AB 、BC ,∴AE=BE ,BF=CF ,∴∠A=∠ABE ,∠C=∠CBF ,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B . 11.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;④=1.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】D 解:①∵∠CAD=30°,AC=BC=AD ,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE ⊥CD ,∴∠DCE=90°, ∴∠ECA=165°∴①正确;②∵CE ⊥CD ,∠ECA=165°(已证),∴∠BCE=∠ECA ﹣∠ACB=165﹣90=75°,∴△ACD ≌△BCE (SAS ),∴BE=BC ,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC ,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC ﹣∠CAD=45﹣30=15°,∵△ACD ≌△BCE ,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD ⊥BE . ④证明:如图,过D 作DM ⊥AC 于M ,过D 作DN ⊥BC 于N .∵∠CAD=30°,且DM=AC ,∵AC=AD ,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC ﹣∠ACD=15°,在△CMD 和△CND 中,,∴△CMD ≌△CND ,∴CN=DM=AC=BC ,∴CN=BN .∵DN ⊥BC ,∴BD=CD .∴④正确.所以4个结论都正确.故选D .12.如图,在△ABC 中,AB=AC ,∠BAC=50°,点D 在AC 上,作直线BD ,过C 作CE ∥BD ,若∠BCE=40°,则∠ABD 的度数是( )A .10° B .15° C .25° D .65°【答案】C 解:∵在△ABC 中,AB=AC ,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣∠A )=65°,∵CE ∥BD ,∠BCE=40°,∴∠DBC=∠BCE=40°,∴∠ABD=∠ABC ﹣∠DBC=25°.故选C .13.如图,Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,下列结论:①∠ACD=∠B ;②CH=CE=EF ;③AC=AF ;④CH=HD .其中正确的结论为( ) A .①②④ B .①②③ C .②③ D .①③【答案】B 解:∵∠B 和∠ACD 都是∠CAB 的余角,∴∠ACD=∠B ,故①正确;∵CD ⊥AB ,EF ⊥AB ,∴EF ∥CD ,∴∠AEF=∠CHE ,∴∠CEH=∠CHE ,∴CH=CE=EF ,故②正确;∵角平分线AE 交CD 于H , ∴∠CAE=∠BAE , 在△ACE 和△AEF 中,,∴△ACE ≌△AFE (AAS ),∴AC=AF ,故③正确;CH=CE=EF >HD ,故④错误.故正确的结论为①②③.故选B .14.如图,△ABC 为等边三角形,D 、E 分别是AC 、BC 上的点,且AD=CE ,AE 与BD 相交于点P ,BF ⊥AE 于点F .若BP=4,则PF 的长( )A .2 B .3 C . 1 D .8【答案】A .解:∵△ABC 是等边三角形,∴AB=AC .∴∠BAC=∠C .在△ABD 和△CAE 中,,∴△ABD ≌△CAE (SAS ).∴∠ABD=∠CAE .∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选;A .15.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6 B .12 C .32 D .64【答案】C .解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4, A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C .16.如图,已知△ABC 中AB =AC ,BD 、CD 分别平分∠EBA 、∠ECA ,BD 交AC 于F ,连接AD. (1)当∠BAC =50°时,求∠BDC 的度数;(2)请直接写出∠BAC 与∠BDC 的数量关系; (3)求证:AD ∥BE.【答案】(1)25;BDC ∠=(2)12BDC BAC ∠=∠;(3)证明见解析. 解:(1),50,AB AC BAC =∠=65,ABC ACB ∴∠=∠=125.ACE ∴∠=,BD CD 分别平分,,ABE ACE ∠∠1122BDC DCE DBC ACE ABC ∴∠=∠-∠=∠-∠111256525.22=⨯-⨯=(2)1.2BDC BAC ∠=∠(3)过点D 作,,DN AB DK AC DM BC ⊥⊥⊥,垂足分别为点N 、K 、M.∵BD 、CD 分别平分,EBA ECA ∠∠, ,,DN AB DK AC DM BC ⊥⊥⊥,∴,DK DM DN ==∴AD 平分GAC ∠, ABD DBC ∠=∠, GAD DAC ∴∠=∠,GAC ABC ACB ∠=∠+∠,,GAD ABC ∴∠=∠//.AD BE ∴17.在△ABC 中,MP ,NO 分别垂直平分AB ,AC .(1)若BC=1Ocm ,试求出△PAO 的周长.(不用写过程,直接写出答案)(2)若AB=AC ,∠BAC=110°,试求∠PAO 的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC 的条件,你运能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.【答案】(1)10cm ;(2)40°;(3)能,理由见解析.解:(1)∵MP ,NO 分别垂直平分AB ,AC ,∴AP=BP ,AO=CO ,∴△PAO 的周长=AP+PO+AO=BO+PO+OC=BC , ∵BC=1Ocm ,∴△PAO 的周长10cm ;(2)∵AB=AC ,∠BAC=110°,∴∠B=∠C=12(180°-110°)=35°, ∵MP ,NO 分别垂直平分AB ,AC ,∴AP=BP ,AO=CO ,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠PAO=∠BAC-∠BAP-∠CAO=110°-35°-35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°-110°=70°,∵MP ,NO 分别垂直平分AB ,AC , ∴AP=BP ,AO=CO ,∴∠BAP=∠B ,∠CAO=∠C ,∴∠PAO=∠BAC-∠BAP-∠CAO=∠BAC-(∠B+∠C )=110°-70°=40°.18.如图,在△ABC 中,CD ⊥AB 于点D,AC=4,BC=3,DB=59,(1)、求CD 、AD 的长(2)、判断△ABC 的形状,并说明理由。
三角形解题口诀及例题角平分线四连线,边垂折叠全等现.垂线要把三线连,平行等腰来构建.垂直平分若出现,线上一点两相连.六十三十四十五,等边直角作三角.要证线段倍与半,延长缩短与直角.两线之和等一线,截长补短试试看.线段和差比大小,三角形中来相见.三角形中有中线,延长中线等中线.中点若与中点见,两点相连中位线1.在△ABC中,AD是△ABC的角平分线,所示,E、F分别是AB、AC上的点,且∠EDF+∠BAC =180°,求证:DE=DF.边垂作全等证明:作DM⊥AB于点M,作DN⊥AC于点N,如右图所示,则∠EMD=∠FND=90°,∵AD平分∠BAC,∴DM=DN,∵∠EDF+∠BAC=180°,∴∠AED+∠AFD=180°,又∵∠DFN+∠AFD=180°,∴∠DEM=∠DFN,在△EMD和△FND中,,∴△EMD≌△FND(AAS),∴DE=DF.2.在△ABC中,AD为△ABC的角平分线.如图,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD.折叠作全等解:在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠C=∠AED,CD=ED,∵∠C=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB,∴EB=CD,∵AB=AE+EB,∴AB=AC+CD.3.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6, ∵MN ∥BC ,∴∠1=∠5,∠3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO =CO ,FO =CO , ∴OE =OF ;4.如图,在△ABC 中,BC =AC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于点E ,且AE =BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F . ∵AE ⊥BE ,∴∠BEF =90°,又∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠FAC +∠AFC =90°, ∴∠DBC =∠FAC , 在△ACF 和△BCD 中,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又AE =BD ,∴AE =AF =EF ,即点E 是AF 的中点. ∵BE ⊥AF∴DE 是AF 的垂直平分线 ∴AB =BF ,根据等腰三角形三线合一的性质可知:BD 是∠ABC 的角平分线.角平分线与平行于角一边的线构造等腰三角形垂直于角平分线,构造三线合一5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB,AC于点D,E.求证:AE=2CE;有中垂线即向两端连线证明:连接BE.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣30°=60°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;6.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.60°角找等边三角形解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=8.∴菱形ABCD的周长=4×8=32,∵BO==4,∴BD=2BO=8,∴菱形ABCD的面积=×8×=32.7.如图,△ABC 中,∠B =45°,∠C =60°,AC =10,求边AB 的长.解:作AD ⊥BC 于点D , 在Rt △ADC 中,∠C =60°, ∴∠CAD =30°, ∴CD =AC =5, ∴AD ==5,在Rt △ADB 中,∠B =45°, ∴BD =AD =5,由勾股定理得,AB ===5.8.如图,四边形ABCD 中,AD =4,BC =1,∠A =30°,∠B =90°,∠ADC =120°,求CD 的长.解:延长AD 、BC 交于E , ∵∠A =30°,∠B =90°, ∴∠E =60°, ∵∠ADC =120°, ∴∠EDC =60°, ∴△EDC 是等边三角形, 设CD =CE =DE =x , ∵AD =4,BC =1, ∴2(1+x )=x +4, 解得;x =2,60°角找直角三角形,45°角构造直角30°角找直角三角形∴CD =2.9.如图,△ABC 中,AB =AC =2,∠B =15°,求等腰△ABC 腰上高的值.解:作BD ⊥AC 交CA 的延长线于D , ∵AB =AC ,∠B =15°, ∴∠C =∠B =15°, ∴∠DAB =∠C +∠B =30°, ∴BD =AB =1.10.已知,如图,∠C =90°,∠B =30°,AD 是△ABC 的角平分线.求证:BD =2CD ;解:如图,过D 作DE ⊥AB 于E , ∵∠C =90°,AD 是△ABC 的角平分线, ∴DE =CD , 又∵∠B =30°,∴Rt △BDE 中,DE =BD , ∴BD =2DE =2CD ;11.已知:如图,AD 、AE 分别是△ABC 和△ABD 的中线,且BA =BD ,求证:AE =AC .证明:延长AE 至F ,使EF =AE ,连接DF . ∵AE 是△ABD 的中线, ∴BE =DE . ∵∠AEB =∠FED ,15°角构造30°找直角三角形线段倍与半构造直角三角形线段倍∴△ABE ≌△FDE (SAS ). ∴∠B =∠BDF ,AB =DF . ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF .∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC . ∵AD 是△ABC 的中线, ∴BD =CD . ∴DF =CD .∴△ADF ≌△ADC (SAS ). ∴AC =AF =2AE ,即AE =AC .12.如图,在△ABC 中,AB >BC ,BD 是高,P 是BD 上任意一点,求证:PA ﹣PC <AD ﹣CD .证明:在AD 上取一点E ,使得DE =CD , ∴AD ﹣CD =AD ﹣DE =AE , ∵BD ⊥AC , ∴PD ⊥CE , ∵DE =CD , ∴PE =PC , ∵PA ﹣PE <AE , 故PA ﹣PC <AD ﹣CD .13.如图,DC ∥AB ,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC ,AB 于CB 两点.求证:AD =AB +DC线段和差比大小,构造三角形两线之和等一线,截长补短证明:在AD上截取AF=AB,连接EF,如图所示:在△ABE和△AFE 中,,∴△ABE≌△AFE(SAS),∴∠AFE=∠B,∵AB∥DC,∴∠B+∠C=180°,∵∠AFE+∠DFE=180°,∴∠DFE=∠C,在△DEF和△DEC 中,,∴△DEF≌△DEC(AAS),∴DF=DC,∴AB+DC=AF+DF=AD,即AD=AB+DC.14.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.中线倍长证明:延长DE到F,使EF=DE,连接BF,∵E是BC的中点,∴BE=CE,∵在△BEF和△CED中,∴△BEF≌△CED.∴∠F=∠CDE,BF=CD.∵∠BAE=∠CDE,∴∠BAE=∠F.∴AB=BF,又∵BF=CD,∴AB=CD.15.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.中位线解:DE=CF,理由如下:∵点D,E分别是AB,AC的中点,∴DE =BC,∵CF =BC,∴DE=CF.。
三角形证明题解题技巧一、引言三角形证明题是数学中常见的题型,需要运用一定的几何知识和证明技巧来解答。
本文将介绍一些常见的三角形证明题解题技巧,帮助读者更好地理解和解决这类问题。
二、三角形的基本性质在解决三角形证明题之前,我们首先要了解三角形的基本性质。
下面列举了一些常见的三角形性质,这些性质是解决三角形证明题的基础。
1. 三角形的内角和公式在任意三角形ABC中,三个内角的和等于180度,表示为:∠A + ∠B + ∠C = 180°2. 三角形的外角性质在三角形ABC中,三个内角的对应外角相等,表示为:∠A' = ∠B + ∠C∠B' = ∠A + ∠C∠C' = ∠A + ∠B3. 三角形的重心三角形的重心是三条中线的交点,记为G。
在任意三角形ABC中,重心到顶点和中点的距离满足关系:AG : GD = BG : GE = CG : GF = 2 : 14. 三角形的垂心三角形的垂心是三条高线的交点,记为H。
在任意三角形ABC中,垂心到顶点和中点的距离满足关系:AH = 2RcosABH = 2RcosBCH = 2RcosC其中R为三角形的外接圆半径。
三、解题技巧解决三角形证明题的关键在于运用已知条件和性质进行推理和证明。
下面介绍几种常见的解题技巧。
1. 利用三角形的角平分线如果一个角的角平分线和另一个角的边相等,那么这两个角相等。
在三角形中,我们经常会遇到一些与角平分线相关的证明题。
例如,已知三角形ABC中,∠BAD = ∠BCD,以及AB = BC,要证明∠BAC = ∠BCA。
解法如下:1.连接BD;2.因为∠BAD = ∠BCD,且AB = BC,所以三角形ABD与三角形CBD相似;3.根据相似三角形的性质,可知∠BAC = ∠BCA。
2. 利用垂心和垂足三角形的垂心和垂足是解决垂直关系证明题的重要工具。
常见的题型包括已知三角形ABC中,AD ⊥ BC,要证明∠BAD = ∠CAD。
(完整版)全等三角形的判定常考典型例题及练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN全等三角形的判定一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。
(SAS )图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EFBC E B DEAB∴△ABC ≌△DEF (SAS )②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。
(ASA)图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FC EF BC EB∴△ABC ≌△DEF(ASA)③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS )图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EFBC F C EB∴△ABC ≌△DEF(AAS)④“边边边”定理:三边对应相等的两个三角形全等。
(SSS )图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧===EF BC DF AC DE AB∴△ABC ≌△DEF(AAS)⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )图形分析:书写格式:在△ABC 和△DEF 中 ⎩⎨⎧==DF AC DE AB ∴△ABC ≌△DEF (HL )一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗两个三角形中对应相等的元素 两个三角形是否全等反例 SSA⨯AAA⨯二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是( )A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题 4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋?娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。
三角形证明题解题技巧三角形证明题解题技巧一、前置知识在解决三角形证明问题之前,我们需要掌握一些基本的三角形知识。
其中包括:1. 三角形的定义和分类2. 三角形的性质:周长、面积、内角和、外角和等3. 三角形的相似性质:AA相似定理、SAS相似定理、SSS相似定理等4. 三角形的共线性质:中位线定理、高线定理等5. 三角形的垂直性质:直角三角形的勾股定理、正弦定理、余弦定理等二、解题步骤在掌握了基本知识后,我们可以按照以下步骤来解决一个三角形证明问题。
1. 确认所给条件和要证明的结论首先,我们需要仔细阅读所给条件,明确要证明的结论。
在阅读时需要注意:(1)所给条件是否完整无遗漏;(2)所给条件是否足够推导出要证明的结论。
2. 利用已知条件进行推导在确认了所给条件和要证明的结论后,我们可以利用已知条件进行推导。
这里有几个常见方法:(1)使用“逆向思维”:根据要证明的结论,逆向思考,看看能否从结论出发推导出已知条件。
(2)使用三角形的基本性质:如三角形内角和为180度、外角和为360度等。
(3)使用三角形的相似性质:如AA相似定理、SAS相似定理、SSS相似定理等。
(4)使用三角形的共线性质:如中位线定理、高线定理等。
3. 利用推导出来的结论进行证明在利用已知条件进行推导后,我们通常会得到一些新的结论。
这时,我们可以利用这些新结论进行证明。
具体方法包括:(1)利用已知条件和推导出来的结论构造图形,并运用几何变换或相似关系来证明。
(2)利用勾股定理、正弦定理、余弦定理等公式计算边长或角度大小,从而得到证明过程。
4. 总结在解决一个三角形证明问题后,我们需要总结经验教训,并归纳出一些常见的解题技巧。
这有助于提高我们解决类似问题的能力。
常见技巧包括:(1)善于运用逆向思维;(2)善于利用三角形的基本性质和相似性质;(3)善于利用三角形的共线性质;(4)善于利用勾股定理、正弦定理、余弦定理等公式。
以上就是解决三角形证明问题的一些基本步骤和技巧。
解直角三角形的方法和技巧直角三角形是三角形中最为基础和重要的一类三角形,因为它具有很多特殊的性质和应用。
解直角三角形的方法和技巧在数学的学习过程中非常重要,本文将为大家介绍10条关于解直角三角形的方法和技巧,并展开详细描述。
一、勾股定理勾股定理是解直角三角形最基本的定理,也是解直角三角形的最快捷的方法。
勾股定理的公式为:a² + b² = c²。
a和b表示直角边,c表示斜边。
当已知a和b的长度时,可以通过计算c的长度来确定直角三角形的大小和形状。
勾股定理非常广泛地应用于工程、科学和数学等领域,可以帮助我们计算物体的大小、距离和位置等。
二、正弦定理正弦定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:a/sinA = b/sinB = c/sinC。
a、b、c分别表示三角形任意两边和斜边,A、B、C表示这些边对应的角度。
如果已知了两个长度和一个角度,则可以通过正弦定理计算第三个长度。
正弦定理的应用十分广泛,可以帮助我们计算三角形的任意边的长度。
三、余弦定理余弦定理也是解直角三角形的一种基本方法,它也是一个三角形中的三角函数,公式为:c² = a² + b² - 2abcosC。
a、b表示三角形中两个边的长度,c表示斜边的长度,C表示斜边对应的角度。
如果已知了两个长度和一个角度,则可以通过余弦定理计算第三个长度。
余弦定理也是应用广泛的一个数学公式,可以帮助我们计算三角形的任意边的长度。
四、正切定理正切定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:tanA = a/b或tanB = b/a。
a、b分别表示三角形中的两个直角边,A、B是它们对应的角度。
通过正切定理可以求得角度的大小或两直角边的比例。
五、特殊直角三角形的知识特殊直角三角形是指那些具有特殊边长和角度的直角三角形。
其中最为常见的是边长为3、4、5的特殊直角三角形。
初二几何:手把手教你如何掌握三角形的解题技巧以微课堂奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂。
271篇原创内容公众号几何综合题型一般有这样的特点:图形复杂,线条多、角度多,且貌似与求证结果完全风马牛不相及也。
而这类题在各类考试中必有,甚至在至关重要的中考中也必有,同学你若只管用无神的双眼漠视它,不调动你最强大脑中的风暴横扫它,结果就只能在考试中弃题、丢分,并因此与高分和满分失之交臂。
今天,我们就针对综合性三角形几何求证题,给大家来讲解一下遇到这类题型,应该遵循什么样的解题思路、逻辑方法以及基本攻略。
首先,解综合类三角形几何题,有哪些注意事项呢?第一、熟记并理解三角形的概念、分类、性质以及三角形全等的判定(这是必须的——必正背、必倒背)。
第二、学会在复杂的图形中分离出表示某个几何概念的那部分图形(这是要训练的——必各种看、必各种画)。
第三、熟练并灵活地运用上述知识进行计算、说理以及解决问题(这是需要攻略和实训的——必潜心琢磨、必有效刷题)。
我们来看一道综合类的三角形几何题,感受一下如何灵活应用相关的知识点,逻辑清晰、条理分明地解题。
如图1所示,已知:∠1=20°,∠2=60°,∠3=10°,∠EBC=70°,求∠DEB .解题基本攻略如下:第一步:草稿标图(以重要性而言,“解几何前的标图”绝不亚于“发自拍前的P图”)。
养成标图的好习惯,是几何高效解题的第一步;学会标好图(读题、审题、整理思路全在里面了),你的破解将事半功倍。
好,现在我们先尽可能将已知条件标注在图上(如图2),这一来,立马就直观地看出图形的以下特点:1、∵∠ABC=10°+70°=80°,∠ACB=20°+60°=80°∴∠ABC=∠ACB,△ABC是等腰三角形2、∵∠A=180°-∠ABC-∠ACB=20°∴∠BEC=∠A+∠3=30°(即∠4=30°。
难点突破——三角形全等证明题练习50道(含详细解析)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明:14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC + A B A C+(填“>”、“ <”或“=” ) (2)证明(1)中的结论.15.如图,在ABC ∆中,BD 是边AC 上的中线,BD BC ⊥于点B ,AE BD ⊥交BD 的延长线于点E ,30ABD ∠=︒,求证:2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P,试问APD∠的度数是否是定值?若是定值,求出并说明理由.18.已知等腰三角形ABC中,点D为BC中点,点E是BA延长线上一动点,点F是AC延长线上一动点连接DE、DF,且180∠+∠=︒.EDF BAC(1)如图1,若90+=;BAC∠=︒,求证:AE AC AF(2)如图2,若120∠=︒,AE、AC、AF三条线段还满足(1)中的结论吗?若满足,BAC则直接证明;若不满足,请写出结论并证明.19.已知D为ABC⊥,垂足分别为点∆所在平面内一点,且DB DC=,DE AB⊥,DF ACE、F,DE DF=.(1)如图1,当点D在BC边上时,判断ABC∆的形状;并证明你的结论;(2)如图2,当点D在ABC∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).20.如图,在Rt ABC∠=︒,点P为AC边上的一点,延长BP至点D,使得AD APC∆中,90=,当AD AB⊥于E.⊥时,过点D作DE AC(1)求证:CBP ABP∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,垂足分别为M,N.⊥,ON AD求证:四边形AMON是筝形.29.如图,在ABC∠=∠,AC与BD交于点=,AED∆中AB AC∆中AE AD=,EAD BACO.(1)试确定ADC∠与AEB∠间的数量关系,并说明理由;(2)若65∠的度数.ACB∠=︒,求BDC30.如图,AD为ABC=.求=,FD CD ∆的高,E为AC上一点,BE交AD于F,且有BF AC证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求AMB ∠的度数.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.41.如图,在ABC∠,CE平分BCA∠,AD、CE交于点F,B∆中,60∠=︒,AD平分BAC=,连结FG.CD CG(1)求证:FD FG=;(2)线段FG与FE之间有怎样的数量关系,请说明理由;(3)若60B∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.42.已知BF平分ABC∆的外角ABE∠,D为射线BF上一动点.(1)如图所示,若DA DC∠=∠;=,求证:ABC ADC(2)在D点运动的过程中,试比较BA BC+的大小,并说明你的理由.+与DC DA43.如图,在ABC=,∠=︒,BD AC⊥于点D,点E在DB的延长线上,DE BCABC∆中,90=.12∠=∠,求证:DF AB44.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.45.如图,AB AC =,E 、D 分别是AB 、AC 的中点,AF BD ⊥,垂足为点F ,AG CE ⊥,垂足为点G ,试判断AF 与AG 的数量关系,并说明理由.46.如图,90ACB ∠=,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E .(1)求证:ACD CBE ∆≅∆;(2)已知5AD =,3DE =,求BE 的长.47.如图,AE 、BD 是ABM ∆的高,AE ,BD 交于点C ,且A E B E =,BD 平分ABM ∠.(1)求证:2BC AD =;(2)求M DE ∠的度数.48.在ABC∠交AB于D,E,F在AC,BC∠=︒,CD平分ACBA∆中,AB AC=,36上,且108∠=︒.EDF(1)求ADC∠的度数;(2)求证:AE BF BC+=.49.已知:如图,90∠的角平分线上,且点A到点⊥于点E,点A在FOCF∠=︒,AE OC=.B、点C的距离相等.求证:BF EC50.已知:如图,点C、D、B、F在一条直线上,且AB BD=,⊥,AB CD⊥,DE BD =.CE AF求证:(1)ABF CDE∆≅∆;(2)CE AF⊥.难点突破——三角形全等证明题练习50道(含详细解析)参考答案与试题解析一.解答题(共50小题)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.【解答】证明:(1)90A D ∠=∠=︒,ABC ∴∆和DCB ∆都是直角三角形.在Rt ABC ∆和Rt DCB ∆中,BC CB AB DC =⎧⎨=⎩, Rt ABC Rt DCB(HL)∴∆≅∆,ABC DCB ∴∠=∠;(2)Rt ABC Rt DCB ∆≅∆,AC DB ∴=,ACB DBC ∠=∠,MC MB ∴=,AM DM ∴=.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.【解答】证明:AC CE ⊥,DF CE ⊥,90C DFE ∴∠=∠=︒,CF BE =,CB FE ∴=,AB DE =,Rt ACB Rt DFE(HL)∴∆≅∆,A D ∴∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)【解答】(1)证明:AD 是ABC ∆的中线, BD CD ∴=,//BE CF ,FCD EBD ∴∠=∠,DFC DEB ∠=∠,在CDE ∆和BDF ∆中,FCD EBD DFC DEB CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CDF BDE AAS ∴∆≅∆,DE DF ∴=(2)可以得出AD BC ⊥,BAD CAD ∠=∠.(理由等腰三角形三线合一).4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.【解答】(1)证明://CD AB ,BAE ACD ∴∠=∠,ABE CAD ∠=∠,AB AC =,()ABE CAD ASA ∴∆≅∆;(2)解:AB AC =,65ABC ACB ∴∠=∠=︒,180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒, 又25ABE CAD ∠=∠=︒,502575BAD BAC CAD ∴∠=∠+∠=︒+︒=︒, //AB CD ,180********D BAD ∴∠=︒-∠=︒-︒=︒.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.【解答】证明:D 为BC 的中点,BD CD ∴=,DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒,在Rt BED ∆和Rt CFD ∆中,BD CD BE CF =⎧⎨=⎩,Rt BED Rt CFD(HL)∴∆≅∆, B C ∴∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.【解答】证明:EAC BAF ∠=∠, BAC EAF ∴∠=∠,在ABC ∆和AEF ∆中,BAC EAF C F AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC AEF AAS ∴∆≅∆,AC AF ∴=.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).【解答】解:条件为AC AE =,理由是: 12∠=∠,12DAC DAC ∴∠+∠=∠+∠, BAC DAE ∴∠=∠,在ABC ∆和ADE ∆中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩()ABC ADE SAS ∴∆≅∆.8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.【解答】证明:(1)BE ,AD 是ABC ∆的高 190BCA ∴∠+∠=︒,290BCA ∠+=︒, 12∴∠=∠,(2)AP BC =,12∠=∠,BQ AC =, ()APC BCQ SAS ∴∆≅∆CP CQ ∴=.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .【解答】证明:(1)AE CF =, AE EF CF EF ∴+=+,即AF CE =. 又BF AC ⊥,DE AC ⊥, 90AFB CED ∴∠=∠=︒.在Rt ABF ∆与Rt CDE ∆中,AB CD AF CE =⎧⎨=⎩, Rt ABF Rt CDE(HL)∴∆≅∆;(2)Rt ABF Rt CDE ∆≅∆, C A ∴∠=∠,//AB CD ∴.10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .【解答】证明://AD BE , A B ∴∠=∠,在ACD ∆和BEC ∆中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩,()ACD BEC SAS ∴∆≅∆, DC CE ∴=, CF 平分DCE ∠,CF DE ∴⊥.11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.【解答】解:(1)CDE ∆是等腰直角三角形.理由如下: 90ACB ∠=︒,AC BC =, 45B BAC ∴∠=∠=︒,AE AB ⊥,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE ∆和BCD ∆中,AE BDB CAE AC BC=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴∆是等腰直角三角形;(2)存在1AD =.理由如下:AE AF =,45CAE ∠=︒,1(18045)67.52AEF AFE ∴∠=∠=︒-︒=︒,9067.522.5ADE ∴∠=︒-︒=︒,CDE ∆是等腰直角三角形,45CDE ∴∠=︒,22.54567.5ADC ∴∠=︒+︒=︒,在ACD ∆中,1804567.567.5ACD ∠=︒-︒-︒=︒, ACD ADC ∴∠=∠,1AD AC ∴==.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.【解答】证明:AB AC =,ABC ACB ∴∠=∠,BD AC ⊥,CE AB ⊥,90BDC CEB ∴∠=∠=︒,在BCE ∆和CBD ∆中,BEC CDB EBC DCB BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DBC ECB AAS ∴∆≅∆,CD BE ∴=,AB AC =,AD AE ∴=.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明: 12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.【解答】证明:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.故答案为:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC+(填“>”、“<”或“=”)+>AB AC(2)证明(1)中的结论.【解答】解:(1)结论:BE EC AB AC+>+.故答案为>.(2)理由:在AF上截取AH,使得AH AC=.AC AE∠=∠,AE AE=,CAF HAE=,∴∆≅∆,EAC EAH SAS()∴=,EC EH+>,EB EH BH∴+>+.EB EC AB AC15.如图,在ABC⊥于点B,AE BD∆中,BD是边AC上的中线,BD BC⊥交BD的延长线于点E,30=.AB BCABD∠=︒,求证:2【解答】证明:BD是AC上的中线,∴=,AD DCBD BC⊥,AE BD⊥,EBC AEB∴∠=∠=︒,90又ADE CDB∠=∠,∴∆≅∆,ADE CDB AAS()AE CB ∴=,90AEB ∠=︒,30ABD ∠=︒,2AE AB ∴=,即2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.【解答】解:(1)能,ABD ACE ∆≅∆,理由如下: ABC ∆和ADE ∆是两个形状相同,大小不同的等腰三角形, BAC DAE ∴∠=∠,AB AC =,AD AE =,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;(2)ABD ACE ∆≅∆,B ACE ∴∠=∠,ACE ECD B BAC ∠+∠=∠+∠,35ECD BAC ∴∠=∠=︒.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 290α-︒或902α︒-或90︒ (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P ,试问APD ∠的度数是否是定值?若是定值,求出并说明理由.【解答】解:(1)如图1,点D 在点B 上方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 290CDE ADE BDC α∴∠=∠-∠=-︒, 点D 在点B 上方时,点E 在点A 左侧, 90CDE ADE BDC ∠=∠+∠=︒;如图11-,点D 在点B 下方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 902EDC BDC ADE α∴∠=∠-∠=︒-,点D 在点B 下方时,点E 在点A 左侧, 90CDE ADE BDC ∴∠=∠+∠=︒;故答案为:290α-︒或902α︒-或90︒;(2)APD ∠的度数是45︒,理由是:如图2,过F 作FM x ⊥轴于F ,使FM BC =,连接CM ,DM ,AD BC =,AD FM ∴=,AD x ⊥轴,//AD FM ∴,∴四边形ADM F 是平行四边形,//AF DM ∴,PDM APD ∴∠=∠,FM BC =,90CFM DBC ∠=∠=︒,CF BD =, ()CFM DBC SAS ∴∆≅∆,BCD CMF ∴∠=∠,DC CM =,90FCM CMF ∠+∠=︒,90FCM BCD ∴∠+∠=︒,90DCM ∴∠=︒,DCM ∴∆是等腰直角三角形,45CDM ∴∠=︒,45APD CDM ∴∠=∠=︒.18.已知等腰三角形ABC 中,点D 为BC 中点,点E 是BA 延长线上一动点,点F 是AC 延长线上一动点连接DE 、DF ,且180EDF BAC ∠+∠=︒.(1)如图1,若90BAC ∠=︒,求证:AE AC AF +=;(2)如图2,若120BAC ∠=︒,AE 、AC 、AF 三条线段还满足(1)中的结论吗?若满足,则直接证明;若不满足,请写出结论并证明.【解答】(1)证明:连接AD ,设AF 交DE 于G ,如图1所示: 90BAC ∠=︒,AB AC =,45B ∴∠=︒,点D 为BC 中点,12AD BC BD CD ∴===,45BAD CAD B ∠=∠=︒=∠,AD BC ⊥, 180EDF BAC ∠+∠=︒,180EAC BAC ∠+∠=︒, EDF EAC ∴∠=∠,AGE DGF ∠=∠,BED AFD ∴∠=∠,在BDE ∆和ADF ∆中,B CAD BED AFD BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE ADF AAS ∴∆≅∆,BE AF ∴=,AB AC =,BE AE AB =+,AE AC AF ∴+=;(2)解:不满足(1)中的结论,12AC AE AF +=;理由如下: 连接AD ,取AC 的中点G ,连接DG ,如图2所示: 120BAC ∠=︒,AB AC =,30ACB ∴∠=︒,60EAC ∠=︒,点D 为BC 中点,AD BC ∴⊥,60CAD ∠=︒,12DG AC AG CG ∴===,120DAE ∠=︒, ADG ∴∆是等边三角形,AD DG ∴=,60AGD ADG EDF ∠=∠=︒=∠, 120DGF DAE ∴∠=︒=∠,ADE GDF ∠=∠, 同(1)得:AED GFD ∠=∠,在ADE ∆和GDF ∆中,DAE DGF AED GFD AD GD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE GDF AAS ∴∆≅∆,AE GF ∴=,AG GF AF +=, ∴12AC AE AF +=;19.已知D 为ABC ∆所在平面内一点,且DB DC =,DE AB ⊥,DF AC ⊥,垂足分别为点E 、F ,DE DF =.(1)如图1,当点D 在BC 边上时,判断ABC ∆的形状;并证明你的结论;(2)如图2,当点D 在ABC ∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).【解答】解:(1)结论:ABC ∆是等腰三角形. 理由:DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒.在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,B C ∴∠=∠AB AC ∴=,ABC ∴∆是等腰三角形.(2)当点D 在ABC ∆内部时,(1)中的结论仍然成立. 理由:如图2,DE AB ⊥,DF AC ⊥, 90BED CFD ∴∠=∠=︒,在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,EBD FCD ∴∠=∠.DB DC =,DBC DCB ∴∠=∠,EBD DBC FCD DCB ∴∠+∠=∠+∠, 即ABC ACB ∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.20.如图,在Rt ABC ∆中,90C ∠=︒,点P 为AC 边上的一点,延长BP 至点D ,使得AD AP =,当AD AB ⊥时,过点D 作DE AC ⊥于E .(1)求证:CBP ABP ∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.【解答】(1)证明:90C ∠=︒, 90CBP BPC ∴∠+∠=︒, AD AB ⊥,90PBA BDA ∴∠+∠=︒, AD AP =,BDA DPA BPC ∴∠=∠=∠, CBP ABP ∴∠=∠;(2)解:设AB x =,4AB BC -=,4BC x ∴=-,在Rt ABC ∆中,由勾股定理得:222(4)8x x -+=, 解得:10x =,6BC ∴=,10AB =;作PF AB ⊥于F ,如图所示:在BCP ∆和BFP ∆中,90CBP ABP C BFP BP BP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BCP BFP AAS ∴∆≅∆6BC BF ∴==,DE AC ⊥,90EAD ADE PAF EAD ∴∠+∠=︒=∠+∠,PAF ADE ∴∠=∠,在PAF ∆和ADE ∆中,PFA AED PAF ADE PA AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PAF ADE AAS ∴∆≅∆,1064DE AF AB BF ∴==-=-=.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==6BP ∴=BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆,C QPB ∴∠=∠,90APC C ∠+∠=︒,90APC QPB ∴∠+∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等,①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:682t =-,2t xt =解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:6xt =,282t t =-解得:3x =,2t =.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.【解答】(1)证明:1239∠=∠=︒,12CAE CAE ∴∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC ∆和AED ∆中,BAC EAD AC AD C D ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC AED ASA ∴∆≅∆.(2)解:由(1)得::ABC AED ∆≅∆.AB AE ∴=,11(1801)(18039)70.522B AEB ∴∠=∠=︒-∠=︒-︒=︒, 13970.5109.5AEC B ∴∠=∠+∠=︒+︒=︒., 23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .【解答】证明:AD BC =,AD DC BC DC ∴+=+,AC BD ∴=,//AE BF ,A B ∴∠=∠,在ACE ∆和BDF ∆中,,,,AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩()ACE BDF SAS ∴∆≅∆.ACE BDF ∴∠=∠.//CE DF ∴.24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.【解答】证明:(1)13∠=∠,13DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,1803E ACE ∠=∠︒-∠-∠,1802ACB ACE ∠=︒-∠-∠,23∠=∠,ACE ACE ∠=∠,ACB E ∴∠=∠,在ABC ∆与ADE ∆中BAC DAE AC AEE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC ADE ASA ∴∆≅∆,B D ∴∠=∠.(2)由(1)可得ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.【解答】证明:(1)在ABF ∆和ACE ∆中,AB AC BAF CAE AF AE =⎧⎪∠=∠⎨⎪=⎩,()ABF ACE SAS ∴∆≅∆,B C ∴∠=∠;(2)AB AC =,AE AF =,BE CF ∴=,在BOE ∆和COF ∆中,B C BOE COF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE COF AAS ∴∆≅∆,OB OC ∴=,在ABO ∆和ACO ∆中,AB AC B C OB OC =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆,OAB OAC ∴∠=∠,即AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.【解答】证明:连接DE 、DF ,如右图所示,AB AC =,B C ∴∠=∠,在EBD ∆和DCF ∆中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,()EBD DCF SAS ∴∆≅∆,DE DF ∴=,DG EF ⊥,DG ∴是等腰DEF ∆的中线,12EG EF ∴=.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.【解答】(1)证明:如图1,延长AC 交BN 于点F ,AC BC =,CAB CBA ∴∠=∠,又AB AM ⊥,90BAM ∴∠=︒,又//AM BN ,180BAM ABN ∴∠+∠=︒,90ABN ∴∠=︒,90BAF AFB ∴∠+∠=︒,90ABC CBF ∠+∠=︒,CBF AFB ∴∠=∠,BC CF ∴=,AC FC ∴=,又//AM BN ,DAF AFB ∴∠=∠,在ADC ∆和FEC ∆中,DAC EFC AC FC ACD FCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADC FEC ASA ∴∆≅∆,DC EC ∴=;(2)解:AD DC BE +=;理由如下:如图2,在EB 上截取EH EC =,连接CH ,AC BC =,60ABC ∠=︒,ABC ∴∆为等边三角形,60DEB ∠=︒,CHE ∴∆是等边三角形,60CHE ∴∠=︒,60HCE ∠=︒,120BHC ∴∠=︒,//AM BN ,180ADC BEC ∴∠+∠=︒,120ADC ∴∠=︒,60DAC DCA ∴∠+∠=︒,又180DCA ACB BCH HCE ∠+∠+∠+∠=︒,60DCA BCH ∴∠+∠=︒,DAC BCH ∴∠=∠,在DAC ∆与HCB ∆中,DAC HCB ADC CHB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DAC HCB AAS ∴∆≅∆,AD CH ∴=,DC BH =,又CH CE HE==,∴=+=+,BE BH HE DC AD即AD DC BE+=.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,ON AD⊥,垂足分别为M,N.求证:四边形AMON是筝形.【解答】证明:在ABC ∆和ADC ∆中AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,BAC DAC ∴∠=∠,又OM AB ⊥,ON AD ⊥,垂足分别为M ,N ,OM ON ∴=;90AMO ANO ∠=∠=︒,9090BAC DAC ∴︒-∠=︒-∠,AOM AON ∴∠=∠,即OA 平分MON ∠,又AM OM ⊥,AN ON ⊥,AM AN ∴=∴四边形AMON 是筝形.29.如图,在ABC ∆中AB AC =,AED ∆中AE AD =,EAD BAC ∠=∠,AC 与BD 交于点O .(1)试确定ADC ∠与AEB ∠间的数量关系,并说明理由;(2)若65ACB ∠=︒,求BDC ∠的度数.【解答】解:(1)ADC AEB ∠=∠,理由如下:BAC EAD ∠=∠BAC EAC EAD EAC ∴∠-∠=∠-∠即:BAE CAD ∠=∠在ABE ∆和ACD ∆中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆ADC AEB ∴∠=∠(2)BOC ∠是ABO ∆和DCO ∆的外角BOC ABD BAC ∴∠=∠+∠,BOC ACD BDC ∠=∠+∠ABD BAC ACD BDC ∴∠+∠=∠+∠ABD ACD ∠=∠BAC BDC ∴∠=∠65ACB ∠=︒,AB AC =65ABC ACB ∴∠=∠=︒180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒50BDC BAC ∴∠=∠=︒30.如图,AD 为ABC ∆的高,E 为AC 上一点,BE 交AD 于F ,且有BF AC =,FD CD =.求证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.【解答】证明:(1)AD 为ABC ∆的边BC 上的高,BDF ∴∆和ADC ∆为直角三角形.90BDF ADC ∴∠=∠=︒.在Rt BFD ∆和Rt ACD ∆中,BF AC FD CD=⎧⎨=⎩, Rt ∴△Rt ACD(HL)BFD ∆≅∆;(2)BDF ADC ∆≅∆,DBF DAC ∴∠=∠.AFE ∠与BFD ∠是对顶角,90BDF AEF ∴∠=∠=︒,BE AC ∴⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 AC BD = ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由;②求AMB ∠的度数.【解答】解:(1)①AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,AC BD ∴=;故答案为:AC BD =,②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,40AOB ∠=︒,180********OAB OBA AOB ∴∠+∠=︒-∠=︒-︒=︒,又OAB OBA OAB ABD OBD ∠+∠=∠+∠+∠140OAB OBA OAB ABD OAC ∴∠+∠=∠+∠+∠=︒,140MAB ABM ∴∠+=︒,在ABM ∆中,180AMB MAB ABM ∠+∠+=︒,40AMB ∴∠=︒;故答案为:40︒;(2)①AC BD =,理由如下:90AOB COD ∠=∠=︒,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,BD AC ∴=;②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,又90OAB OBA ∠+∠=︒,ABO ABM OBD ∠=∠+∠,MAB MAO OAB ∠=∠+∠,90MAB MBA ∴∠+∠=︒, 又在AMB ∆中,180AMB ABM BAM ∠+∠+∠=︒,180()1809090AMB ABM BAM ∴∠=︒-∠+∠=︒-︒=︒.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.【解答】(1)证明:AB BE ⊥,90B ∴∠=︒,DE BE ⊥,90E ∴∠=︒,BF CE =,BF CF CE CF ∴+=+,即CB EF =,在Rt ABC ∆和Rt DEF ∆中,AC DF BC EF=⎧⎨=⎩, Rt ABC Rt DEF(HL)∴∆≅∆(2)解:65A ∠=︒,AB BE ⊥,906525ACB ∴∠=︒-︒=︒,由(1)知Rt ABC Rt DEF ∆≅∆,25ACB DFE ∴∠=∠=︒,50AGF ACB DFE ∴∠=∠+∠=︒33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.【解答】(1)证明:AD EC AB +=,AD BD AB +=BD EC ∴=,在BDE ∆和CEF ∆中BD EC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=;(2)解:ABC ∆中,36A ∠=︒,1(18036)722B C ∴∠=∠=︒-︒=︒,由(1)知:BDE CEF ∆≅∆BDE CEF ∴∠=∠,又DEF CEF B BDE ∠+∠=∠+∠,72DEF B ∴∠=∠=︒.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.【解答】证明:(1)AD 是ABC ∆的高,45ACB ∠=︒,90ADB CDE ∴∠=∠=︒,ACD ∆是等腰直角三角形,AD CD ∴=,在ABD ∆和CED ∆中,AD CD ADB CDE DE DB =⎧⎪∠=∠⎨⎪=⎩,()ABD CED SAS ∴∆≅∆,BAD ECD ∴∠=∠;(2)如图,在EC 上截取EG BF =,ABD CED ∆≅∆,B CED ∴∠=∠,在BDF ∆和EDG ∆中,EG BF B CED DE DB =⎧⎪∠=∠⎨⎪=⎩,()BDF EDG SAS ∴∆≅∆,DF DG ∴=,BDF EDG ∠=∠,90FDG FDE EDG FDE BDF ADB ∴∠=∠+∠=∠+∠=∠=︒,DFG ∴∆是等腰直角三角形,45DFE ∴∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.【解答】证明:在ABD ∆和BAC ∆中,AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,ABD BAC ∴∆≅∆()SAS ,34∴∠=∠,DAB CBA ∠=∠,12∴∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.【解答】解:BAC DAE ∠=∠,BAD CAE ∴∠=∠,在ABD ∆与ACE ∆中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;228ABD ∴∠=∠=︒;31ABD ∠=∠+∠,122∠=︒,350∴∠=︒.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 10 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .【解答】解:(1)作PA y ⊥轴于A ,PB x ⊥轴于B ,如图1所示:(5,5)P ,5PA PB OA OB ∴====,(0,5)A ∴,当5m =时,(0,5)M ,A ∴与M 重合,B 与N 重合,5ON OH ∴==,10OM ON ∴+=;故答案为:10;(2)当05m <<时,OM ON +的值不改变,理由如下:作PA y ⊥轴于A ,PB x ⊥轴于B ,如图2所示:则90APB ∠=︒,5PA PB ==,90MPN ∠=︒,APM BPN ∴∠=∠,在APM ∆和BPN ∆中,90PAM PBN PA PB APM BPN∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()APM BPN ASA ∴∆≅∆,AM BN ∴=,10OM ON OA AM OB BN OA OB ∴+=-++=+=;(3)当0m <时,OM 与ON 的数量关系为10OM ON =-,理由如下: 作PA y ⊥轴于A ,PB x ⊥轴于B ,如图3所示: 同(2)得:()APM BPN ASA ∆≅∆,AM BN ∴=,10OM AM OA BN OA ON OB OA ON ∴=-=-=--=-; 故答案为:10OM ON =-.38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.【解答】证明:射线BD 平分锐角ABC ∠,且平分钝角ADC ∠, 12∴∠=∠,34∠=∠,ADB CDB ∴∠=∠,在CBD ∆和ABD ∆中,21BD BD CDB ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CBD ADB ASA ∴∆≅∆,CD AD ∴=.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.【解答】证明:BF AC ⊥于点F ,CE AB ⊥于点E , 90BED CFD ∴∠=∠=︒,在BDE ∆和CDF ∆中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CDF AAS ∴∆≅∆,DE DF ∴=,D ∴在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆, AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;C BPQ ∴∠=∠,90C APC ∠+∠=︒,90APC BPQ ∴∠+∠=︒,90CPQ ∴∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.41.如图,在ABC ∆中,60B ∠=︒,AD 平分BAC ∠,CE 平分BCA ∠,AD 、CE 交于点F ,CD CG =,连结FG .(1)求证:FD FG =;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若60B ∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.【解答】(1)证明:EC 平分ACB ∠, FCD FCG ∴∠=∠,CG CD =,CF CF =,()CFD CFG SAS ∴∆≅∆,FD FG ∴=.(2)解:结论:FG FE =.理由:60B ∠=︒,120BAC BCA ∴∠+∠=︒, AD 平分BAC ∠,CE 平分BCA ∠,1()602ACF FAC BCA BAC ∴∠+∠=∠+∠=︒, 120AFC ∴∠=︒,60CFD AFE ∠=∠=︒, CFD CFG ∆≅∆,60CFD CFG ∴∠=∠=︒,60AFG AFE ∴∠=∠=︒,。
轻松破解三角形证明题,一道题10种解题方法让你豁然开朗!
初中解三角形的难度相对于其他知识点来说并不是最难的,但从重要性上来说却是不可忽视的!
在日常做题时,简单题的思路和解法都大致相同,做起来基本没有难度。
做多了简单题,再碰到难题就会觉得没有头绪,不知该如何下手。
而中考作为一种选拔性考试,往往不会出现做过的题,也不会有那么简单的题出现。
这就是很多孩子平时成绩还行,但一遇到考试就成绩不够理想的原因!
用1、2种方法做10道大致相同的简单题,不如用10种方法做1道题!
如果能转变观念,把题做通,即使是难题也能轻松应对,在考试时也能找到最佳方法,高效率答题!今天豆姐跟大家分享的就是如何用10种办法证明一道题!
题目是这样的:
已知在△ABC中,AB=AC,BD是AC边上的高,求证: ∠CBD=1/2∠A。