玻璃化转变中经典WLF方程的直接理论证明
- 格式:pdf
- 大小:290.56 KB
- 文档页数:8
3基金项目:中国科学技术大学教学改革基金资助项目(YL5196);作者简介:何平笙(1940年-),男,中国科学技术大学教授,博士生导师。
研究领域为热固性树脂的固化,聚合物的宏观单晶体,LB 膜,软刻蚀等。
发表论文170余篇。
长期从事高分子物理的教学和教学研究工作。
教 学WLF 方程———链段运动的特殊温度依赖关系3何平笙(中国科学技术大学高分子科学与工程系,合肥 230026) 摘要:WLF 方程是特殊的运动单元———链段运动所服从的特殊温度依赖关系。
链段运动时内能的变化是不重要的,主要发生的是熵的变化。
原因是高分子的“大”,量变必然引起质变,量“大”引起的质变是新的结构参数“柔性”的产生,产生聚合物特有的橡胶高弹性,并具有自己特有的温度依赖关系———WLF 方程。
关键词:WLF 方程;链段运动;自由体积 WLF (Williams 2Landel 2Ferry )方程ln a T =ln ττ0=-C 1(T -T s )C 2(T -T s )(1)是高分子科学中一个非常具有特性的方程,它反映的是高分子链段运动特有的温度依赖关系。
大凡学过物理化学的人都知道,几乎所有分子运动的温度依赖性规律都服从阿累尼乌斯(Ar 2rhenius )方程τ=τ0e ΔH ΠRT (2)这里τ是体系的某物理量(弛豫时间);ΔH 是活化能;R 是气体常数;T 为绝对温度。
的确,高分子链的整链运动(流动)或者是高分子链中比链段小的运动单元(链节,基团等)与温度的关系都可用式(2)的阿累尼乌斯方程来描述。
惟有高分子链段运动的温度依赖关系不服从阿累尼乌斯方程,这是很特别的。
到底是什么原因使链段运动的温度依赖关系偏离阿累尼乌斯方程呢?要回答这个问题,必须要对高分子的链段运动有一个深刻的认识。
与小分子化合物相比,聚合物的最大特点就是“大”,它由很大数目(103~104)的结构单元以化学键相连而成的,而每一个结构单元又相当于一个小分子化合物。
3基金项目:中国科学技术大学教学改革基金资助项目(YL5196);作者简介:何平笙(1940年-),男,中国科学技术大学教授,博士生导师。
研究领域为热固性树脂的固化,聚合物的宏观单晶体,LB 膜,软刻蚀等。
发表论文170余篇。
长期从事高分子物理的教学和教学研究工作。
教 学WLF 方程———链段运动的特殊温度依赖关系3何平笙(中国科学技术大学高分子科学与工程系,合肥 230026) 摘要:WLF 方程是特殊的运动单元———链段运动所服从的特殊温度依赖关系。
链段运动时内能的变化是不重要的,主要发生的是熵的变化。
原因是高分子的“大”,量变必然引起质变,量“大”引起的质变是新的结构参数“柔性”的产生,产生聚合物特有的橡胶高弹性,并具有自己特有的温度依赖关系———WLF 方程。
关键词:WLF 方程;链段运动;自由体积 WLF (Williams 2Landel 2Ferry )方程ln a T =ln ττ0=-C 1(T -T s )C 2(T -T s )(1)是高分子科学中一个非常具有特性的方程,它反映的是高分子链段运动特有的温度依赖关系。
大凡学过物理化学的人都知道,几乎所有分子运动的温度依赖性规律都服从阿累尼乌斯(Ar 2rhenius )方程τ=τ0e ΔH ΠRT (2)这里τ是体系的某物理量(弛豫时间);ΔH 是活化能;R 是气体常数;T 为绝对温度。
的确,高分子链的整链运动(流动)或者是高分子链中比链段小的运动单元(链节,基团等)与温度的关系都可用式(2)的阿累尼乌斯方程来描述。
惟有高分子链段运动的温度依赖关系不服从阿累尼乌斯方程,这是很特别的。
到底是什么原因使链段运动的温度依赖关系偏离阿累尼乌斯方程呢?要回答这个问题,必须要对高分子的链段运动有一个深刻的认识。
与小分子化合物相比,聚合物的最大特点就是“大”,它由很大数目(103~104)的结构单元以化学键相连而成的,而每一个结构单元又相当于一个小分子化合物。
聚合物的玻璃化转变高宇(华东理工大学材料科学与工程学院,200237)【摘要】玻璃化转变是高聚物的一种普遍现象,研究玻璃化转变现象,有着重要的理论和实际意义。
本文先综述了玻璃化转变过程中的一些现象,然后简要介绍了玻璃化转变的三种主要理论:自由体积理论、热力学理论和动力学理论。
【关键词】玻璃化转变自由体积理论热力学理论动力学理论聚合物试样上施加恒定载荷,在一定范围内改变温度,试样的形变将随温度变化,以形变或相对形变对温度作图,所得到的曲线,通常称为温度-形变曲线或热机械曲线。
根据试样的力学性质随温度变化的特征,可以把非晶态聚合物按温度区域不同划为三种力学状态——玻璃态、高弹态和粘流态。
玻璃态与高弹态之间的转变,称为玻璃化转变,对应的转变温度即玻璃化转变温度。
1. 玻璃化转变现象玻璃化转变是聚合物的玻璃态与高弹态之间的转变,对应于含20~50 个链节的链段的微布朗运动的“冻结”和“解冻”的临界状态。
由于非晶态结构在聚合物中是普遍存在的,因此玻璃化转变是聚合物的一种普遍现象。
在玻璃化转变前后,聚合物的体积性质、热力学性质、力学性质、电学性质等都将发生明显变化。
跟踪这些性质随温度的变化,可确定玻璃化转变温度。
聚合物的玻璃化转变是链段运动随温度的升高被激发或随温度的降低被冻结造成的现象。
也可以从另一个角度来理解玻璃化转变行为,分子运动具有时间依赖性,在较低温度下,链段的运动速度十分缓慢,在实验限定的观察时间尺度下觉察不到它的运动现象,随着温度的升高,运动速度加快,当链段的运动速度同检测时间标尺相匹配时,玻璃化转变行为就表现出来了。
玻璃化转变本质上讲是分子运动方式的改变。
通过改变温度可以改变分子的运动方式,在温度恒定的前提下,也可改变其他因素以实现分子运动方式的变化,使材料处于不同的力学状态。
这种可通过多种因素导致玻璃化转变的现象称为玻璃化转变的多维性。
在玻璃化转变时,聚合物材料的力学性质的变化相当显著。
玻璃化温度的讨论非晶态高聚物从玻璃态到橡胶态,有一个转变——玻璃化转变。
这个转变一般其温度区间不超过几度。
但在转变前后,模量的减少达三个数量级。
在实用上是从硬而脆的固体变成韧性的橡胶。
所以,玻璃化转变是高聚物一个重要的特性。
形成玻璃态的主要原因,可能是高聚物分子结构不对称,不能形成结晶;也可能是没有足够的能量去重排结晶。
而且多数高聚物也只有在特定的条件下方能结晶。
同时高聚物很难形成100%的结晶,总有部分非晶态存在,因此玻璃化转变是高聚物普遍现象,只不过非晶态少的高聚物玻璃化转变不明显。
一,玻璃化转变温度的测定高聚物在玻璃化转变时,除了力学性质有很大变化,其他性质如体积,热力学性质,磁性质等,都有很大变化。
在理论上后面的变化更为重要。
下面就简要介绍:1,体积的变化用膨胀计测定玻璃化温度是最常用的方法。
一般是测定高聚物的比体积对温度的关系.把曲线两端的直线部分外推至交点作为T g(如图1)从图可以看出,玻璃化转变同冷却速率有关:冷却的快。
得出的T g高;冷却的慢,T g就较低。
同样,加热速率或快或慢,T g也或高或低。
产生这种现象的原因是体系没有达到平衡。
但要达到平衡,需要很长的时间(无限长),这在实验上做不到。
通常采用的标准是每分钟3℃。
测量时.常把试样在封闭体系中加热或冷却,体积的变化通过填充液体的液面升降而读出、这种液体不能和高聚物发生反应或溶解、溶胀,最常用的是水银、也有人用空气作测量的流体,达时可测定压力的变化。
其它与体积有关的性质也可用于测定,加试样的折射系数、X射线的吸收等。
2,热力学方法量热方法也是测定玻璃化温度的常用方法。
在T g时,热焓有明显变化,热容有—个突变。
自从有了差热分析(DTA)和差示扫描量热计后,量热方法变得更为重要。
象体积变化一样,热焓和热容的变化也和速率有关:图2表示比体积(V)和焓(H)对温度的关系,图3表示体膨胀系数和热容对温度的关系,都出现行“滞后”现象。
玻璃化转变温度玻璃化转变温度刘⽟飞材料物理030摘要:本⽂将介绍玻璃化转变温度⼏种定义⽅法和玻璃化转变理论。
在此基础上,从动⼒学理论、热⼒学理论出发,解释玻璃化转变温度随升温速率升⾼⽽增⼤、降温速率增⼤⽽增⼤的现象。
关键词:玻璃化转变温度弛豫时间⾼聚物玻璃化转变温度是表征⾼聚物的⼀个重要物理]1[量,玻璃化转变温度(g T )附近,微⼩的温度变化能使⾼聚物的物理性质(如:热容量、热膨胀系数、弹性模量、折光率等)发⽣较⼤的变化。
传统测量⾼聚物的玻璃化转变温度点的⽅法是:测量⾼聚物的热膨胀系数及⽐热系数随温度变化的不连续点。
但它与冷却速率有关,冷却速率越⼩,所得到的g T 点越低;冷却速率越⼤,所得到的g T 点越⾼。
当⾼聚物从熔融态或⾼弹态快速淬⽕到玻璃态时,其在⾼温态时的分⼦链构象和分⼦链间聚集结构被冻结,这时体系处于热⼒学⾮平衡态。
如果把这种⾮平衡态样品在低于其g T 温度进⾏较长时间的热处理,由于分⼦链的热运动⽽加速松弛,使体系逐渐向平衡态转变。
整个过程相当于由平衡态(Ⅰ)到⾮平衡态(Ⅱ)再到平衡态(Ⅲ)的转变。
实验中测得的玻璃化转变温度(g T )是过程(Ⅰ)到过程(Ⅱ)或过程(Ⅲ)到过程(Ⅱ)温度转折点的温度。
因此,⽤热膨胀系数和⽐热系数不连续点测定g T 位置与测定时的变温速率和时效时间有很明显的相关性。
1 玻璃化转变温度的定义玻璃化转变是⼀个⾮常有趣的理论问题,不同的学者研究玻璃化转变问题均有⾃⼰独特的观点,学术界对玻璃化转变温度所下的定义⾮常之多。
下⾯分别从分⼦结构、测试⽅法、实验现象⾓度列举玻璃化转变温度的定义形式。
1.1从分⼦结构⾓度定义玻璃化转变温度玻璃化转变温]2[度是指⾼分⼦链段由冻结到解冻、活动到冻结转变点所对应的温度。
玻璃化转变温]3[度是指主链中C 20-50 链段的微布朗运动在冷却时被冻结或在升温时被解冻时所对应的温度。
1.2从测试⾓度定义玻璃化转变温度玻璃化转变温]4[度是指⾼聚物的⼒学性质(模量、⼒学损耗)、热⼒学性质(⽐热容、热膨胀系数、焓)、电磁性质(介电性、导电性、内耗峰)、形变(膨胀系数)、光学性质(折光指数)等物理性质发⽣突变点所对应的温度。
高分子物理第五章概念:1三大转变①玻璃化转变:非晶聚合物通过降温从高弹态进入玻璃态,或者通过升温从玻璃态进入高弹态的过程称为玻璃化转变,从分子运动的角度,聚合物的玻璃化转变对应于链段运动从“运动状态”到“冻结状态”的转变。
②粘流转变:高聚物从高弹态向粘流态的转变③次级转变:在玻璃化温度下与小尺寸运动单元的运动所对应的松驰转变2玻璃化转变温度Tg :发生玻璃化转变的温度称为玻璃化转变温度。
流动温度Tf :3时温等效原理:升高温度或者延长观察时间对于观察同一个松弛过程是等效的,对于研究聚合物的分子运动也是等效的。
4 Avram 指数:与成核机理和晶体生长方式有关的常数,等于晶体生长的空间维数和成核过程的时间维数之和 5半结晶时间:结晶程度达到1/2时的时间 问答1三大力学状态的特点①玻璃态:(1)大应力下的小形变,模量高(2)形变量与应力成正比,普弹形变(3)形变 瞬时可逆。
常温下玻璃态聚合物常用作塑料②高弹态:(1)小应力下的大形变,模量低(2)形变滞后可逆,松弛时间长(滞后高弹形 变)常温下用作橡胶③粘流态1)不可逆的黏性形变(2)模量极低且随温度升高急剧下降(3)黏流转变温度与 分子量有关2从分子运动的角度说明非晶态聚合物随温度升高呈现出三种不同的力学状态的特点。
答: 1)玻璃态: T<Tg 运动单元:键长、键角的改变或链节、支链、侧基等小尺寸单元的运动2)高弹态: T g ~T f 运动单元:链段运动3)粘流态: Tf ~Td 运动单元:整链分子产生相对位移→流动3测Tg 的方法及原理(1) 膨胀计方法——热膨胀系数发生突变(2)示差扫描量热法(DSC )——比热发生突变(3)热机械分析法——模量发生突变(4)动态力学分析法——模量突变及力学损耗增大(5)NMR 核磁共振松弛法:在较低温度下,NMR 谱线很宽,在较高 温度下谱线变狭,在玻璃化转变时,谱线的宽度有很大的改变。
(6).介电松弛法:介电性质在玻璃化转变区发生明显的变化,可以用 来测定Tg 。
食物和食物材料的玻璃化转变在各类含水量食物中,玻璃态、玻璃化转变温度、和玻璃化转变温度与贮藏温度的差值,同食物加工和贮存稳定性密切相关。
水是一种增塑剂,对玻璃化转变温度影响很大,食物含水量越高,玻璃化转变温度越低,玻璃化的实现也越困难。
一.晶态和非晶态当温度降低时,液态转变成固态。
固态有两种不同的状态—晶态和非晶态。
晶态和非晶态在宏观上都呈现固态特征,具有肯定的体积和形状。
但在微观结构上存在不同。
二者的本质不同在于微观粒子分子、原子或离子的排列不同。
凡是物质中的微观粒子(分子、原子或离子)呈有序排列为晶态。
若是物质中的微观粒子呈不规则排列,只具有“近程有序”、不具有晶态的“远程有序”的结构特征。
它是一种非晶态的无定形结构(non-crystalline or amorphous)。
融化物质在冷却进程中不发生结晶的无机物质称为玻璃(glass),后来扩大为将其它非晶态均称为玻璃态(glassy),玻璃态也可看做是一种过冷的液体。
X-ray衍射结果表明,玻璃态物质与液态曲线很相似,二者同属“近程有序,远程无序”的结构。
只不过玻璃态比液态“近程有序”程度更高算了。
二.玻璃化进程和结晶进程1 .结晶进程结晶进程是在某一肯定温度T m(称为凝固温度或熔融温度)下进行的,结晶进程中放出相变热,相变前后体积V,熵S都发生非持续转变,体积V(T)在结晶时突然收缩。
一般冷却速度比较低的时候产生结晶。
所以结晶相变又称为一级相变。
2 .玻璃化进程当熔化物质在冷却时通过凝固点并非发生相变(即不产生结晶),液态一直可以维持到很低的温度T g,抵达T g,液态转变成玻璃态。
在玻璃化进程中,物质不放出热。
此时体积V(T)转变的斜率变小,这意味着体积不会发生突然收缩,而是产生持续转变。
若是冷却速度超级高,冷却进程中不会产生结晶而是形成玻璃态。
因此液态冷却时形成晶态仍是玻璃态,主要取决于动力学因素,即冷却速度大小,当冷却速度足够快,温度足够低,几乎所有材料都能从液态过冷转变成玻璃态。
wlf方程的适用范围WLF方程(Williams-Landel-Ferry equation)是一种用于描述高分子材料玻璃化转变温度(Tg)随时间和温度变化的经验公式。
它的适用范围广泛,可以用于各种高分子材料的研究和应用。
WLF方程的适用范围主要涵盖了高分子材料的玻璃化转变行为。
所谓玻璃化转变,指的是高分子材料在降温过程中从固体态到玻璃态的转变。
在这个过程中,高分子链段的运动被限制,形成了一个类似玻璃的非晶态结构。
玻璃化转变温度是指高分子材料在这个转变过程中的临界温度,决定着材料的性能和应用范围。
WLF方程的形式如下:log10(T g) = C1 / (T - C2)其中,Tg表示玻璃化转变温度,T表示测量温度,C1和C2是实验参数。
这个方程的核心思想是将Tg与温度的倒数进行线性关联。
通过拟合实验数据,可以得到C1和C2的具体数值,进而计算出任意温度下的Tg值。
WLF方程的适用范围不仅包括了常见的聚合物,如聚乙烯、聚丙烯等,还适用于复杂的高分子体系,如共聚物、共混物等。
这是因为WLF方程的推导基于高分子链段的运动和关联效应,而这些效应在不同的高分子体系中都存在。
WLF方程还适用于不同的测试条件。
虽然方程中的参数C1和C2是经验常数,但它们可以根据不同的实验条件进行调整。
比如,如果在不同的压力下进行实验,可以通过改变C1和C2的数值来适应新的条件。
这使得WLF方程具有了更广泛的适用性。
需要注意的是,尽管WLF方程在描述高分子材料的玻璃化转变行为方面表现出了较好的适用性,但它仍然是一个经验公式。
在具体的应用中,需要根据具体的材料和实验条件进行验证和修正。
此外,WLF方程并不能完全解释高分子材料的玻璃化转变机制,只是提供了一种定量描述的方法。
WLF方程是一种用于描述高分子材料玻璃化转变温度随时间和温度变化的经验公式。
它适用范围广泛,可以用于各种高分子材料的研究和应用。
通过拟合实验数据,可以得到具体材料在不同温度下的玻璃化转变温度,为高分子材料的设计和应用提供了重要的参考依据。
Theoretical Proof of the Standard WLF Equation in theGlass TransitionWu JialinCollege of Material Science and Engineering, Donghua University, Shanghai, PRC (200051)E-mail :jlwu@AbstractThe random first-order transition theory has been directly proved by the theoretical proof for thestandard WLF equation, based on the intrinsic 8 orders of instant 2-D mosaic geometric structures, inthe glass transition. The theoretical proof shows that the constant c 1 in the WLF equation, takinglogarithm, is the non-dimension activity energy to break solid-lattice, and c 2k the potential well energy.The Clapeyron equation governing the first order phase transition in thermodynamics only holds true insubsystem, instead of system. The many-times repeated application of the first order phase transitionlaw on subsystems will result in the glass transition and the singularity. The theoretical proof showsthat the mode of glass transition is slow inverse cascade, to break solid domain, and fast cascade, torelax stress, of excited interface energy flow in local zone, and the glass transition is an emergentbehavior of the subsystems of system. The subsystem here is a percolation caused by the connectionsof excited interface energy flow in time and in space in the glass transition.Keywords: Glass transition, WLF equation, Mosaic geometric structure, Percolation, Random firstorder transition1. IntroductionGlass transition theory is an important subject in condensed-matter physics [1]. There is thewell-known semi-empirical Willams-Landel-Ferry (WLF) equation [2]()()()6.5144.17log 21+−−−=+−−−=g g g g g T T T T C T T T T C T ηη In which c 1 and c 2 are two constants for most flexible polymer. Theorists have been trying to provethis time-temperature equivalent equation directly from fundamental theories of the glasstransition and to understand the physical meaning of the two constants. In the previous papers [3,4, 5], a more fundamental model of the intrinsic 8 orders of instant 2-D mosaic geometricstructures in glass transition has been proposed. This model provides a universal picture, from T gto T m , of particle- clusters cooperative migration in one direction in the ideal solid-to-liquid glasstransition. It can be simply described as that in a reference particle a 0 3-D z-component local space,all the 320 interface excitations, categorized into 8 orders, and appearing one by one on the 8orders of instant 2-D mosaic lattices formed by 200 particles in z-component, step by step andfrom fast to slow induce 136 particles (here, it is unnecessary to bring in the concept of correlationlength, instead, the number of cooperative migration particles can be obtained directly bygeometry method [3]) to move back and forth to thaw a solid-domain along local ±z-axial. Oncethe 320-th interface excitation appears, the +z-axial a 0 particle immediately migrates just oneparticle-distance away from its 4 neighboring -z-axial particles and gives rise to 5 z-axialparticle-cavities. As for the subsequent a 0 particle on the other arbitrary z’-component space, thesame process will occur. Only after a long time and repetitious rearrangements has the referencea 0 particle fully re-coupled with its primal 4 neighboring particles. The motion mode in the glasstransition is the slow orientation process in inverse-cascade to thaw solid domain structure and thefast re-orientation process in cascade vibrant to relax orientation entropy stress and rebuild localstructure.In the model of the intrinsic 8 orders of 2-D mosaic geometric structures, the two numerical values obtained directly by geometry method: the 320 interface excited states and the 136 cooperatively oriented-migration particles, have not been experimentally proved. The aim of this paper is to directly deduce the form of standard WLF experimental equation, based on the picture of particle-clusters cooperative migration, and to validate the two numerical values in the glass transition.2. Theoretical proofThe testification is carried out in three steps: the relaxation expression of fast process stress work; the relaxation expression of slow process stress work and Clapeyron Equation in the glass transition. A series of experiments to measure the relationship between viscosity and temperature can be illustrated as: in the temperature range from T g to T g+100C°, temperature begins rising at constant speed from the point of T g. In other words, interval of ∆T a response time τres, the tensile viscosity of experimental sample is surveyed at constant strain rate. The constant rate can be described as: within the response time τres, the volume increment of sample is ∆V(T) under the effect of external stress and the sample is still in random state without any orientation after it is stretched. Thus, viscosity η(T) = σ(T)τres.Disorder-induced localization [6] is one of the fundamental concepts in condensed matter physics. The localized energy induced by thermo-disorder,E c(τi), is an intrinsically invariable energy with 8 orders of relaxation times τi in the glass transition, independent of temperature T[3, 5]. The localized energy E c(τi), reflecting the intrinsic characteristic in the glass transition, is defined the inverse cascade-cascade energy of excited interface energy flow. From [3, 5]E c(τi) = kT g°(τi)= 20/3ε0(τi) =kT g° (for flexible polymer system, i =1,2…8) (2)The inverse cascade has 8 orders, which have the same energy of 20/3ε0, however, since the creation time τi (or relaxation time) is different, the localized energy is denoted as E c(τi), which shows the potential energy of i-th order excited interface loops in inverse cascade and also indicates the kinetic energy of i-th order clusters on a V i-percolation (V i-percolation is a field created by the connection of i-th order loops, or i-th order (two-body-three-body) clusters [5]). Therefore, E c(τi) can also be denoted as a thermo random motion energy, kT g°(τi), of i-th order clusters with relaxation time τi. The convenience of introducing kT g°(τi) is that: (i) the induced potential of an i-th order excited interface loop is a relatively fast process and the migration motion of i-th order clusters surrounded by the i-th order excited interface loop is a relatively slow process in topological analysis. It is unnecessary to care about the complex phase difference caused by mosaic structure since kinetic energy and potential energy always keep balance. (ii) No matter in a local zone or a percolation field and also no matter for the 1-st clusters or the 8th order clusters, the numerical value of localized energy is kT g°.In the experiment of tension deformation, only after the 8th order loop appears, can the vacancy volume ∆V(T) needed in offering slow process cluster-migration, or volume deformation appear.The slow induced potential of 8th order loops always equals to that of the fast first order loops on percolation fields.In eq (2), ε0(τi) is the potential well energy of i-th order cluster, also the relaxation energy of one outer degree of freedom of i-th order cluster. Note that when the numerical value of ε0(τi) is denoted by a certain temperature, ε0 can be conveniently applied to the whole sample.The other intrinsic invariable energy for flexible polymer system in the glass transition is the average cooperative migration energy in one direction E mig[3]:E mig = kT2 = 17/3ε0(3) The physical meaning of E mig is that, in flexible system, E mig is the average attractive potential of collective motion in one direction of 136 neighboring particles in an inverse cascade-cascade to thaw a domain, whose energy numerical value is invariable (= 17/3ε0),independent of temperature T, external stress σ(T) and the response time τres. The 8 orders of attractive potentials of E mig(τi) can balance the external stress work, thus, the external stress also has 8 orders of relaxation time τi, denoted as σi(T).When the average random heat energy provided by outside temperature field is equal to the localized energy E c(τ8), such random motion energy, denoted as kT g, is ‘traditionally accepted as glass transition temperature’. From eqs (2) and (3), the numerical relationship between kT g and kT2 has the formkT g = kT2 +ε0 (4)Since the average cooperative migration energy E mig and the localized energy E c(τi) are all independent of temperature and the increase of temperature only increases the number of V8-loops (or the number of inverse cascade and cascade) that taking other directions in a reference local zone, the number of V8-loops can be used to measure the random heat energy kT in system: kT = kT2 + fε0 (5) f here is the average number of degree of freedom in a reference local zone, 1≤f≤ 5. The key idea here is that in a reference a0 local field, seeing Fig.6 in [3], when kT = kT g, f =1, the reference V8(a0)-loop is the only one that can be excited and provide one outer degree of freedom energyε0 to relax the 1-st order 2-D particle-cluster V1(a0) in a local z-axial and its 4 neighboring loops are in V7-loop states which can also be excited and provide f outer degrees of freedom energy fε0 to relax the V1(a0) in f local directions when kT >kT g.At the instant when an external stress acts upon the test specimen, the specimen’s instantaneous response can only come from the interactions among atoms (particles). These interactions include the extra volumes of interface excitation, which are the fractal vacancies with relaxation time τ1. Total extra volumes are vacancy volumes ∆V1(T), of which the suffix 1 denotes the first order in inverse cascade. ∆V1(T) excited by external stress σ1 (T) are oriented, the fast process stress work, W1, of first order loops has the formW1 = σ1 (T)⋅∆V1 (T) (On τ1-percolation field) (6)In eq (6), the fast process stress work of σ1 (T)⋅∆V1(T) will fully change to the deformation energy E defor after cascade:E defor = σ1 (T)⋅∆V1 (T) (7)In fast cascade process, together with structural rearrangement, the stable relaxation behavior appear, and the relaxation energy, or say, the deformation energy is just the fε0 in eq (5), thus, the deformation energy E defor at temperature T also has the form balancing with kinetic energy:E defor = fε0 = k (T - T2) (8)Eq (8) not only shows the deformation energy needed to return to the random state during an inverse cascade-cascade in local field, but also indicates the deformation energy in delayed stable extensional deformation of the sample.Thusσ1 (T)⋅∆V1 (T) = k (T - T2) (9)On the other hand, a flow-percolation can be considered as a very long “chain” (or a “net”) connected by one after another excited local fields, as same as a macromolecular chain, to bear external stress, each excited local field, as a “chain” unit, randomly taking a direction of inverse cascade with the invariant attractive potential E mig, thus, flow-percolation is of configurationentropy stress to balance external stress. Any small extensional deformation first needs anincrement of orientation entropy stress of “chain” and then relaxes the orientation work. In thestable extensional deformation, the “length” of “chain”, i.e., the number of excited local fields attemperature T is invariable; thus ∆V 1 (T ) is also invariable, the increment work ∆W 1 of extensionaldeformation that comes from the contribution of configuration entropy stress in flow-percolationmay be obtained from eq (6)∆W 1 = ∆σ1 (T )⋅ ∆V 1 (T ) (On τ1-percolation field) (10) From (9), (10), the relaxation expression of fast process stress work has the form)()()(1211T T T k T W σσ−⋅∆=∆ (11) In the stable inverse cascade-cascade, at each inspecting time τres , by the cooperation of externalstress and temperature, the sample returns to the random state after experiencing the processes oforientation and re-orientation (relaxation). The stress work in slow process W slow consists of twoparts, of which one is consumed in thawing solid-domains as local orientation work, E mig = kT 2,and the other is the relaxing work needed for pushing sample deformation in structuralrearrangement, E defor = f ε0. In the flow-percolation, the average potential energy of all the loopsin percolation field, which contribute to the stress work W slow is kT . From eq (5), the relationshipbetween W slow and E defor has the formW slow = E defor + kT 2 (On flow-percolation fields) (12)Eq (5) is used again, and the expression of slow process stress work can be deduced as 2T T E T W defor slow −== 1 (13) Eq (13) refracts the two kinds of balances between potential energy and kinetic energy. Theself-similar at T in stable extensional deformation is introduced as:defordefor slow slow E E W W ∆=∆ (14) Thus the relaxation expression of slow process stress work may be rewritten as2T T E T W defor slow −∆=∆ (15) Now it is time to discuss the first order phase transition of the so-called ‘solid-liquid coexist’ inthe slow inverse-cascade and fast cascade process in a thawing domain, in which temperaturechanges by ∆T , total extra volumes changes by ∆s -l (T ) and external stress changes by ∆σs -l (T ).It is a microscopic ‘solid-liquid coexist state’ that once the 8th loop appears in a reference a 0 localzone, the a 0 particle immediately migrates one particle-distance, along the local z-axial direction[4]. Once a 0 particle migrates to a new position, the a 0 particle field in the new position willpartially (because of mosaic structure) lost its 8 orders 2-D interface excited loops in local z-axialand change into a “2-D solid-like or liquid-like state”. The re-activation is among the otherarbitrary local z’-axial direction, thus, the ‘isotropy orient migration’ of liquid state in the localzones that follow a reference a 0 particle field, will come from the contributions of time after timeflow-percolation fields . From the point of view of the rebuilt structure and relaxed orientation, areference local V 8(a 0)-zone in a flow-percolation field (subsystem) first reaches the locally critical‘solid-liquid coexist’ conditions to break the reference a 0 solid-lattice and migrate a 0 particle onestep, then other solid-lattices connected with a 0 also satisfy the locally critical conditions one byone and follow a 0 particle migrating one step to form particle-flow. Therefore, the so-called‘solid-liquid coexist’ conditions in the glass transition evolve into that of the percolation ofparticle-cluster flow. The singularity of ‘solid-liquid coexist’ in the glass transition is that thereis no co-called two phase coexist of solid state and liquid state, instead of the solid-like-liquid-likestate. The law of first order phase transition of ‘solid-liquid coexist’ is still valid on theflow-percolation field (subsystem). Applying the Clapeyron Equation in a flow-percolation field,that is∆σs-l (T )∆V s-l (T ) = – ∆T ⋅∆S s-l (T ) (16)A negative sign is assigned on the right hand side of eq (16) because here σis a tensile stress, notcompression stress in liquid-gas phase transition. In eq (16), ∆S s-l (T ) is the entropy change ofsubsystem during solid-lattice broken. The key point is that the procedure to break solid- latticesis non-ergodic in position and direction; instead, it occurs in the form of an energy-flow as aV 8-loop (2-D local lattice) first on one flow-percolation subsystem, in one direction, then on theother flow-percolation subsystem, in other direction, and so on. Note that the dimension of stressis [energy]/[volume], if all the energy is denoted by temperature, it is not important whether ∆σs-l ,∆V s-l and ∆S s-l in Eq (16)is the value in a V 8-zone or the value on a flow-percolation field. Whatis important is to get an entropy change of 2-D local lattice, so that ∆S s-l can denote the entropychange of the sample in the tension deformation.On a flow-percolation field, according to the law of critical phase transition of broken solidlattice, ∆S s-l is of the formTE S co l s ∆=∆− (17) ∆E co is just the cooperative orientation activation energy for all particles in a thawed domain, andalso the activation energy to break a solid lattice [3] that is surrounded by a 2-D V 8-loop. ∆E co isequal to the energy of all 8 orders of interface excitations in a reference particle field [3], which is∆E co = 320∆ε0 = 40ε0 (18)The critical ‘solid-liquid coexist’ conditions also correspond to the deformation formed bygenerating vacancies and migrating particles, thus∆E d e f o r = ∆σs -l (T )⋅∆V s -l (T ) (On flow-percolation fields) (19)Combining eqs (15), (16), (17), (19), ∆W slow is of the form2T T E T W co slow −∆⋅∆−=∆ (On flow-percolation fields) (20) Each of flow-percolation fields is a subsystem in system, which bears external work in turns . Onlypart of the flow-percolation fields contain a reference 2-D a 0 local zone that orients in a certaindirection and after considering all flow-percolation fields, all local zones are statistically inrandom orientation and eq (20) is correct.In the comparison of eq (11) and eq (20), eq (11) means that in the local field, if we track thefull inverse cascade and cascade of a fast process stress work, when the sample returns to therandom state, the relaxation expression of fast process stress work will be eq (11); while eq (20)means that when the average is obtained both from time and space, the relaxation expression ofslow process stress work is eq (20). When the left and right sides of the two equations aredenoted by temperature, eq (11) and eq (20) should be equal to each other. Substitute eq (4) intoeq (11) and eq (20) and make right sides of two equations equal, then yield2011)()(⎟⎟⎠⎞⎜⎜⎝⎛−−∆⋅∆−=∆k kT T k T E T T g co εσσ (21) In eq (21),σ1 is immesurable, because inverse cascade does not dissipate energy, if τres ≥ τ8, in the stable inverse cascade-cascade, we have ∆σ1/σ1 = ∆σ ⋅τres /σ ⋅τres = ∆η /η, here σ is averageexternal stress, which is measurable, thus, eq (21) may be written as20)()(⎟⎟⎠⎞⎜⎜⎝⎛−−∆⋅∆−=∆k kT T k T E T T g co εηη (22) ∫⎟⎟⎠⎞⎜⎜⎝⎛−−∆−=∫T T g gco k kT T dT k E T T d 20)()(εηη (23) From eq (18), thus()kT T T T k T T T T E T g g g g co g 00040)(ln εεεηη+−−−=+−−⋅∆−= (24) Or ()kT T T T T g g g 037.17)(log εηη+−−−= (25) Eq (25) is in the form of the standard WLF equation.3. DiscussionsThis derivation gives clear physical meanings for both C 1 and C 2. For flexible-chain system, kC 2turns out to be the potential well energy ε0, therefore, ε0 = 51.6k . C 1, taking logarithm, is thenon-dimension activity energy ∆E co /ε0 of broken solid-lattice. The 320 interface excited statesobtained by geometry method and eq (4) deduced from the numerical relationship between kT g=20/3ε0 and kT 2=17/3ε0 are also proved by the experimental result of WLF equation.This proof gives some hints on the nature of the dynamic glass transition. In the subsystemsof the glass transition, the Clapeyron equation governing the first order phase transition inthermodynamics still holds true, however, it only holds true in each subsystem that is also a slowmigration particle-cluster flow on percolation field. The characteristic of the mean field in theglass transition is that: at a certain temperature T , when a representative subsystem that bearsexternal stress is in relaxation state other subsystem forms and bears external stress, and therelaxation by cascade balances that of configuration by ∆T . Clapeyron equation should be timeafter time applied to all the subsystems so as to get eq (22). The integration of eq (23) impliesthe dynamics of particle-flow in subsystems in the glass transition. The multiply repeatedapplications of Clapeyron equation on the subsystems will result in glass transition. This is thecause of abnormality of the glass transition and reminiscent of the idea of Kadanoff [7]: ‘all therichness of structure observed in the natural world is not a consequence of the complexity ofphysical law, but instead arises from the many-times repeated application of quite simple laws’.The theoretical proof of the WLF equation directly validates the ‘random first-order transition’theory [8], however, this proof furtherer shows that the dynamic glass transition phenomenon is anemergent behavior or emergent property of the subsystems of system.If we consider the time-temperature dependency of viscosity in approaching glass transition, we would encounter the complexity of viscosity. The complexity of the glass transition is that the energies of interface excited states represented by 2-D projection plane are in nature the implicative states in 3-D space. It is convenient, however, to use the concept of ‘average cooperative migration energy in one direction’that has been averaged in 3-D space, in some cases, for example, in the WLF equation, in the discussions about ‘viscosity of corresponding states’.If f = 3, i.e., kT = kT g + 2ε0, in a reference local zone, the minimum energy manner of cooperative migration of particle-cluster may will change as that: since among the three coordinate directions of local x, y, z coordinate system, E mig appears in turns, the isotropy orient migration in local zone can realize by several rearrangements and it is difficult to form long-distance “chains” connected by many oriented local fields to bear external stress, eq (22) will lose effect. Therefore, the applying ranges of WLF equation are T g∼T g + 2ε0≈T g + 100°C.The energy of kT2, not only can denote the average random kinetic energy in space and in time, but also can denote the average cooperative migration potential energy in local zone, which is similar to the energy of Curie temperature in magnetism. kT2 here is also the energy of a “critical temperature” existing in the glass transition presumed by Gibbs based on thermodynamics years ago [9]. The same denotation of kT2 is used as Gibbs did. However, from our discussion, the energy of kT2 is equal to that of average ordering attractive potential E mig, which can be exactly obtained through the geometric method in [3], without additional assumptions.For flexible polymer system, the energy of interface excited state in glass transition, ∆ε, can be obtained from WLF equation, ∆ε = 1/8c2 k≈ 6.45k (≈ 0.56meV). This value also accords with the result of [3] on line-measurement in high speed spinning.4. ConclusionsThe theoretical proof of the WLF equation has been directly deduced based on the intrinsic 8 orders of 2-D mosaic geometric structure, without any presupposition. The derivation of WLF equation validates that (i) the mode of the glass transition is slow inverse cascade and fast cascade of the interface excited energy flow;(ii) kC2 in WLF equation is the potential well energyε0, ε0 = 51.6k. C1, taking logarithm, is the non-dimension activity energy ∆E co/ε0 of broken solid-lattice; the energy of all the 320 interface excitation states is that of the activity energy to break solid-lattice; (iii) the Clapeyron equation governing the first order phase transition in thermodynamics still hold true in the glass transition, the singularity is that the Clapeyron equation only holds true in subsystems, instead of system; and the solid-liquid coexist state in a local zone is also the local relaxation state.AcknowledgementsPresident Yuan Tseh Lee and Professor Sheng Hsien Lin of the Academia Sinica, Taiwan supported the manuscript preparation. Valuable discussion with Professor Yun Huang of Beijing University and Professor Da-Cheng Wu of Sichuan University are also acknowledged.References[1] Anderson P W 1995 Science 267 1615[2] Williams M L, Landell R F, Ferry J D 1955 J. Am Chem. Soc 77 3701[3] Wu J, Intrinsic 8 orders of instant 2-D mosaic geometric structures in the glass transition. arxiv-cond-mat/0610546.[4] Wu J, Fixed point of self-similar Lennard-Jones Potentials in glass transition. arxiv-math-ph/0701025.[5] Wu J, Fixed point of second virial coefficient in glass transition. arxiv-math-ph/0701048.[6] Physics Survey Committal 1986 Physics through the 1990s(Condensed-matter physics) National Academy. § 1.25[7] Kadanoff P W 1991 Phys. Today 44 .3, 9[8] Wolynes P G 1992 Acc Chem. Res. 25, 513[9] Jackle J 1986 Rep. Prog. Phys. 49 171。