RC移相式正弦波振荡器
- 格式:doc
- 大小:227.00 KB
- 文档页数:7
rc移相振荡器电路频率RC移相振荡器电路频率是电子工程学中的一个核心概念。
它是一种能够产生可控的高频振荡信号的电路,被广泛应用于无线通信、计算机网络等领域。
在本文中,我们将会详细地阐述RC移相振荡器电路频率的相关知识,以及如何计算RC移相振荡器电路频率的方法。
RC移相振荡器电路是一种反馈电路,它由一个放大器和一个RC相移网络组成。
该电路中的放大器通常是一个晶体三极管或场效应管,而RC相移网络由若干个固定电容和变阻器组成。
当电路的反馈增益大于1时,RC移相振荡器电路便开始产生振荡信号。
RC移相振荡器的频率主要由两个因素决定:RC网络中的电容和电阻值,以及放大器的特性。
具体地说,RC网络中的电容和电阻值越大,振荡信号的频率便越低,反之亦然。
而放大器的特性则会影响电路的放大倍数和相位差,从而进一步影响振荡信号的频率。
计算RC移相振荡器电路频率的方法主要有两种。
第一种方法是采用RC网络的截止频率来计算。
RC网络的截止频率是指当交流信号的频率等于1/RC时,由于电容的反应电路开始发生变化,从而使得信号的放大倍数开始下降。
因此,当振荡信号的频率等于RC网络的截止频率时,振荡信号的放大倍数等于1。
因此,RC移相振荡器电路的频率可以通过以下公式来计算:f=1/2πRC其中,f表示振荡信号的频率,R表示RC网络中的电阻值,C表示RC网络中的电容值。
第二种计算RC移相振荡器电路频率的方法是使用放大器的特性来计算。
首先,我们需要确定放大器的截止频率,这是指当信号的频率等于放大器的特性时,放大器的放大倍数开始下降。
据此,我们可以使用以下公式来计算振荡信号的频率:f=1/2πRtotalC(ln(A-1)/lnA)其中,Rtotal表示RC网络中的总电阻值,C表示RC网络中的电容值,A表示放大器的放大倍数。
综上所述,我们可以看到,计算RC移相振荡器电路频率的方法比较简单。
通过确定电路中的电容、电阻值以及放大器的特性,我们就可以计算出振荡信号的频率。
RC正弦波振荡电路简介RC正弦波振荡电路是一种基于电容(C)和电阻(R)元件的电路,可以产生稳定的正弦波电信号。
这种电路常见于信号发生器、音频放大器和频率计等领域。
本文将介绍RC正弦波振荡电路的基本原理、设计方法和应用。
原理RC正弦波振荡电路的基本原理是基于RC网络的充放电特性。
当电容器充电时,电流会通过电阻器,同时电流也会通过电容器。
充电过程中,电容器的电压会逐渐增加,直到达到充电电压。
一旦充电电压达到,电容器将开始放电,电流仍然通过电阻器,但是方向相反。
这样不断循环的充电和放电过程将产生连续的正弦波信号。
设计方法1. 选择合适的电阻值和电容值选择合适的电阻和电容值是设计RC正弦波振荡电路的关键。
其中,电阻决定了振荡频率,而电容决定了振荡周期。
根据公式:f = 1 / (2 * π * R * C)其中,f为振荡频率,π为圆周率,R为电阻值,C为电容值。
可以调整R和C的数值来获得所需的振荡频率。
2. 确定放大倍数RC正弦波振荡电路通常需要放大信号的幅度。
可以通过添加一个放大器来实现,放大器通常采用运算放大器或晶体管等元件。
3. 稳定性分析在设计RC正弦波振荡电路时,需要考虑电路的稳定性。
稳定性可以通过研究电路的极点和传递函数来评估。
如果电路的极点位于左半平面,那么电路是稳定的,否则是不稳定的。
通过合适的选择元件值,可以实现稳定的振荡电路。
应用RC正弦波振荡电路具有广泛的应用领域,包括但不限于以下几个方面:1. 信号发生器RC正弦波振荡电路可以用作信号发生器,用于产生稳定的正弦波信号,用于实验、测试和测量等应用。
2. 音频放大器RC正弦波振荡电路经过合适的放大器可以用于音频放大器中,用于放大音频信号。
3. 频率计RC正弦波振荡电路可以用于频率计,通过测量电路振荡频率来实现对待测信号频率的测量。
结论RC正弦波振荡电路是一种基于RC网络的电路,可以实现稳定的正弦波振荡。
通过选择合适的电阻和电容值,设计合适的放大倍数和稳定性分析,可以实现所需的振荡频率和信号幅度。
实验十四 RC 正弦波振荡器一、实验目的1、掌握RC 正弦波振荡器的电路结构及其工作原理。
2、熟悉正弦波振荡器的测试方法。
3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。
二、实验仪器1、双踪示波器2、低频信号发生器3、频率计4、交流毫伏表5、直流电源。
三、实验原理及测量方法正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图1所示。
图1 正弦振荡电路原理框图由于振荡电路不需要外界输入信号,因此,通过反馈网络输出的反馈信号X f 就是基本放大电路的输入信号X id 。
该信号经基本放大电路放大后,输出为X o ,若能使X f 与X id 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。
因而,X f =X id 可引出正弦振荡条件。
由方框图1可知:o id X AX =而X f =FX o 当X f =X id 时,则有:AF =1上述条件可写成|AF|=1,称幅值平衡条件。
即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已达到稳幅振荡,但若要求电路能够自行振荡,开始时必须满足|AF|>1的起振条件。
由X f 与X id 极性相同,可得:2A F n φφπ+= 称相位平衡条件即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。
要使振荡电路输出确定频率的正弦信号,电路还应包含选频网络和稳幅电路两部分。
选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。
RC 正弦振荡电路也称为文氏桥振荡电路。
它的主要特点是利用RC 串并联网络作为选频和反馈网络。
如图2所示R123.5kΩ(a )电路图(b )串并联网络频率特性 图2 RC 串并联正弦振荡电路由串并联网络的幅频特性,可知当信号频率为12o f RCπ=时,选频网络的相角为0度,传递系数为1/3。
所以,要满足正弦振荡条件,要求放大电路的相角为0度,传递系数稍大于3。
1. RC 桥式正弦波振荡器(文氏电桥振荡器)如图电路主要由两部分组成:(1)正反馈环节:由RC 串、并联电路构成,同时起相位起振作用和选频作用。
(2)负反馈和稳幅环节:由R 3、R 5、R P =R 4及二极管等元件构成,其中R 3、R 5、R P 主要作用是引入负反馈,调节电位器可以改变负反馈深度,以满足振荡的振幅条件和改善波形;稳幅环节是利用两个反向并联二极管VD 1、VD 2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R 3的作用是削弱二极管非线性的影响,以改善波形失真。
电路的谐振频率:f o =RC π21起振的振幅条件:21≥R R f(其中R f = R P +(R 5// r D ),r D 为二极管正向导通电阻)2. 实验步骤和测量数据(1)调节R P ,使电路起振且波形失真最小。
如果不能起振,说明负反馈太强,应适当调大R P ;如果波形失真严重,应适当调小R P 。
观察起振过程,从正弦波的建立到出现失真。
记录数据并分析负反馈强弱对起振条件及输出波形的影响。
(2)调节电位器R P ,使输出电压u o 幅度最大且不失真,用万用表交流电压档分别测量输出电压U o m 、反馈电压U+和U —,分析振荡的幅度条件。
(3)改变选频网络的参数C 或R 可调整电路的振荡频率,频率粗调通过改变电容C 进行量程切换,而量程内频率细调通过改变电阻R 来实现。
1. 占空比可调方波发生器电路主要由滞回比较器和RC 积分电路组成。
分析时注意电路的连接方式。
电路的谐振频率: f o =)(211321ln )2(1R R C R R P ++方波的输出振幅:U o m =±U Z2. 实验步骤和测量数据(1)调节电位器R 5至中心位置,用双踪示波器同时观察并描绘方波u o 及三角波u c 波形,测量其幅度和频率并记录。
(2)改变电位器R 5动点位置,观察u o 、u c 幅度及频率变化情况,把动点调至最上端和最下端,测出频率范围并记录。
RC正弦波振荡器一、实训目的1、掌握RC桥式正弦波振荡器的电路构成及工作原理;2、熟悉正弦波振荡器的调整、测试方法;3、观察参数对振荡频率的影响,学习振荡频率的测试方法;4、熟悉RC正弦波振荡器故障的分析和处理。
二、实训所需挂件及附件序号型号备注1 PMT01电源控制屏该控制屏包含“液晶显示屏”等模块2 PMT-60电子技术实训电源组件该挂件包含“电源及信号源”等模块3 PMT-61电子技术实训组件(一)该挂件包含“RC正弦波振荡器”等模块4 双踪示波器自备三、实训原理RC正弦波振荡器的原理图如下图2-5所示;图2-5 RC桥式正弦波振荡器RC桥式正弦波振荡器又称为文氏桥振荡器,电路由同相放大器和具有选频作用的RC串并联正反馈网络两部分组成,即放大电路A V和选频网络F V。
A V为由集成运放LF353组成的同相放大电路,①脚输出频率为f0的信号通过RC串并联反馈到放大器的输入端③脚。
因为RC选频网络的反馈系数F=1/3,因此,只要使放大器的放大倍数Auf=3,就能满足振幅平衡条件;由于同相放大器的输入信号与输出信号的相位差为00,RC串并联选频网络对于频率为f0信号的相移也为00,所以信号的总相移满足相位平衡条件,属正反馈。
因此,电路对信号中频率为f0的分量能够产生自激振荡,而其他的频率分量由于选频网络的作用,反馈电压低,相位不为零,则不产生自激振荡。
在实用的RC桥式振荡器电路中,反馈电阻Rf(相当于图2-5中的RP2)常采用具有负温度系数的热敏电阻以便顺利起振,当振荡器的输出幅度增大时,流过Rf 的电流增强,随热敏电阻的温度上升其电阻变小,使放大器的增益下降,这将自动调节振荡输出信号趋于稳定。
RC桥式振荡器电路的振荡频率取决于RC选频回路的R1、C1、RP1、C2参数,通常情况下,R1=RP1=R 、C1=C2=C ,振荡频率为)2/(10RC f π=四、实训方法1、用万用表监测使RP1=R1=10K ,用导线从PMT-60挂件上将±15V 电源接到PMT-61挂件的“RC 桥式振荡器”模块的±15V 输入端。
深度探讨RC正弦波振荡器结构与工作原理一、引言在电子学领域中,RC正弦波振荡器是一种常见的振荡电路,它能够产生稳定的正弦波信号。
在本文中,我们将深度探讨RC正弦波振荡器的结构与工作原理,并对其进行全面评估。
二、RC正弦波振荡器的结构1. 电容电阻网络RC正弦波振荡器的核心是由电容和电阻构成的电容电阻网络。
电容负责存储电荷,而电阻则限制电流的流动。
这个电容电阻网络是RC正弦波振荡器能够产生稳定正弦波信号的重要组成部分。
2. 反馈网络在RC正弦波振荡器中,反馈网络起着至关重要的作用。
它能够将一部分输出信号送回输入端,从而实现正反馈,使电路产生振荡。
三、RC正弦波振荡器的工作原理1. 正反馈RC正弦波振荡器利用正反馈来实现信号的产生和放大。
当电路输出正弦波时,一部分信号被送回输入端,从而增强了输入信号,使得电路不断产生振荡。
2. 能量损耗与补偿在RC正弦波振荡器中,由于电容和电阻存在能量损耗,需要通过外部的能量补偿来保持振荡的稳定。
3. 频率决定RC正弦波振荡器的频率由电容和电阻的数值决定,当电容或电阻发生变化时,频率也会相应地发生变化。
四、对RC正弦波振荡器的全面评估1. 结构分析通过对RC正弦波振荡器的结构进行分析,我们可以清晰地了解其组成部分及各部分之间的作用关系。
这有助于我们深入理解振荡器的工作原理。
2. 工作原理振荡器的工作原理对于我们理解其产生信号的机理至关重要。
只有通过深入分析其工作原理,我们才能真正掌握振荡器的运行方式。
3. 频率稳定性RC正弦波振荡器的频率稳定性是其性能的重要指标之一。
在实际应用中,我们需要考虑电容和电阻的稳定性,以保证振荡器的性能符合要求。
五、个人观点和理解对于RC正弦波振荡器的结构与工作原理,我深信其在电子学领域有着重要的应用。
通过深入研究振荡器的结构与工作原理,我们可以更好地应用它,并在实际工程中发挥其作用。
六、总结与回顾通过本文的深度探讨,我们全面了解了RC正弦波振荡器的结构与工作原理。
RC振荡电路目录编辑本段简介采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz的低频信号。
因为对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。
常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。
因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。
编辑本段常用的RC振荡电路有相移式和桥式两种。
(1)RC移相式振荡器,具有电路简单,经济方便等优点,但选频作用较差,振幅不够稳定,频率调节不便,因此一般用于频率固定、稳定性要求不高的场合。
其振荡频率是fo=1/2π√6RC[1] (2)RC桥式振荡器将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。
Rc桥式振荡电路如图所示,RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,Rf、R1接在运算放大器的输出端和反相输入端之间,构成负反馈。
正反馈电路和负反馈电路构成一文氏电桥电路(如图右所示),运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以,把这种振荡电路称为RC桥式振荡电路。
(如图)振荡信号由同相端输入,故构成同相放大器,输出电压Uo与输入电压Ui同相,其闭环电压放大倍数等于Au=Uo/Ui=1+(Rf/R1)。
而RC 串并联选频网络在ω=ωo=1/RC时,Fu=1/3,εf=0°,所以,只要|Au|=1+(Rf/R1)>3,即Rf>2R1,振荡电路就能满足自激振荡的振幅和相位起振条件,产生自激振荡,振荡频率fo等于fo=1/2πRC采用双联可调电位器或双联可调电容器即可方便地调节振荡频率。
在常用的RC振荡电路中,一般采用切换高稳定度的电容来进行频段的转换(频率粗调),再采用双联可变电位器进行频率的细调。
RC移相式正弦波振荡器
发布时间:2011-12-8 9:51:29 访问次数:782
图11-2所示是RC移相式正弦波振荡器。
电路中,VT1管接成共发射极放大器,VTI为振荡管,Uo是振荡器的输出信号,为正弦波信号。
1.直流电路分析
电路中的电阻R3和R4构成VT1的分压式偏置电路,R5是VT1集电极负载电阻,R6是VT1发射极电阻,VT1具备处于放大状态的直流电路工作条件。
VT1工作在放大状态下,这是一个振荡器所需的。
2.正反馈电路分析
无论是什么类型的振荡器,必须存在正反馈环节,共发射极放大器具有反相的作用,即输出信号电压与输入信号电压之间相位差为180。
,如若对放大器的输出信号再移相180。
后加到放大器的输入端,那么就移相了360。
,这样反馈回来的信号与输入信号之间是同相的关系,就是正反馈了。
这后180。
的相移要靠RC移相电路来实现。
由RC移相电路工作特性可知,RC电路可以对信号进行移相,每一节RC移相电路对输入信号的相位移最大为90。
,但此时输出信号电压已经为零了,就不能满足振荡的幅度条件了,这样最大移相量不能采用90。
,所以要再移相180。
必须至少要三节RC移相电路。
电路中,电容Cl和电阻Rl构成第一带RC超前移相式电路,C2相R2构成第二节RC移相电路,C3和放大器输入电阻(由R3、R4和VT1的输入电阻并联)构成第三节RC移相电路。
这三节RC移相电路对信号移相180。
,加上VT1共发射极放大器本身的180。
移相,使VT1集电极经三节RC 移相电路后加到VT1基极上原信号相位与基极上原信号相位相同,所以这是正反馈过程,满足相位正反馈条件。
3.振荡过程分析
同时,VT1本身具有放大能力,这样又符合幅度条件,振荡器便能振荡。
振荡信号是从
VT1集电极输出,通过耦合电容C5送出振荡器。
4.电路分析说明
关于这种RC移相式振荡器的分析主要说明以下几点:
(1)电路中只采用一级共发射极放大器,对信号已经产生了180。
的移相,这是由共发射极放大器特性决定的。
(2)这种振荡器中,最少要用三节RC超前移相式电路,要了解RC移相式电路的工作原理,并要了解这种移相电路最大有效相移量小于90。
,所以只有三节才行。
(3)三节RC移相电路中,第一节先对频率为五的信号移相一定相位,第二节是在第一节已经移相的基础上再移
相,第三节也是这样,三节累计移相恰好为180。
三节RC移相电路只是对频率为矗的信号移相180。
,对于其他频率信号由于频率不同,三节RC移相电路的相移量不等于180。
,或大于或小于180。
,这样都不能满足振荡的相位条件,也就是只有频率为fo的信号才能发生振荡。
(4)这种振荡器的电路结构比较简单、成本低,缺点是选择性较差,输出信号也不稳定,振荡频率不宜调整。
5.RC滞后移相电路
RC电路可以用来对输入信号(交流信号)的相位进行移褐(就是改变输出信号与输入信号之间的相位差),根据阻容元件的位置不同有两种RC移相电路。
在讨论RC移相电路工作原理之前,先要对电阻器,电容器上的电流的相位和在电阻器、电容器上电压降的相位之间的关系进行说明。
如下所示是电阻器和电容器上电流与电压之间相位关系的说明。
分析移相电路时要用到矢量的概念,并且要学会画矢量图。
为了方便分析RC移相电路的工作原理,可以用画矢量图分析的方法。
如下所示是画图步骤说明。
6.RC超前移相电路
图11-4所示是RC超前移相电路,这一电路与RC滞后移相电路相比,只是电路中电阻和电容的位置变换了,输出电压取自于电阻Rl。
根据上面介绍的矢量图画图步骤,画出矢量图之后很容易看出,输出信号电压醌超前于输入电压Ui一个角度。
具体的画图步骤是:①画出电流I,②画出电阻上电压降UR,③画出电容上压降Uc,并作出平行四边形,④画出输入电压Ui。
这种RC移相电路的最大相移量小于90。
,如果采用多级RC移相电路则总的相移量可以大于90。
改变电路中的电阻或电容的大小,可以改变相移量;。