1962年普通高等学校招生全国统一考数学试题及答案
- 格式:pdf
- 大小:196.33 KB
- 文档页数:5
1949年北大清华联合招生数学试题 一、(5分)有连续三自然数,其平方和为50,求此三数.二、(5分)解方程:6640x +=. 三、(15分)求适合sin 2cos 2x x +x =的根(02x π≤≤). 四、(15分),,PA PB PC 为过圆周上P 点之三弦,PT 为圆周之切线.设一直线平行于PT ,交,,PA PB PC 于,,A B C '''之三点,证明:PA PA PB PB PC PC '''⋅=⋅=⋅. 五、(10分)已知A ∠及角内部一点P ,求作通过P 点的直线,使其在A ∠之内部分被点P 所平分. 六、(5分)用数学归纳法证明:3333221123(1)4n n n ++++=+. 七、(10分)某人在高处望见正东海面上一船只,其俯角为30︒.当该船向正南航行a 里后,其船只的俯角为15︒.求此人视点高出海平面若干垂足 八、(15分)自ABC ∆之顶点A 至对边作垂线AD ,自垂足D 作边,AB AC 之垂线, 其垂足为,E F .求证:,,,B E F C 在同一圆上. 九、(10分)一平面内有10点,除其中4点在同一直线上外,其余各点无3点在一直线上.问连接各点之所有直线共若干条. 十、(10分)下列做法对吗?不对的请改正.16==对吗?为什么?2.(sin cos )sin cos ni n i n θθθθ+=+对吗?为什么?3.log log 1a b b a ⋅=对吗?为什么?1950年全国统一高考数学试题 一、(5分)k 为何值时,二次方程22(1)520x k x k --+-=有等根,并求其根. 二、(20分)有等长两竹杆直立在地上,皆被风吹折.折处距地面两者不同,其差为3尺.顶着地之处与竹杆足相距一个为8尺,另一个为16尺.求竹杆之长. 三、(10分)绳长40丈,围一矩形之地.问其面积最大时,其边长若干? 四、(5分)求国旗上五角星每一角之度数. 五、(10分)过梯形上底一点作直线,分梯形为两个等面积梯形. 六、(20分)从塔之正南面一点A ,测得塔顶仰角为45︒,又从塔之正东面一点B 测得塔的仰角为30︒.若AB =100尺,求塔高. 七、(10分)试证: 1.22cos()cos()cos sin A B A B A B +-==-. 2.22sin()sin()sin sin A B A B A B +-=-. 八、(20分)分别指出下列正误,并加以改正:1.011,1a a ==.2.,mnmnmnm na a a a a a+⋅=+=.3==. 4.lg11,lg00=-=.5.lg()lg lg ,lg lg lg a b a b ab a b +=+=. 6.11sin sinsin()x y x y --+=+.7.在ABC ∆及A B C '''∆中,若,,AB A B BC B C A A '''''==∠=∠,则两三角形全等.8.若,,,A B C D 在同一个圆上,则恒有ACB ADB ∠=∠.1950年华北高考数学试题甲组 第一部分一、将下列各题正确的答案填入括号内: 1.322240x x x --+=的一个根为2,其他两根为A .两个0B .一个0,一个实数C .两个实数D .一个实数根,一个虚数根E .两个虚数根2.已知lgsin 26201.6470'︒=,lgsin 26301.6495'︒=.若 lgsin 1.6486x =,则x 的近似值为A .2623'︒B .2624'︒C .2625'︒D .2626'︒E .2627'︒3.若(,)ρθ为一点之极坐标,则20cos ρθ=的图形为A .圆B .椭圆C .双曲线D .抛物线E .二平行直线4.22220x xy y x y ++++-=之图形为 A .圆 B .椭圆 C .双曲线 D .抛物线 E .二平行直线5.展开二项式17()a b +,其第15项为 A .152238a b B .314680a bC .143736a bD .15()a b +E .87a b二、将下列各题正确的答案填在虚线上: 1.二直线40x y ++=及5210x y -=相交之锐角之正切为 .2.设,x y 都是实数,且()(84)x yi i +-+()(1)x yi i =++,则x = .3.555ad a dbe b e cfc f++=+ . 4.已知x 在第四象限内,而21sin 9x =,则tan x 之值至第二位小数为 . 5.参数方程12,(1)x t y t t =+⎧⎨=+⎩之直角坐标方程为 .甲组 第二部分 1.证明21sin (tan sec )1sin xx x x+=+-.2.设t 及s 为实数,已知方程3250x x tx s -++=之一根为23i -,求t及s 之值.3.用数学归纳法证明:122334(1)n n ⨯+⨯+⨯+++1(1)(2)3n n n =++. 4.设1P 及222(,)P x y 为二定点,过1P 作直线交y 轴于B (如图),过2P 作直线与过1P 之直线垂直,并交轴x 于A ,求AB 中点Q 之轨迹.5.如图,N 第一部分.a c e c eb d f d f +++=+++ .ac ebd f= 内,若1:2;3:4,则︒︒︒ ︒a = .1n R-.1n R+lg 2.190.3404=,ABA .0.5770B .1.1038C .6.1038D .264.06 E.416.745.2sin tan 5AA A ===,1sin tan 2B B B ===,则t a n ()A B +=A .112-B .34C .18-D .98E .18二、将下列各题正确的答案填在虚线上: 1.sin 330︒之值为 . 2.32452x x x -+-的因子是 . 3.书一本,定价元p .因为有折扣,实价较定价少d 元,则该书实价是定价的百分之 .4.若一个多边形之每一外角各为45︒,则此多边形有 边. 5.a 年前,弟年龄是兄年龄的1n,今年弟年龄是兄年龄的1m,兄今年 岁. 乙、丙组 第二部分1.设AB 是一圆的直径,过,A B 作AC 及BD 二弦相交于E ,则2AE AC BE BD AB ⋅+⋅=.2.若,,A B C 为ABC ∆之内角,则tan tan tan tan tan tan A B C A B C ++=.3.分解因式:(1)32221x x x +++.(2)22282143x xy y x y +-++-. (3)444222222222x y z x y y z z x ++---.4.设s 为ABC ∆三边和的一半,r 为内切圆半径,又tan2A=求证:r =5.设一调和级数第p 项为a ,第q 项为b ,第r 项为c ,则()()()0q r bc r p ca p q ab -+-+-=.γC /B /A /βαC B A 1951年普通高等学校招生全国统一考试数学 第一部分1.设有方程组8,27x y x y +=-=,求,x y .2.若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?3.当太阳的仰角是600时,若旗杆影长为1丈,则旗杆长为若干丈?4.若x y z a b b c c a ==---,而,,a b c 各不相等,则?x y z ++=5.试题10道,选答8道,则选法有几种? 6.若一点P 的极坐标是(,)x θ,则它的直角坐标如何?7.若方程220x x k ++=的两根相等,则k =?8.列举两种证明两个三角形相似的方法9.当(1)(2)0x x +-<时,x 的值的范围如何?10.若一直线通过原点且垂直于直线0ax by c ++=,求直线的方程.11.61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项如何?12.02cos =θ的通解是什么?13.系数是实数的一元三次方程,最少有几个根是实数,最多有几个根是实数?14.245505543--=?15.2241x y -=的渐近线的方程如何?16.三平行平面与一直线交于,,A B C 三点,又与另一直线交于,,A B C '''三点,已知3,7AB BC ==及9A B ''=,求A C '17.有同底同高的圆柱及圆锥,已知圆柱的体积为18立方尺,求圆锥的体积18.已知lg2=0.3010,求lg5.19.二抛物线212y x =与223x y =的公共弦的长度是多少?20.国旗上的正五角星的每一个顶角是多少度?第二部分1. ,,P Q R 顺次为△ABC 中BC ,CA ,AB 三边的中点,求证圆ABC 在A 点的切线与圆PQR 在P 点的切线平行.2.设ABC ∆的三边4BC pq =,223CA p q =+,2232AB p pq q =+-,求B ∠,并证明B ∠为A ∠及C ∠的等差中项.3.(1)求证,若方程320x ax bx c +++=的三根可排成等比数列,则33a cb =.(2)已知方程32721270x x x +--=的三根可以排成等比数列,求三根.4.过抛物线顶点任做互相垂直的两弦,交此抛物线于两点,求证此两点联线的中点的轨迹仍为一抛物线.1952年普通高等学校招生全国统一考试数学 第一部分 1.因式分解44x y -=?2.若lg(2)21lg x x =,问x =?3.若方程320x bx cx d +++=的三根为1,-1,21,则c =?4.40=,求x .5. 123450?321=6.两个圆的半径都是4寸,并且一个圆过另一个圆的圆心,则此两圆的公共弦长是多少寸?7.三角形ABC 的面积是60平方寸,M 是AB 的中点,N 是AC 的中点,△AMN 的面积是多少?9.祖冲之的圆周率π=?10.球的面积等于大圆面积的多少倍?11.直圆锥之底半径为3尺,斜高为5尺,则其体积为多少立方尺?12.正多面体有几种?其名称是什么?13.已知 1sin 3θ=,求cos 2θ=?14.方程21tg x =的通解x =?15.太阳的仰角为300时,塔影长为5丈,求塔高是多少? 16.△ABC 的b 边为3寸,c 边为4寸,A 角为300,问△ABC 的面积为多少平方寸?17.已知一直线经过(2,3),其斜率为-1,则此直线方程如何?18.若原点在一圆上,而此圆的圆心为(3,4),则此圆的方程如何?19.原点至3410x y ++=的距离是什么?20.抛物线286170y x y -++=的顶点坐标是什么?第二部分 1.解方程432578120x x x x +---=.2.△ABC 中,∠A 的外角平分线与此三角形外接圆相交于P ,求证:BP CP =.3.设三角形的边长为4,5,6a b c ===,其对角依次为,,A B C ,求cos C ,sin C ,sin B ,sin A .问,,A B C 三角为锐角或钝角?4.一椭圆通过(2,3)及(1,4)-两点,中心为原点,长短轴重合于坐标轴,试求其长轴,短轴及焦点.1953年普通高等学校招生全国统一考试数学1.甲、解1110113x x x x +-+=-+.乙、23120x kx ++=的两根相等,求k 值.丙、求311246?705-=丁、求300700lg lg lg173++.戊、求tg870︒=?已、若1cos2x 2=,求x 之值.庚、三角形相似的条件为何?(把你知道的都写出来)辛、长方体之长、宽、高各为12寸、3寸、4寸,求对角线的长.壬、垂直三棱柱之高为6寸,底面三边之长为3寸、4寸、5寸,求体积.2.解方程组2222239, (1)45630.(2)x xy y x xy y ⎧-+=⎪⎨-+=⎪⎩3..乙、求123)12(xx +之展开式中的常数项.4.锐角△ABC ∆的三高线为AD ,BE ,CF ,垂心为H ,求证HD 平分EDF ∠.5.已知△ABC ∆的两个角为450,600,而其夹边之长为1尺,求最小边的长及三角形的面积.1954年普通高等学校招生全国统一考试数学 1.甲、化简131121373222[()()()]a b ab b ---. 乙、解c b a x lg lg 2lg 31lg 61++=.丙、用二项式定理计算43.02,使误差小于千分之一.丁、试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和. 戊、已知球的半径等于r ,试求内接正方形的体积.己、已知a 是三角形的一边,β及γ是这边的两邻角,试求另一边b 的计算公式.2.描绘2371y x x =--的图象,并按下列条件分别求x 的值所在的范围:①0y >; ②0y <.3.假设两圆互相外切,求证用连心线做直径的圆,必与前两圆的外公切线相切4.试由11sin 21tgxx tgx+=+-,试求x 的通值.5.有一直圆锥,另外有一与它同底同高的直圆柱,假设a 是圆锥的全面积,a '是圆柱的全面积,试求圆锥的高与母线的比值.1955年普通高等学校招生全国统一考试数学 1.甲、以二次方程2310x x --=的两根的平方为两根,作一个二次方程.乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦.丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高.丁、写出二面角的平面角的定义.2.求,,b c d 的值,使多项式32x bx cx d +++适合于下列三条件: (1)被1x -整除, (2)被3x -除时余2,(3)被2x +除时与被2x -除时的余数相等.3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G 求证:EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项. 4.解方程x x x sin cos 2cos +=,求x 的通值.5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形.B C F B C EM A B C DD //1956年普通高等学校招生全国统一考试数学1.甲、利用对数性质计算2lg 5lg5lg50+⋅.乙、设m 是实数,求证方程222(41)0x m x m m ----=的两根必定都是实数. 丙、设M 是ABC ∆的边AC 的中点,过M 作直线交AB 于E ,过B 作直线平行于ME 交AC 于F AEF ∆的面积等于ABC ∆的面积的一半.丁、一个三角形三边长分别为3尺,4尺及37尺,求这个三角形的最大角的度数.戊、设tan ,tan αβ是方程2670x x ++=的两根求证:)cos()sin(β+α=β+α.2.解方程组12,(1)136.(2)x y x y ⎧-=⎪⎨+=⎪⎩ 3.设P 为等边ABC ∆外接圆的点,求证:22PA AB PB PC =+⋅.4.有一个四棱柱,底面是菱形ABCD ,A AB A AD ''∠=∠A ACC''垂直于底面ABCD .5.若三角形的三个角成等差级数,则其中有一个角一定是600;若这样的三角形的三边又成等比级数,则三个角都是600,试证明之.1957年普通高等学校招生全国统一考试数学 1.甲、化简1223271020.12927--⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.乙、求适合不等式22<+x x 的实数x 的范围.丙、求证cot 22301'︒=丁、在四面体A B C D 中,AC BD =,,,,P Q R S 依次为棱,,,AB BC CD DA 的中点,求证:PQRS 为一个菱形.戊、设b a ,为异面直线,EF 为b a ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分.2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x3.设ABC ∆的内切圆半径为r ,求证BC边上的高.2sin2cos 2cos2A C B r AD ⋅⋅=4.设ABC ∆为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE AD =,并过E 作AB 的垂线与AC 边的延长线交于F ,求证:(1)AE :AB =AC :AF . (2)ABC ∆的面积=AEF ∆的面积.5.求证:方程0)2()12(23=+-++-Q x Q x x 的一个根是1.设这个方程的三个根是ABC ∆的三个内角的正弦,sin ,sin ,sin C B A 求,,A B C 的度数以及Q 的值.AC AB1958年普通高等学校招生全国统一考试数学 1.甲、求二项式5)21(x +展开式中3x 的系数.乙、求证.sin 88sin 4cos 2cos cos xxx x x =⋅⋅丙、设AB ,AC 为一个圆的两弦,D 为 的中点,E 为 的中点,作直线DE 交AB 于M ,交AC 于N ,求证: AM AN =.丁、求证:正四面体ABCD 中相对的两棱(即异面的两棱)互相垂直.戊、求解.cos 3sin x x =2.解方程组4,(1)1229. (2)x y y =⎪++=⎪⎩3.设有二同心圆,半径为,()R r R r >,今由圆心O 作半径交大圆于A ,交小圆于A ',由A 作直线AD 垂直大圆的直径BC ,并交BC 于D ;由A '作直线A E '垂直AD ,并交AD 于E ,已知OAD α∠=,求OE 的长 4.已知三角形ABC ,求作圆经过A 及AB 中点M ,并与BC 直线相切.5.已知直角三角形的斜边为2,斜边上的高为23,求证此直角三角形的两个锐角是下列三角方程的根043sin 231sin 2=++-x x .321O G F ED C BA cb a A B CDαO 1959年普通高等学校招生全国统一考试数学1.甲、已知lg 20.3010,lg 70.8451==,求lg35乙、求ii +-1)1(3的值.丙、解不等式.3522<-x x丁、求︒165cos 的值 戊、不在同一平面的三条直线c b a ,,互相平行,,A B 为b 上两定点,求证另两顶点分别在c a 及上的四面体体积为定值己、圆台上底面积为225cm π,下底直径为cm 20,母线为cm 10,求圆台的侧面积2.已知△ABC 中,∠B =600,4AC =,面积为3,求,AB BC .3.已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数.4.已知圆O 的两弦AB 和CD 延长相交于E ,过E 点引EF ∥BC 交AD 的延长线于F ,过F 点作圆O 的切线FG ,求证:EF =FG .5.已知,,A B C 为直线l 上三点,且A B B C a ==;P 为l 外一点,且90,APB ∠=︒45BPC ∠=︒,求 (1)PBA ∠的正弦、余弦、正切; (2)PB 的长;(3)P 点到l 的距离.O DC B A 1960年普通高等学校招生全国统一考试数学 1.甲、解方程.075522=---x x (限定在实数范围内)乙、有5组蓝球队,每组6队,首先每组中各队进行单循环赛(每两队赛一次),然后各组冠军再进行单循环赛,问先后比赛多少场?.丙、求证等比数列各项的对数组成等差数列(等比数列各项均为正数).丁、求使等式2cos 2sin12xx =-成立的x 值的范围(x 是00~7200的角).戊、如图,用钢球测量机体上一小孔的直径,所用钢球的中心是O ,直径是12mm,钢球放在小孔上测得钢球上端与机件平面的距离CD 是9mm ,求这小孔的直径AB 的长.己、四棱锥P ABCD -的底面是一个正方形,PA 与底面垂直,已知3PA =cm ,P 到BC 的距离是5cm ,求PC 的长.2.有一直圆柱高是20cm ,底面半径是5cm,它的一个内接长方体的体积是80cm 3,求这长方体底面的长与宽.3.从一船上看到在它的南300东的海面上有一灯塔,船以30里/小时的速度向东南方向航行,半小时后,看到这个灯塔在船的正西,问这时船与灯塔的距离(精确到0.1里)4.要在墙上开一个矩形的玻璃窗,周长限定为6米.(1)求以矩形的一边长x 表示窗户的面积y 的函数;(2)求这函数图像的顶点坐标及对称轴方程;(3)画出这函数的图像,并求出x 的允许值范围.5.甲、已知方程0cos 3sin 422=θ+θ⋅-x x 的两个根相等,且θ为锐角,求θ和这个方程的两个根.乙、a 为何值时,下列方程组的解是正数?⎩⎨⎧=+=+8442y x ay x .O CBA 1961年普通高等学校招生全国统一考试数学 1.甲、求二项式10)2(x -展开式里含7x 项的系数.乙、解方程2lg lg(12)x x =+.丙、求函数51--=x x y 的自变量x 的允许值. 丁、求125sin 12sinπ⋅π的值.戊、一个水平放着的圆柱形水管,内半径是12cm ,排水管的圆截面上被水淹没部分的弧含1500(如图),求这个截面上有水部分的面积(取14.3=π).己、已知△ABC 的一边BC 在平面M 内,从A 作平面M 的垂线,垂足是1A .设 △ABC 的面积是S ,它与平面M 组成的二面角等于)900(︒<α<︒α,求证:1cos A BC S S α∆=.2.一机器制造厂的三年生产计划每年比上一年增产的机器台数相同,如果第三年比原计划多生产1000台,那么每年比上一年增长的百分率相同,而且第三年生产的台数恰等于原计划三年生产总台数的一半,原计划每年生产机器多少台? 3.有一块环形铁皮,它的内半径是45厘米,外半径是75厘米,用它的五分之一(如图中阴影部分)作圆台形水桶的侧面.求这水4.在平地上有,A B 两点,A 在山的正东,B 在山的东南,且在A 的650南300米的地方,在A 测得山顶的仰角是300,求山高(精确到10米,94.070sin =︒).5.两题任选一题.甲、k 是什么实数时,方程22(23)310x k x k -+++=有实数根?乙、设方程28(8sin )2cos2x x αα-++0=的两个根相等,求α.。
1962年全国统一高考数学试卷一、解答题(共10小题,共100分)1.(10分)某工厂第三年产量比第一年增长21%,问平均每年比上一年增长百分之几?又第一年的产量是第三年的产量的百分之几?(精确到1%)2.(10分)求(1﹣2i)5的实部.3.(10分)解方程lg(x﹣5)+lg(x+3)﹣2lg2=lg(2x﹣9).4.(10分)求的值.5.(10分)如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=_________度.6.(10分)解方程组并讨论a取哪些实数时,方程组(1)有不同的两实数解;(2)有相同的两实数解;(3)没有实数解.7.(10分)已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC (精确到小数点后两位,sin27°=0.4540).8.(10分)已知ABCD,A'B'C'D'都是正方形(如图),而A'、B'、C'、D'分别把AB、BC、CD、DA 分为m:n,设AB=1.(1)求A'B'C'D'的面积;(2)求证A'B'C'D'的面积不小于.9.(10分)由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.10.(10分)求证两两相交而不过同一点的四条直线必在同一个平面内.1962年全国统一高考数学试卷参考答案与试题解析一、解答题(共10小题,共100分)1.(10分)某工厂第三年产量比第一年增长21%,问平均每年比上一年增长百分之几?又第一年的产量是第三年的产量的百分之几?(精确到1%)考点:函数模型的选择与应用.专题:应用题.分析:先设平均每年增长x%,则得(1+x%)2=1+21%,求得x的值,再计算第一年的产量是第三年的产量的百分之几即得结果.解答:解:设平均每年增长x%,则得(1+x%)2=1+21%,x=10.又,故该工厂平均每年比上一年增长10%,第一年的产量是第三年的产量的83%.点评:本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.2.(10分)求(1﹣2i)5的实部.考点:复数的基本概念;复数的代数表示法及其几何意义.分析:因为所给的代数式次数比较高,所以题目不会让我们直接展开运算,要用二项式定理来整理,又有i的特点知它的偶次方为实数,得到结果.解答:解:∵(1﹣2i)5的实部是由包含i的零次方及包含i的偶次方的各项所组成,由二项式定理知所求之实部为C50+C52(﹣2i)2+C54(﹣2i)4=41.点评:复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要我们一定要得分的题目.3.(10分)解方程lg(x﹣5)+lg(x+3)﹣2lg2=lg(2x﹣9).考点:对数的运算性质.分析:先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.解答:解:,,x2﹣10x+21=0,x=3,x=7.当x=3时,使x﹣5<0,2x﹣9<0无意义,故不是原方程的解,原方程的解为x=7.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.4.(10分)求的值.考点:反三角函数的运用;同角三角函数基本关系的运用.专题:计算题.分析:根据题意,设arcsin=α,可得α的范围,由反三角函数的定义,可得sinα=,根据同角三角函数的基本关系,可得cosα=;而sin(2arcsin)=sin2α,由二倍角公式,计算可得答案.解答:解:设arcsin=α,(0°<α<90°),则sinα=,根据同角三角函数的基本关系,可得cosα=;则sin(2arcsin)=sin2α=2sinαcosα=.点评:本题考查反三角函数的运用,这类题目的易错点是反三角函数的范围,应特别注意.5.(10分)如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=20度.考点:圆的切线的性质定理的证明.专题:计算题.分析:由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线.利用内角和定理先求得∠OBC+∠OCB=80°,所以可知∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入此关系式即可求得∠BAC的值.解答:解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=180°﹣100°=80°,而∠OBC+∠OCB=(∠ABC+∠ACB)=80°,∴∠ABC+∠ACB=160°,∴∠BAC=180°﹣160°=20°.故答案为20.点评:本题通过三角形内切圆,考查切线的性质.属于基础题.6.(10分)解方程组并讨论a取哪些实数时,方程组(1)有不同的两实数解;(2)有相同的两实数解;(3)没有实数解.考点:一元二次方程的根的分布与系数的关系.专题:综合题.分析:(1)将第二个方程代入第一个方程得到关于y的二次方程,利用二次方程的求根公式求出两个根,将求出的根代入第二个方程求出方程组的解.(2)由(1)当通过代入消元得到的二次方程有两个不等实根即判别式大于0时,方程组有两个实数解;当判别式等于0时,方程组有相等的两实数解;(3)当判别式小于0时,方程组无解.解答:解:由②得x=y﹣a③将③代入①得y2﹣4((y﹣a)﹣2y+1=0,y2﹣6y(4a+1)=0,,.即方程组的解为即:(1)当2﹣a>0,即a<2时,方程组有不同的两实数解;(2)当2﹣a=0,即a=2时,方程组有相同的两实数解;(3)当2﹣a<0,即a>2时,方程组没有实数解.点评:本题考查代入消元求方程组组的解的方法、考查将方程组的解的问题转化为二次方程解的问题.7.(10分)已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).考点:正弦定理;余弦定理.专题:计算题.分析:结合题意,在△ADC中,若AD可求,则DC可求,而AD可在△ABD中利用正弦定理求得.解答:解:∠ADB=180°﹣(33°+27°)=120°,根据正弦定理,得,又∠CAD=63°﹣33°=30°,由余弦定理可得DC2=AD2+AC2﹣AD•AC•cos30°==.∴.点评:此题在求解过程中,先用正弦定理求边,再用余弦定理求边,体现了正、余弦定理的综合运用.8.(10分)已知ABCD,A'B'C'D'都是正方形(如图),而A'、B'、C'、D'分别把AB、BC、CD、DA分为m:n,设AB=1.(1)求A'B'C'D'的面积;(2)求证A'B'C'D'的面积不小于.考点:棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)由题意设AA'=mt,A'B=nt,通过.推出A'B'C'D'的面积的表达式;(2)利用配方把(1)的面积转化为,从而证明A'B'C'D'的面积不小于.解答:解(1):设AA'=mt,A'B=nt又.在直角△D'AA'中,D'A'2=D'A2+AA'2=m2t2+n2t2=(m2+n2)t2而正方形A'B'C'D'的面积=.(2)证明:∵∴.点评:本题是基础题,考查平面几何的知识点,正方形的面积的求法,作差法证明A'B'C'D'的面积不小于.是本题的难点,注意把握.9.(10分)由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.考点:棱柱的结构特征.专题:证明题.分析:设正方体的棱长为1,连接AC,求出AC,利用A1E•A1C=AA12,EC•A1C=AC2,可求A1E:EC,进而可证命题.解答:证明:设正方体的棱长为1,连接AC,则AC=,∵为直角△A1AC的斜边A1C上的高,∴A1E•A1C=AA12,EC•A1C=AC2,两式相除,得,∴A1E:EC=1:2.点评:本题考查棱柱的结构特征,考查计算能力,逻辑思维能力,是基础题.10.(10分)求证两两相交而不过同一点的四条直线必在同一个平面内.考点:平面的基本性质及推论.专题:证明题;分类讨论.分析:解决此题,先要画出图形,前三条线只能画成“两两相交,且不交于同一点”,这样才能保证第四条线与前三条全相交,这样的话图形一共可以分为两类.然后,我们可以根据推论1或者推论2,先把平面确定好,然后再根据公理1,进一步证明其余的直线也在这个平面里.解答:证明:第一种情形(如图1):四条直线l1,l2,l3,l4没有三条直线过同一点,这时它们共有六个交点A、B、C、D、E、F,它们各不相同,因直线l1,l2相交于点A,可决定一平面α;因点B、C、D、E均在平面α内,所以直线l3,l4也在平面α内,故直线l1,l2,l3,l4同在平面α内.第二种情形(如图2):四条直线l1,l2,l3,l4中有三条,例如l1,l2,l3,过同一点A,因直线l4不过点A,故由点A及直线l4可决定一平面α,因直线l4与直线l1,l2,l3,相交,设交点为B、C、D,则点B、C、D在直线l4上,从而在平面α内,因此,直线l1,l2,l3,各有两点在平面α内,即这三条直线在平面α内,故四直线l1,l2,l3,l4在同一平内.点评:此题难度系数不大,关键在于画对图形.重点考查了推论1、2与公理1,这些都是很简单的道理,但是能够运用起来,却不是那么容易,做题时不要烦躁,理清线条,定理运用其实很简单!。
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、若z ⋅(:则复数z 对应的点在复平面内的()A .第一象限B .第二象限C .第三象限D .第四象限2、已知直二面角l αβ--:直线a α⊂:直线b β⊂:且a 、b 与l 均不垂直:那么()A .a 与b 可以垂直:但不可以平行B .a 与b 可以垂直:也可以平行C .a 与b 不可以垂直:也不可以平行D .a 与b 不可以垂直:但可以平行3、已知a 、b 均为非零向量:命题p :a b ⋅ >0:命题q :a 与b的夹角为锐角:则p 是q 成立的()A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.定义某种运算⊗,a b ⊗的运算原理如图所示.设x x f ⊗=1)(.()f x 在区间[2,2]-上的最大值为.()A 、-2B 、-1C 、0D 、25、已知ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++= ,则OC AB⋅的值为()A 、15-B 、15C 、65-D 、656.已知26)1()1(-+ax x 的展开式中,3x 系数为56,则实数a 的值为()A .6或5B .-1或4C .6或-1D .4或57.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述:(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)8.函数12cos 2-=x y 的最小正周期是()A .π4B .π2C .πD .π219.函数)4π(cos )4π(cos 22--+=x x y 是()A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数D .周期为2π的奇函数10.sin2·cos3·tg4的值()A .小于0B .大于0C .等于0D .不存在11.直线y =ax +b 通过一、三、四象限,则圆(x +a)2+(y +b)2=r2(r >0)的圆心位于()A .第一象限B .第二象限C .第三象限D .第四象限12.数列{an}是等差数列的一个充要条件是()A .Sn =an +bB .Sn =an2+bn +cC .Sn =an2+bn(a ≠0)D .Sn =an2+bn二、填空题(共4小题,每小题5分;共计20分)1、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______.2、已知2tan -=α,71tan =+)(βα,则βtan 的值为______.3、三个数2,x ,10成等差数列,则=x ______4、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______三、大题:(满分70分)1、已知函数3()x x b f x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和;(2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.3.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠=四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证:平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH所成的角的正弦值4.设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR长度的最小值.5、设1ln )()(++=x xa x x f ,曲线)(x f y =在点))1(,1(f 处的切线与直线012=++y x 垂直.(1)求a 的值;(2)若),1[+∞∈∀x ,)1()(-≤x m x f 恒成立,求m 的范围.(3)求证:*21ln .().41ni i n N i =<∈-∑6.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,且4sin2B +C 2-cos2A =72.(1)求∠A 的度数;(2)若a =3,b +c =3,求b 、c 的值.参考答案:一、选择题:1-5题答案:CDADA 6-10题答案:CDBBA 11-12题答案:BD 二、填空题:1、︒60;2、3;3、6;4、-2,-1.三、大题:1、【解析】(1)由3()x x b f x x++=得211(1)21ba fb ++===+,3322(2)522b b a f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x +<,即33x <-()0f x '<,函数()f x 在3(,3)-∞上单调递减,当330x +>,即33x >-时,()0f x '>,函数()f x 在3(3,)-+∞上单调递增,故函数()f x 在33x =-极小值为533(3)31f -=+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴22223663333()1()()1()()()13()()()1f x x x x x x x x x x x =-+=-++=-+++≥-+----- 532333131==+,当且仅当23()x x-=-,即33x =综上所述,函数()f x 在33x =533(3)31f -=+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题.2、解:由-3∈A ,可得-3=a -2或-3=2a2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3,∴a =-32.3.参考答案:解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------①---1分连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O是AC 的中点,连OG ,OG 是三角形ACE 的中位线//OG AE -②-----3分由①②知,平面//AEF 平面BDGH ----4分(2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD -------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON设2AB BF t ==,,则()()()100,0,10B C F t ,,,,1,,222t H ⎛⎫⎪ ⎪⎝⎭--------6分()131,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭ 设平面BDGH 的法向量为()1,,n x y z =11010222n OB x t n OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,n t =- 平面ABCD 的法向量()20,0,1n = ----9分121|cos ,|2n n <>==,所以29,3t t ==----10分所以()1,CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n CF θ4.参考答案:解:(1)∵OP→·OQ →=0,则x1x2+y1y2=0,-1分又P 、Q 在抛物线上,故y12=2px1,y22=2px2,故得y122p ·y222p+y1y2=0,y1y2=-4p2222212144)(||pp y y x x ==∴-------3分又|x1x2|=4,故得4p2=4,p=1.所以抛物线的方程为:22y x =-------------4分(2)设直线PQ 过点E(a,0)且方程为x =my +a联立方程组⎩⎨⎧=+=x y a my x 22消去x 得y2-2my -2a =0∴⎩⎨⎧-==+ay y m y y 222121①设直线PR 与x 轴交于点M(b,0),则可设直线PR 方程为x =ny +b,并设R(x3,y3),同理可知,⎩⎨⎧-==+by y n y y 223131②--7分由①、②可得32y b y a=由题意,Q 为线段RT 的中点,∴y3=2y2,∴b=2a又由(Ⅰ)知,y1y2=-4,代入①,可得-2a =-4∴a =2.故b =4.∴831-=y y ∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+=2481222≥+⋅+=n n .当n=0,即直线PQ 垂直于x 轴时|PR|取最小值245.参考答案:解:(1)2)1(ln )()1)(ln ()(++-+++='x x a x x x x ax x f 由题设21)1(='f ,2142)1(=+∴a 11=+∴a ,0=∴a .(2)1ln )(+=x xx x f ,),1(+∞∈∀x ,()(1)f x m x ≤-,即1ln ()x m x x≤-设1()ln ()g x x m x x =--,即0)(),,1(≤+∞∈∀x g x .22211()(1)mx x mg x m x x x -+-'=-+=---6分①若0,()0m g x '≤>,0)1()(=≥g x g ,这与题设0)(≤x g 矛盾.----8分②若0m >方程20mx x m -+-=的判别式214m ∆=-当0≤∆,即12m ≥时,0)(≤'x g .)(x g ∴在)(0,+∞上单调递减,0)1()(=≤∴g x g ,即不等式成立.----9分当102m <<时,方程20mx x m -+-=,其根1102x m -=>,1112x m +=>,当0)(),,1(2>'∈x g x x ,)(x g 单调递增,0)1()(=>g x g ,与题设矛盾.综上所述,12m ≥.--------10分(3)由(2)知,当1>x 时,21=m 时,11ln 2x x x ⎛⎫<- ⎪⎝⎭成立.不妨令*21,21k x k N k +=∈-,则221121214ln212212141k k k k k k k k ++-⎛⎫<-= ⎪--+-⎝⎭,()()*21[ln 21ln 21]441k k k k N k +--<∈-11()()()()()22211ln 3ln1441112ln 5ln 344211ln 21ln 21,441n n n n ⎧-<⎪⨯-⎪⎪-<⎪⨯-⎨⎪⎪⎪+--<⎪⨯-⎩ --12分累加可得*211ln(21).().441ni i n n N i =+<∈-∑*21).41ni i n N i =<∈-∑6.解(1)∵B +C =π-A ,即B +C 2=π2-A2,由4sin2B +C 2-cos2A =72,得4cos2A 2-cos2A =72,即2(1+cosA)-(2cos2A -1)=72,整理得4cos2A -4cosA +1=0,即(2cosA -1)2=0.∴cos A =12,又0°<A<180°,∴A =60°.(2)由A =60°,根据余弦定理cosA =b2+c2-a22bc,即b2+c2-a22bc =12,∴b2+c2-bc =3,①又b +c =3,②∴b2+c2+2bc =9.③①-③整理得:bc =2.④=1,=2,=2,=1.。
·····A 1D 1C 1CN M DPRBAQ 普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.右图中,阴影部分的面积是()A.16B.18C.20D.222.如图,正四棱柱ABCD –A1B1C1D1中,AB=3,BB1=4.长为1的线段PQ 在棱AA1上移动,长为3的线段MN 在棱CC1上移动,点R 在棱BB1上移动,则四棱锥R –PQMN 的体积是()A.6B.10C.12D.不确定3.用1,2,3,4这四个数字可排成必须含有重复数字的四位数有()A.265个B.232个C.128个D.24个4、设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件5、函数2ln ||x y x x =+的图象大致为()4-=x y xy22=-246.复数=+-+i i i 34)43()55(3()A .510i 510--B .i510510+C .i510510-D .i510510+-7.点M (8,-10),按a 平移后的对应点M '的坐标是(-7,4),则a =()A .(1,-6)B .(-15,14)C .(-15,-14)D .(15,-14)8.已知数列}{n a 前n 项和为)34()1(2117139511--++-+-+-=-n S n n ,则312215S S S -+的值是()A .13B .-76C .46D .769.若函数)()(3x x a x f --=的递减区间为(33-,33),则a 的取值范围是()A .a >0B .-1<a <0C .a >1D .0<a <110.与命题“若M a ∈则M b ∉”的等价的命题是()A .若M a ∉,则M b ∉B .若M b ∉,则M a ∈C .若M a ∉,则Mb ∈D .若M b ∈,则Ma ∉11.在正方体1111D C B A ABCD -中,M ,N 分别为棱1AA 和1BB 之中点,则sin (CM ,N D 1)的值为()A .91B .554C .592D .329题12.设F 为双曲线C :22221(0,0)x y a b a b -=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为()A BC .2D 二、填空题(共4小题,每小题5分;共计20分)1.复数11i z =+(i 为虚数单位),则||z =___________.2.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.3.在平面直角坐标系xOy 中,点A 在曲线y=lnx 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是_____.4.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则AB AC 的值是_____.三、大题:(满分70分)1、已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2、已知抛物线C :y2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若3AP PB =,求|AB|.3.甲、乙、丙三名射击运动员射中目标的概率分别为(0<a <1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P (ξ=i )(i =0,1,2,3)中,若P (ξ=1)的值最大,求实数a 的取值范围.4、已知函数)()4sin cos 03f x x x πωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π.(1)求)(x f 的解析式;(2)求)(x f 在区间⎥⎦⎤⎢⎣⎡-6,4ππ上的最大值和最小值及取得最值时x 的值.5、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.6.已知椭圆2222:1x y C a b +=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM|·|ON|=2,求证:直线l 经过定点.参考答案:一、选择题:1-5题答案:BABAC 6-10题答案:BBBAD 11-12题答案:BA 二、填空题:1、22、-3.(e, 1)三、大题:1、【解析】(1)不妨设20(4,)A y y ,则200(4,)A y y -,则23000124442AOB S y y y ∆=== ,解得01y =,∴(4,1)A ,将其代入双曲线222:1(0)x C y a a -=>得222411a -=,解得2a =,∴双曲线C 的方程为2218x y -=;(2)由(1)可知29c =,∴3c =,∴1(3,0)F -,2(3,0)F ,设2(4,)P t t ,则21(34,)PF t t =--- ,22(34,)PF t t =-- ,∴224222121577(34,)(34,)169(4)864PF PF t t t t t t t ⋅=-----=+-=+-,又2[0,)t ∈+∞,∴212min 1577()()9864PF PF ⋅=-=- ,即当0t =时,12PF PF ⋅ 取得最小值,且最小值为9-.【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出A ,B 两点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大.2、解:(1)连结B1C ,ME .因为M ,E 分别为BB1,BC 的中点,所以ME ∥B1C ,且ME=12B1C .又因为N 为A1D 的中点,所以ND=12A1D .由题设知A1B1= DC ,可得B1C = A1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC1,所以MN ∥平面C1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(3,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉==‖m n m n m n ,所以二面角1A MA N --的正弦值为5.3.参考答案:.(1)P (ξ)是“ξ个人命中,3﹣ξ个人未命中”的概率.其中ξ的可能取值为0,1,2, 3.,,,.所以ξ的分布列为ξ0123Pξ的数学期望为.(2),,.由和0<a <1,得,即a 的取值范围是.4.参考答案:解()4sin cos cos sin sin 333f x x x x ππωωω⎛⎫=-+ ⎪⎝⎭--------1分22sin cos 33x x x ωωω=-+sin 232x xωω=+--------3分2sin 23x πω⎛⎫=+ ⎪⎝⎭-4分2,12T ππωω==∴= -5分⎪⎭⎫ ⎝⎛+=∴32sin 2)(πx x f -----6分(2)46x ππ-≤≤,22633x πππ∴-≤+≤1sin 2123x π⎛⎫∴-≤+≤ ⎪⎝⎭,即()12f x -≤≤,----9分当2,36x ππ+=-即4x π=-时,()min 1f x =-,当2,32x ππ+=即12x π=时,()max 2f x =.-12分5.解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(Ⅱ)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE.(Ⅲ)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF ∥平面PAE .6.解:(I )由题意得,b2=1,c=1.所以a2=b2+c2=2.所以椭圆C 的方程为2212x y +=.(Ⅱ)设P (x1,y1),Q (x2,y2),则直线AP 的方程为1111y y x x -=+.令y=0,得点M 的横坐标111M x x y =--.又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=.则122412kt x x k +=-+,21222212t x x k -=+.所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k -+=-⋅+-⋅-+-++12||1t t +=-.又||||2OM ON ⋅=,所以12||21tt+= -.解得t=0,所以直线l经过定点(0,0).。
1951年普通高等学校招生全国统一考试数学第一部分:1.设有方程组x+y=8,2x-y=7,求x ,y.解略:⎩⎨⎧==35y x2.若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形? 证:设△ABC 的重心与外接圆的圆心均为O (图1)∵OA=OC ,E 为AC 的中点,∴BE ⊥AC ;同理,CD ⊥AB ,AF ⊥BC 在Rt △ABE 与Rt △ACD 中,∠A 为公共角,BE=CD=R+21R=23R (R 为外接圆半径),所以△ABE ≌△ACD ,AB=AC ,同理可得AB=BC 由此可知△ABC 为等边三角形3.当太阳的仰角是600时,若旗杆影长为1丈,则旗杆长为若干丈? 解略:3丈0)()()(:)()(,)(,,:?,,,,.4=-+-+-=++-=-=-==-=-=-=++-=-=-t a c t c b t b a z y x t a c tz c b y t b a x t ac zc b y b a x z y x c b a a c zc b y b a x 由此可得则有设解则各不相等而若5.试题10道,选答8道,则选法有几种?解略:45810=c 6.若一点P 的极坐标是(r,θ),则它的直角坐标如何? 解:x=r θcos ,y=r θsin7.若方程x 2+2x+k=0的两根相等,则k=? 解:由Δ=b 2-4ac=0,得k=18.列举两种证明两个三角形相似的方法OABCEFD答:略9.当(x+1)(x-2)<0时,x 的值的范围如何? 解略:-1<x <210.若一直线通过原点且垂直于直线ax+by+c=0,求直线的方程解略:bx-ay=011.(x +x1)6展开式中的常数项如何? 解:由通项公式可求得是T 4=2012.02cos =θ的通解是什么? 解:).(4为整数k k π±π=θ13.系数是实数的一元三次方程,最少有几个根是实数,最多有几个根是实数?答:最少是一个,最多是三个14.解:原式=1003)5(4)2(4550554)5(55430)2(=⋅-⋅--⋅⋅-⋅⋅-⋅⋅-+⋅⋅+⋅⋅- 15.x 2-4y 2=1的渐近线的方程如何? 解略:02=±y x?345505542=--16.三平行平面与一直线交于A ,B ,C 三点,又与另一直线交于A ',B ',C '三点,已知AB=3,BC=7及A 'B '=9求A 'C '解:如图易证:3011=''∴''''==C A C A B A AC AB AC AB 17.有同底同高的圆柱及圆锥,已知圆柱的体积为18立方尺,求圆锥的体积略:6立方尺18.已知lg2=0.3010,求lg5. 略:lg5=1-lg2=0.699019.二抛物线y 2=12x 与2x 2=3y 的公共弦的长度是多少?解略:解方程组得两公共点为(0,0)及(3,6)故其公共弦长为:5320.国旗上的正五角星的每一个顶角是多少度? 解:由图可知:∠AFG=∠C+∠E=2∠C, ∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A ∴5∠A=1800,∴∠A=360 第二部分:A A ' αB B ' βB 1γ C C 'C 1FGAC EBD1.P ,Q ,R 顺次为△ABC 中BC ,CA ,AB 三边的中点,求证圆ABC 在A 点的切线与圆PQR 在P 点的切线平行证:如图:由AD 是大圆的切线, 可得: ∠1=∠2由RQ ∥BC ,可得:∠2=∠3, 由QP ∥AB ,可得:∠3=∠4由PE 是小圆的切线, 可得: ∠4=∠5由RP ∥AC ,可得:∠5=∠6综上可得:∠1=∠6,故AD ∥PE2.设△ABC 的三边BC=4pq,CA=3p 2+q 2,AB=3p 2+2pq-q 2,求∠B ,并证∠B 为∠A 及∠C 的等差中项解:由余弦定理可得:.C A B A,-B 60)180(60B 214)23(2)3()4()23(2cos 222222222222的等差中项与是∠∠∠∴∠∠=∠-︒=∠-∠-∠-︒=∠-∠︒=∠∴=⋅-+--+-+=⋅-+=A B B A B C pqq pq p q p pq q pq p BC AB CA BC AB B 3.(1)求证,若方程x 3+ax 2+bx+c=0的三根可排成等比数列, 则a 3c=b 3.证:设α,β,γ是方程x 3+ax 2+bx+c=0的三根,由根与系数关系可知:α+β+γ=-aαβ+βγ+γα=b αβγ=-c564321E QPRA BC又因α,β,γ排成等比数列,于是β2=αγ33333233a )()()(bc c a b ==αβγ-=β-=⎥⎦⎤⎢⎣⎡γ+β+αβγ+β+α-=⎥⎦⎤⎢⎣⎡γ+β+αβ+βγ+α-=⎥⎦⎤⎢⎣⎡γ+β+α-γα+βγ+αβ=⎪⎭⎫⎝⎛此即 (2)已知方程x 3+7x 2-21x-27=0的三根可以排成等比数列,求三根解:由⑴可知β3=-c ,∴β3=27,∴β=3代入α+β+γ=-7可得α+γ=-10,又由α,β,γ成等比数列,∴β2=αγ, 即αγ=9,故可得方程组:⎩⎨⎧--=γ--=α=αγ-=γ+α.91,19,910或或可得解之 于是,所求之三根为-9,3,-1或-1,3,-94.过抛物线顶点任做互相垂直的两弦,交此抛物线于两点,求证此两点联线的中点的轨迹仍为一抛物线证:设抛物线方程为y 2=2px ……………①过抛物线顶点O 任作互相垂直的二弦OA 和 OB ,设OA 的斜率为k ,则直线OB 的斜率为 -k 1,于是直线OA 的方程为: y =kx ………………………②直线OB 的方程为:x k y 1-=③ 设点A (x 1 ,y 1),点B(x 2 ,y 2)由①,②可得: .2,2121k p y k p x ==由①,③可得:YA·P (x,y)O XBx 2=2pk 2, y 2=-2pk设P (x ,y )为AB 的中点,由上可得: ④ ⑤ 由⑤可得: ⑥ 由④可知:px 2222k p kp +=,代入⑥,2p -px y 22222222222=-=-⎪⎪⎭⎫ ⎝⎛+=即p px p k p k p y 所以,点P 的轨迹为一抛物线1952年普通高等学校招生全国统一考试数学第一部分:1.因式分解x 4 – y 4 =?解:x 4 – y 4 =(x 2+y 2)(x+y)(x-y)2.若lg2x=21lgx ,问x=? 解:2x=x 21,x ≠0,∴202=X3.若方程x 3+bx 2+cx+d=0的三根为1,-1,21,则c=?解:由根与系数的关系可知:c=1·(-1)+(-1)·21+21·1=1pk kpy y y pk kp x x x -=+=+=+=222122212222222k p p kp y +-=4.若x x 求,0472=-+解:两边平方,得:x 2 +7=16,∴3±=x5.解:原式=-246.两个圆的半径都是4寸,并且一个圆过另一个圆的圆心,则此两圆的公共弦长是多少寸?解:设两圆O 1及O 2之公共弦为AB 连结O 1O 2交AB 于点C ,则AB垂直平分O 1O 2∴O 1C=21O 1O 2=2(寸)).(342),(3224222121寸寸==∴=-=-=AC AB C O AO AC连结AO 1,则△ACO 1为直角三角形, 7.三角形ABC 的面积是60平方寸,M 是AB 的中点,N 是AC 的中点,△AMN 的面积是多少? 解:∵MN ∥BC ,∴41ABC AMN 22==∆∆ANAM 的面积的面积, △AMN 的面积=41△ABC 的面积=15(平方寸)8.正十边形的一个内角是多少度? 解:由公式,)2(180nn -︒此处n=10于是一个内角为:︒144AO 1 O 2CB?123054321=9.祖冲之的圆周率π=? 答:22/7,355/13310.球的面积等于大圆面积的多少倍? 解:球的面积4πR 2为大圆面积πR 2的4倍11.直圆锥之底半径为3尺,斜高为5尺,则其体积为多少立方尺? 解:圆锥高h=4(尺),故此直圆锥的体积:V 锥 =31πR 2h=12π(立方尺) 12.正多面体有几种?其名称是什么?答:共有五种,其名称为:正四面体,正六面体,正八面体,正十二面体和正二十面体13.已知 sin θ=31,求cos2θ=? 解:cos2θ=1-2sin 2θ=97 14.方程tg2x=1的通解x=? 解:).(82为整数k k x π+π=15.太阳的仰角为300时,塔影长为5丈,求塔高是多少? 解:塔高=5×tg300=335(寸) 16.△ABC 的b 边为3寸,c 边为4寸,A 角为300,问△ABC 的面积为多少平方寸?解:).(330sin 4321sin 21平方寸的面积=︒⋅⋅⋅==∆A bc ABC17.已知一直线经过(2,3),其斜率为-1,则此直线方程如何? 解:即x+y –5=018.若原点在一圆上,而此圆的圆心为(3,4)则此圆的方程如何?解:圆的半径.54322=+=R所以,圆的方程为:(x-3)2+(y-4)2=25,也即:x 2+y 2-6x-8y=019.原点至3x+4y+1=0的距离是什么? 解:.51431040322=++⋅+⋅=d 20.抛物线y 2-8x+6y+17=0的顶点坐标是什么? 解:原方程可变形为:(y+3)2=8(x-1), 故顶点坐标为(1,-3)第二部分:1.解方程x 4+5x 3-7x 2-8x-12=0解:左式=(x 4+5x 3-6x 2)-(x 2+8x+12)=(x+6)[x 2(x-1)-(x+2)] =(x+6)(x 3-x 2-x-2) =(x+6)[(x 3-2x 2)+(x 2-x-2)] =(x+6)(x-2)(x 2+x+1)=0 可得原方程的四根为:.231,231,2,64321ix i x x x --=+-==-= 2.△ABC 中,∠A 外角的平分线与此三角形外接圆相交于P ,求证:BP=CP证:如图,∠CBP=∠CAP=∠PAD 又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP =∠BCP+∠CBP∴∠BCP=∠CBP ,∴BP=CP 3.设三角形的边长为a =4,b=5,c=6,其对角依次为A ,B ,C 求A B C C sin ,sin ,sin ,cos .问A ,B ,C 三角为锐角或钝角? 解:应用余弦定理,可得: .812cos 222=-+=ab c b a C由此可知C 为锐角;另外,由已知条件,三边边长适合关系式a <b <c ,从而可知∠A <∠B <∠C 由于C 为锐角,故A ,B 亦为锐角.741c asinC sinA .7165sin sin ,.783)81(-1sinC cos -1sinC 22=======c C b B C 可得应用正弦定理可得由 4.一椭圆通过(2,3)及(-1,4)两点,中心为原点,长短轴重合于坐标轴,试求其长轴,短轴及焦点解:由于椭圆过(2,3)及(-1,4)两点,所以将此两点代入标准方程可得:C1P2D A B.75522,35522,355,755,1161194222222==∴==⎪⎩⎪⎨⎧=+=+a b b a b ab a 短轴长轴解之 .2155221220,22222==-=∴-=a b c a b c 又 ).21552,0(),21552,0(21F F -故焦点坐标为1954年普通高等学校招生全国统一考试数学1.甲、化简.])()()[(317212131223b ab b a --- 解:原式=.)()(32310231272321223a b a b b a b a ==--乙、解c b a x lg lg 2lg 31lg 61++= 解略:x=a 2b 12c 6.丙、用二项式定理计算(3.02)4,使误差小于千分之一.,,,001.0)1002()1002(34)1002(36100234310023)02.3(:43223444千分之一其误差必小于计算可到第三项为止所以可知第四项之值已小于解+⋅⋅+⋅⋅+⋅⋅+=⎪⎭⎫ ⎝⎛+=.182.830216.016.281)02.3(4=++=丁、试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和证:由c 2 =a 2+b 2∴弦上半圆的面积= 22222221221421221⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛b a b a c ππππ=勾上半圆的面积+股上半圆的面积戊、已知球的半径等于r ,试求内接正方形的体积解:内接正方体的中心即该球的球心正方体过中心的对角线为该球的直径,故其长为2r 若设内接正方体的边长为a ,则有3a 2=4r 2,.398332.332333r r a r a =⎪⎭⎫⎝⎛==∴=内接正方体的体积己、已知a 是三角形的一边,β及γ是这边的两邻角,试求另一边b 的计算公式解:由正弦定理可知.)sin(sin )](180sin[sin ,sin )](180sin[γββγβββγβ+=--︒=∴=--︒a a b b a2.描绘y=3x 2-7x-1的图象,并按下列条件分别求x 的值所在的范围: 1)y >0, 2)y <0).1261(31)67(:2+=-y x 将原方程变形可得解 ).1261,67(,-抛物线顶点为于是)0,6617(,)0,6617(:+-N M x 轴的交点为与).,6617(),6617,(,0+∞+--∞>的值所在范围为时当x y ).6617,6617(,0+-<的值所在范围为时当x y YM O N X)1261,67(-3.假设两圆互相外切,求证用连心线做直径的圆,必与前两圆的外公切线相切证:设⊙O 1及⊙O 2为互相外切之二圆,其一外公切线为A 1A 2,切点为A 1及A 2令点O 为连心线O 1O 2的中点,过O 作OA ⊥A 1A 2∵OA=21(O 1A 1+O 2A 2)=21O 1O 2,∴以O 1O 2为直径,即以O 为圆心,OA 为半径的圆必与直线A 1A 2相切同理可证,此圆必切于⊙O 1及⊙O 2的另一条外公切线4.试由.,2sin 111通值求的x x tgxtgx+=-+ )(0sin 4,1,0sin cos ,0sin )sin (cos 20)sin cos 1)(sin (cos )sin (cos sin cos sin cos :22222为整数或者即或者所以解k k x x k x tgx x x x x x x x x x x x x x x x π=∴=π-π=∴-==+=⋅+=+-++=-+由检验可知,均为其通解5.有一直圆锥,另外有一与它同底同高的直圆柱,假设a 是圆锥的全面积,a '是圆柱的全面积,试求圆锥的高与母线的比值解:设直圆锥的高为h ,底面半径为R ,母线长为L ,则,)(2)(2)(h R L R h R R L R R a a ++=++='ππ .2)2(),()(2,).()(222222222ah L a h L a a L h L a h h L a h L R L R a h R a -'=-'-+-'=+--=+'=+∴代入可得由A 2AA 1O 1 O O 2,.21)2(,2等式两边平方可得两边同除以L h a a L h a a L -'=⎪⎭⎫⎝⎛-'-.)2(4)2()2(22])2(4[2)2()2(44)48(2)2(164:,,0)2(16)4)(48(4)4(.0)4(4)48(,441)44(2222223322222222222222a a a a a a a a a a a a a a a a a a a a a a a a a a a a a L h a a a a a a a a a a a a Lha a a L h a a L h a a a a L h a L h a a a L h a a a a '-+'-'-±'='-+'-'-±'='+'-'-±'=∴>'-='+''+'--'-=∆='+'+'-⎪⎭⎫⎝⎛'+'-⎪⎭⎫⎝⎛+⋅'-'=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-'+'-母线的比此二实根即圆锥的高与实根该一元二次方程有二个式的一元二次方程的判别这个关于1958年普通高等学校招生全国统一考试数学1.甲、求二项式5)21(x +展开式中3x 的系数解:设求的项为.802,32)2(333354551x x C T r x C x C T r r r r r r ==∴===+今乙、求证.sin 88sin 4cos 2cos cos xxx x x =⋅⋅ 证:x x x 4cos 4sin 28sin =xx x x xx x 4cos 2cos cos sin 84cos 2cos 2sin 4=⌒ ⌒⌒ ⌒ ⌒ ⌒ .sin 88sin 4cos 2cos cos xxx x x =⋅⋅∴ 丙、设AB ,AC 为一个圆的两弦,D 为AB 的中点,E 为AC 的中点,作直线DE 交AB 于M ,交AC 于N ,求证:AM=AN证:联结AD 与AE (如图) ∵∠AMN=∠DAM+∠MDA , ∠ANM=∠EAN+∠NEA , 又∵AD=DB ,∠DAB=∠AED ,AE=EC ,∠ADE=∠EAC , ∴∠AMN=∠ANM , AM=AN.丁、求证正四面体ABCD 中相对的两棱(即异面的两棱)互相垂直证:因ABCD 是正四面体, 各个面都是等边三角形, 过A 作AE ⊥BC ,联结DE , 则DE ⊥BC , ∴BC 垂直平面AED , 而AD 在此平面内, ∴BC ⊥AD同理可证AB ⊥DC ,AC ⊥DB戊、求解.cos 3sin x x = 解:,cos 3sin x x =AD EM NBCDCA EB).(3,3为整数k k x tgx π+π==∴ 2.解方程组⎪⎪⎩⎪⎪⎨⎧=++=-+++)2(9122)1(4121 y y x y x y x v y x u yx y x y x =-+=+=-+++12,1,8)12()1()2(:设式变形为由解则原方程变形为⎩⎨⎧=+=+)4(8)3(422 v u v u 解方程组,可得.2,2==v u 将v u ,的值代回所设,可得⎪⎩⎪⎨⎧-==⎩⎨⎧====-==∴=--=--⎪⎩⎪⎨⎧=-+=+⎪⎩⎪⎨⎧=-+=+.21,6;1,3.6,3),5(.21,1,01,112)5()6()6(412)5(41,21221221121212y x y x x x y y y y y y y x y x y x y x 由检验可知代入即得得两边平方都是原方程组的解3.设有二同心圆,半径为R ,r(R>r ),今由圆心O 作半径交大圆于A ,交小圆于A ',由A 作直线AD 垂直大圆的直径BC ,并交BC 于D;由A '作直线A 'E 垂直AD ,并交AD 于E ,已知∠OAD= α,求OE 的长解:在直角△OAD 中, OD=Rsin α,AD=Rcos α 在直角△A 'AE 中, AE=(R-r )cos α ∴DE=AD-AE=Rcos α-(R-r )cos α=rcos α. OE=.cos sin 222222α+α=+r R DE OD4.已知三角形ABC ,求作圆经过A 及AB 中点M ,并与BC 直线相切已知:M 为△ABC 的AB 的中点.求作:一个经过A 、M 两点且与BC 直线相切的圆.AA ' EB O D C分析:设⊙O 即为合于要求的圆(如图)因⊙O 经过A 、M 两点且与直线BC 相切于点P ,这样,BP 为⊙O 的切线,BA 为⊙O 的割线,所以,应有 BP 2=BM ·BA而BM ,BA 均为已知,因此,BP 的长度可以作出,由此可得点P ,于是过A 、M 、P 三点就可确定所求之圆作法:1)作线段A 'B 'M ', 使A 'B '=AB ,B 'M '=BM2)以A 'M '为直径作半圆3)过B '作A 'M '的垂线B 'P '交半圆于点P ' 4)在△ABC 的边BC 上截取BP=B 'P ' 5)经过A 、M 、P 三点作⊙O 即为所求证明:由作图可知B 'P '2= A 'B '·B 'M ',A 'B '=AB ,B 'M '=BM ,所以BP 2=BM ·BA ,即BP 为⊙O 的切线,BMA 为其割线,且⊙O 经过A 、M 、P 三点,故⊙O 适合所要求的条件5.已知直角三角形的斜边为2,斜边上的高为23,求证此直角三角形的两个锐角是下列三角方程的根CPOA BMP 'A 'B ' M '043sin 231sin 2=++-x x 证:设AD=k (如图) ∵AB=2,∴DB=2-k. 由CD 2=AD ·DB ,.2123,0432),2()23(22或==+--=∴k k k k k在直角△ACD 中, 当23==k AD 时,,332323===AD CD tgA ∴A=300,B=600.当21==k AD 时,,32123===AD CD tgA ∴A=600,B=300. 总之,两锐角一为300,一为600. 当x=300时,代入原方程中得;04321231)21(4330sin 23130sin 22=+⋅+-=+︒+-︒ 当x=600时,代入原方程中得.04323231)23(4360sin 23160sin 22=+⋅+-=+︒+-︒ 故这个直角三角形的两个锐角是原三角方程的根CA D B1959年普通高等学校招生全国统一考试数学1.甲、已知lg2=0.3010,lg7=0.8451,求lg35解:原式=2lg 10lg 7lg 2107lg 270lg-+=⨯= =0.8451+1-0.3010=1.5441.乙、求ii +-1)1(3的值.解:.21)1(21221331133132-=++-=+--=++--=+-+-=ii i i i i i i i i i 原式 丙、解不等式.3522<-x x 解:原式移项得,03522<--x x ∴原不等式的解为.321<<-x 丁、求︒165cos 的值解:)3045cos(15cos )15180cos(165cos ︒-︒-=︒-=︒-︒=︒.426)21222322()30sin 45sin 30cos 45(cos +-=⋅+⋅-=︒︒+︒︒-=戊、不在同一平面的三条直线c b a ,,互相平行,A 、B 为b 上两定点,求证另两顶点分别在c a 及上的四面体体积为定值证:因为A 、B 为直线b 上两定点,而直线b ∥直线c ,所以,不论点C 在直线c 的什么位置上,△ABC 的面积均为一定值(同底等高的三角形等积)又因直线a 平行于直线 c b ,,所以,直线a ∥平面α(已知c b a ,,不在同一平面内),因此,不论点D 在直线a 的什么位置上,从点D 到平面α的距离h 为一定值,故四面体ABCD 的体积=定值高底面积=⋅⋅=⨯⨯∆h S ABC 3131己、圆台上底面积为225cm π,下底直径为cm 20,母线为cm 10,求圆台的侧面积解:设此圆台上底半径为r ,下底半径为R ,由已知条件,252π=πr 所以r=5(cm).又下底半径R=10cm ,母线,10cm l =圆台侧面积=πl (R+r)=π·10·(10+5)=150π(cm 2). 2.已知△ABC 中,∠B=600,AC=4,面积为3,求AB 和BC. 解:设AB=c ,BC=a ,则有⎪⎩⎪⎨⎧︒-+==︒),(60cos 24)(360sin 21222余弦定理两边夹角求面积公式ac c a ac D ahA B bOα cC.37,37.32,12)(,72,28)(,,1642222=±=∴±=-∴=-=+∴=+⎩⎨⎧=-+=c a c a c a c a c a ac c a ac 由由解之即故所求AB ,BC 之长为⎩⎨⎧+=-=⎩⎨⎧-=+=.37,37;37,37BC AB BC AB 3.已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数解:设所求之三数为d a a d a +-,,则根据题意有⎩⎨⎧==⎪⎩⎪⎨⎧==⎩⎨⎧=-=⎩⎨⎧+-=-+=+-.45;1,45:4454).)(()2(),(2])[(3221122d a d a d a d a d a d a a d a a d a 解得化简后得 故所求三数为.9,5,149,45,41或4.已知圆O 的两弦AB 和CD 延长相交于E ,过E 点引EF ∥CB 交AD 的延长线于F ,过F 点作圆O 的切线FG ,求证:EF=FG. 证:∵FG 为⊙O 的切线,而FDA 为⊙O 的割线,∴FG 2=FD ·FA …………① 又∵EF ∥CB ,∴∠1=∠2.而∠2=∠3, ∴∠1=∠3,∠EFD=∠AFE 为公共角 ∴△EFD ∽△AFE ,,FAEF EF FD =即EF 2=FD ·FA …………②由①,②可得EF 2=FG 2 ∴EF=FG.5.已知A 、B 、C 为直线l 上三点,且AB=BC=a ;P 为l 外一点,且∠APB=900,∠BPC=450,求(1)∠PBA 的正弦、余弦、正切; (2)PB 的长; (3)P 点到l 的距离.解:过P 点作PD ⊥AB 交AB 于点D (如图) (1)过点B 作BE ∥AP 交PC 于点E 则∠PBE=900,∠PEB=450,PB=BE. ∵△CPA ∽△CEB ∴,22==a aBE PA 因PB=BE , ∴.2,2=∠=PBA tg PBPA C G2 FO D1A 3 EBP450 EA a DB a C又∵,sec 122PBA PBA tg ∠=∠+∠PBA 为锐角, ∴,51sec 2=∠+=∠PBA tg PBA.552cos sin ,5551cos =∠⋅∠=∠==∠PBA PBA tg PBA PBA(2).55cos a PBA AB PB =∠⋅= (3),552sin ,55=∠=PBA a PB ∴.52sin a PBA PB PD =∠⋅= 综上,所求为(1)∠PBA 的正弦、余弦、正切分别是2,551,552 (2)PB 的长为;551a (3)P 点到l 的距离为.52a1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg 证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点A 、D∵点A 是EF 的中点,ASPDRC BQM E aB Aα DC bN F β又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x 将x 值代入(5).6145173212±=+=x y abαEFAMNBD此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD将x 值代入(5).6145173212±=+=x y 此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD将x 值代入(5).6145173212±=+=x y 此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg 证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点A 、D∵点A 是EF 的中点,ASPDRC BQM E aB Aα DC bN F β又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x 将x 值代入(5).6145173212±=+=x y abαEFAMNBD此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD。
第一辑(1951~1965)1951年..............................3 1959年 (29)1952年..............................7 1960年 (32)1953年...........................11 1961年 (36)1954年...........................13 1962年 (39)1955年...........................16 1963年 (43)1956年...........................18 1964年 (47)1957年...........................21 1965年 (52)1958年 (25)第二辑(1977年)北京市(理科)..................60 河北省 (74)北京市(文科)..................63 福建省(理科) (78)上海市(理科)..................64 福建省(文科) (84)上海市(文科)..................68 黑龙江省 (88)天津市..............................71 江苏省 (91)第三辑(1978~1982)1978年...........................97 1980年(文科) (118)1978年(副题)...............101 1981年(理科) (121)1979年(理科)...............105 1981年(文科) (126)1979年(文科)...............110 1982年(理科) (130)1980年(理科)...............113 1982年(文科) (135)第四辑(1983~1994)1983年(理科)..................140 1987年(理科) (186)1983年(文科)..................147 1987年(文科) (192)1984年(理科)..................151 1988年(理科) (198)1984年(文科)..................160 1988年(文科) (204)1985年(理科)..................165 1989年(理科) (208)1985年(文科)..................171 1989年(文科) (214)1986年(理科)..................176 1990年(理科) (219)1986年(文科)..................182 1990年(文科) (227)1991年(理科)..................234 1993年(新考理) (272)1991年(文科)..................241 1993年(新考文) (279)1992年(理科)..................246 1994年(理科) (286)1992年(文科)..................253 1994年(文科) (293)1993年(理科)..................259 1994年(新考理) (299)1993年(文科)..................266 1994年(新考文) (307)第五辑(1995~1999)1995年(理科)..................314 1997年(文科) (356)1995年(文科)..................324 1998年(理科) (363)1996年(理科)..................332 1998年(文科) (372)1996年(文科)..................341 1999年(理科) (382)1997年(理科)..................348 1999年(文科) (391)制作人:过士功第一部分:1.设有方程组x+y=8,2x-y=7,求x ,y 。
高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
高考卷 , 一般高等学校招生全国一致考试数学试题及答案(理)_99 年一般高等学校招生全国一致考试数学(理工农医类)本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分 . 满分 _0 分. 考试时间 _0 分钟 . 第 I 卷(选择题共 60 分)一、选择题:本大题共 _小题;第 1~ _题每题 4 分,第 _~ _题每题 5 分,共 60 分. 在每题给出的四个选项中,只有一项为哪一项切合题目要求的 1. 如图, I 是全集, M、P、S 是 I 的 3 个子集,则暗影部分所表示的会合是( ) (A)(M∩P)∩S (B)(M∩P)∪ S (C)(M∩P)∩(D) (M∩P)∪ 2. 已知映照:,此中,会合会合 B 中的元素都是 A 中元素在映照下的象,且对随意的在 B 中和它对应的元素是,则会合 B 中元素的个数是 ( ) (A) 4 (B) 5 (C) 6 (D) 7 3.若函数的反函数是,则等于( ) (A) a (B) (C) (D)4. 函数在区间上是增函数,且则函数在上( ) (A)是增函数(B)是减函数能够获得最大值 M (D)能够获得最小值5. 假如周期为的奇函数,则能够是 ( (B) (C) (D)6. 在极坐标系中,曲线对于 ( ) (A)直线轴对称(B)直线轴对称(C) ) (A) (C)点中心对称 (D)极点中心对称7.若干毫升水倒入底面半径为的圆柱形器皿中,量得水面的高度为,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) (A) (B) (C) (D) 8.若则的值为()(A)1(B)-1 (C) 0 (D) 2 9.直线截圆得的劣弧所对的圆心角为( ) (A) (B) (C) (D) _.如图,在多面体ABCDEF中,已知面ABCD是边长为3 的正方形,EF∥A B,EF,EF与面AC的距离为2,则该多面体的体积为( ) (A) (B) 5 (C) 6 (D) _.若则( ) (A) (B) (C) (D)_. 假如圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么 R= ( ) (A) _ (B) _ (C) _ (D) 25 _.已知两点给出以下曲线方程:① ② ③ ④在曲线上存在点 P 知足 |MP|=|NP| 的全部曲线方程是( ) (A)①③(B)②④ (C)①②③ (D)②③④ _.某电脑用户计划使用不超出5_元的资本购置单价分别为 60 元、 70 元的单片软件和盒装磁盘,依据需要,软件起码买 3 片,磁盘起码买 2 盒,则不一样的选购方式共有 ( ) (A) 5 种 (B) 6 种 (C) 7 种 (D) 8 种第 II 卷(非选择题共 90 分)二.填空题:本大题共 4 小题;每题 4 分,共 _分,把答案填在题中横线上. _. 设椭圆的右焦点为,右准线为,若过且垂直于轴的弦长等于点到的距离,则椭圆的率心率是_____ _. 在一块并排 _垄的田地中,选择 2 垄分别栽种 A、B 两种作物,每种作物栽种一垄,为有益于作物生长,要求 A、B 两种作物的间隔不小于6垄,则不一样的选垄方法共有 ___________种(用数字作答)_. 若正数、知足则的取值范围是______________ _. 、是两个不一样的平面,、是平面及以外的两条不一样直线,给出四个论断:①⊥ ②⊥ ③⊥ ④⊥ 以此中三个论断作为条件,余下一个论断作为结论,写出你以为正确的一个命题:________________________________三、解答题:本大题共 6 小题;共 74 分,解答应写出文字说明、证明过程或演算步骤 . _. (本小题满分 _分)解不等式 _. (本小题满分 _分)设复数求函数的最大值以及对应的值 . _. (本小题满分 _分)如图,已知正四棱柱,点在棱上,截面∥,且面与底面所成的角为Ⅰ. 求截面的面积;Ⅱ. 求异面直线与AC之间的距离;Ⅲ. 求三棱锥的体积 . _.(本小题满分_分)右图为一台冷轧机的表示图 . 冷轧机由若干对轧辊构成,带钢从一端输入,经过各对轧辊逐渐减薄后输出 . Ⅰ. 输入带钢的厚度为,输出带钢的厚度为,若每对轧辊的减薄率不超出 . 问冷轧机起码需要安装多少对轧辊?(一对轧辊减薄率)Ⅱ.已知一台冷轧机共有 4 对减薄率为 _%的轧辊,全部轧辊周长均为 __若第对轧辊出缺点,每转动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为为了便于检修,请计算、、并填入下表(轧钢过程中,带钢宽度不变,且不考虑消耗) . 轧锟序号 1 2 3 4 疵点间距(单位:)__ 23.(本小题满分_分)已知函数的图像是自原点出发的一条折线,当时,该图像是斜率为的线段(其中正常数),设数列由定义 .Ⅰ.求、和的表达式;Ⅱ. 求的表达式,并写出其定义域;Ⅲ. 证明:的图像与的图像没有横坐标大于 1 的交点 . 24. (本小题满分 _分)如图,给出定点和直线是直线上的动点,的角均分线交于点. 求点的轨迹方程,并议论方程表示的曲线种类与值的关系. _99年一般高等学校招生全国一致考试数学试题(理工农医类)参照解答一、选择题(此题考察基础知识和基础运算).二、填空题(此题考察基本知识和基本运算)._._.__._.或三、解答题_.本小题主要考察对数函数的性质、对数不等式、无理不等式解法等基础知识,考察分类讨论的思想 . ① ② ③解:原不等式等价于由①得由②得或,由③得由此得或当时得所求的解是;当时得所求的解是_. 本小题主要考察复数的基本观点、三角公式和不等式等基础知识,考察综合运用所学数学知识解决问题的能力.解:由得由得及故因为所以当且仅当时,即时,上式取等号.所以当时,函数获得最大值由得因为在内正切函数是递加函数,函数也取最大值_. 本小题主要考察空间线面关系、二面角和距离的观点,逻辑思想能力、空间想象能力及运算能力.Ⅰ.解:如图,连结 BD交 AC于 O,连接 EO 因为底面 ABCD是正方形,所以 DO⊥AC 又因为 ED⊥底面 AC,因为 EO⊥AC 所以∠ EOD是面 EAC与底面 AC所成二面角的平面角 . 所以故II.解:由题设是正四棱柱,得⊥底面 AC,⊥ AC,又⊥ 所以是异面直线与 AC间的公垂线 . 因为∥面 EAC,且面与面 EAC交线为 EO 所以∥ EO 又 O是 DB的中点,所以 E 是的中点, =2EO =2 所以异面直线与 AC间的距离为Ⅲ. 解法一:如图,连接因为 =DB= 所以是正方形,连接交于 P,交 EO于 Q 因为⊥,EO∥,所以⊥ EO 又 AC⊥EO,AC⊥ED 所以 AC⊥面,所以⊥ AC,所以⊥面 EAC. 所以是三棱锥的高 .由 DQ=PQ,得所以所以三棱锥的体积是解法二:连接,则因为AO⊥面,所以AO是三棱锥的高, AO 在正方形中, E、O分别是、 DB的中点(如右图),则∴所以三棱锥的体积是_.本小题主要考察等比数列、对数计算等基本知识,考察综合运用数学知识和方法解决实质问题的能力.Ⅰ.解:厚度为的带钢经过减薄率均为的对轧辊后厚度为为使输出带钢的厚度不超出,冷轧机的轧辊数(以对为单位)应知足即因为对照上式两头取对数,得因为所以所以,起码需要安装不小于的整数对轧辊 .Ⅱ.解法一:第对轧辊出口处疵点间距离为轧辊周长,在此处出口的两疵点间带钢体积为宽度而在冷轧机出口处两疵点间带钢的体积为宽度.因宽度相等,且无消耗,由体积相等得即由此得填表以下轧锟序号 1 2 3 4疵点间距(单位:)3_5 25_ _ __解法二:第3对轧辊出口处疵点间距为轧辊周长,在此处出口的两疵点间带钢体积与冷轧机出口处两疵点间带钢体积相等,因宽度不变,有所以同理填表以下轧锟序号1234疵点间距(单位:)3_5 25_ _ __ 23.本小题主要考察函数的基本观点、等比数列、数列极限的基础知识,考察概括、推理和综合的能力.Ⅰ.解:依题意,又由,当时,函数的图像是斜率为的线段,故由得又由,当时,函数的图像是斜率为的线段,故由,即得记由函数图像中第段线段的斜率为,故得又;所以由此知数列为等比数列,其首项为 1,公比为因得即Ⅱ. 解:当,从Ⅰ可知当时,当时,即当时,由Ⅰ可知为求函数的定义域,须对进行议论 . 当时,;当时,也趋势于无量大 .综上,当时,的定义域为;当时,的定义域为 . Ⅲ. 证法一:第一证明当,时,恒有建立 . 用数学概括法证明:(ⅰ)由Ⅱ知当时 , 在上 , 所以建立(ⅱ)假定时在上恒有建立 . 可得在上 , 所以也建立 . 由( ⅰ) 与( ⅱ) 知 , 对全部自然数在上都有建立 . 即时, 恒有. 其次,当, 仿上述证明 , 可知当时 , 恒有建立 . 故函数的图像与的图像没有横坐标大于 1 的交点 . 证法二 : 第一证明当 , 时 , 恒有建立 . 对随意的存在 , 使,此时有所以又所以,所以,即有建立 . 其次,当,仿上述证明,可知当时,恒有建立 . 故函数的图像与的图像没有横坐标大于 1 的交点 . 24. 本小题主要考察曲线与方程,直线和圆锥曲线等基础知识,以及求动点轨迹的基本技术和综合运用数学知识解决问题的能力 . 解法一:依题意,记则直线 OA和 OB的方程分别为和设点,则有,由OC均分∠ AOB,知点 C到 OA、OB距离相等 . 依据点到直线的距离公式得①依题设,点 C在直线 AB上,故有由,得②将②式代入①式得整理得若,则;若,则,点 C的坐标为( 0,0),知足上式 . 综上得点 C的轨迹方程为(ⅰ)当时,轨迹方程化为③ 此时,方程③表示抛物线弧段;(ⅱ)当时,轨迹方程化为④ 所以,当时,方程④表示椭圆弧段;当时,方程④表示双曲线一支的弧段.解法二:如图,设D是与轴的交点,过点 C作 CE⊥轴, E 是垂足 . (ⅰ)当 | BD | ≠0时,设点 C(,),则由 CE∥BD得因为∠ COA=∠COB=∠COD-∠ BOD=-∠ COA-∠ BOD,所以 2∠COA=-∠BOD所以因为所以整理得(ⅱ)当 | BD | = 0 时,∠ BOA= ,则点 C的坐标为( 0,0),知足上式 . 综合(ⅰ),(ⅱ),得点 C的轨迹方程为以下同解法一 .高考卷 , 一般高等学校招生全国一致考试(浙江卷)数学试题(文史类)高考卷 , 一般高等学校招生全国一致考试数学(全国Ⅰ·理科)(附答案,完整word 版)高考卷 , 一般高等学校招生全国一致考试, 理科数学(山东卷)(附答案,完整 word 版)高考卷 ,_, 一般高等学校招生全国一致考试数学(福建卷·理科)(附答案,完全 word 版)高考卷 ,_ 一般高等学校招生全国一致考试(浙江卷.理)含详解。
1954年普通高等学校招生全国统一考试数学1.甲、化简.])()()[(317212131223b abb a ---解:原式=.)()(3231231272321223a b a b ba ba==--乙、解cb a x lg lg 2lg 31lg 61++=解略:x=a 2b 12c 6.丙、用二项式定理计算(3.02)4,使误差小于千分之一.,,,001.0)1002()1002(34)1002(36100234310023)02.3(:43223444千分之一其误差必小于计算可到第三项为止所以可知第四项之值已小于解+⋅⋅+⋅⋅+⋅⋅+=⎪⎭⎫ ⎝⎛+=.182.830216.016.281)02.3(4=++=丁、试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和证:由c 2 =a 2+b 2∴弦上半圆的面积= 22222221221421221⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=+=⎪⎭⎫ ⎝⎛b a ba c ππππ=勾上半圆的面积+股上半圆的面积戊、已知球的半径等于r ,试求内接正方形的体积解:内接正方体的中心即该球的球心正方体过中心的对角线为该球的直径,故其长为2r a ,则有3a 2=4r 2,.398332.332333r r ar a =⎪⎭⎫ ⎝⎛==∴=内接正方体的体积己、已知a 是三角形的一边,β及γ是这边的两邻角,试求另一边b 的计算公式解:由正弦定理可知.)sin(sin )](180sin[sin ,sin )](180sin[γββγβββγβ+=--︒=∴=--︒a a b b a2.描绘y=3x 2-7x-1的图象,并按下列条件分别求x 的值所在的范围: 1)y >0, 2)y <0).1261(31)67(:2+=-y x 将原方程变形可得解).1261,67(,-抛物线顶点为于是)0,6617(,)0,6617(:+-N M x 轴的交点为与).,6617(),6617,(,0+∞+--∞>的值所在范围为时当x y ).6617,6617(,0+-<的值所在范围为时当x y3.假设两圆互相外切,求证用连心线做直径的圆,必与前两圆的外公切线相切证:设⊙O 1及⊙O 2为互相外切之二圆,其一外公切线为A 1A 2,切点为A 1及A 2令点O 为连心线O 1O 2的中点,过O 作OA ⊥A 1A 2∵OA=21(O 1A 1+O 2A 2)=21O 1O 2,∴以O 1O 2为直径,即以O 为圆心,OA 为半径的圆必与直线A 1A 2相切同理可证,此圆必切于⊙O 1及⊙O 2的另一条外公切线4.试由.,2sin 111通值求的x x tgxtgx +=-+)(0sin4,1,0sin cos ,0sin)sin (cos 20)sincos 1)(sin (cos )sin (cos sin cos sin cos :22222为整数或者即或者所以解k k x x k x tgx x x x x x x x x x x x xx x x π=∴=π-π=∴-==+=⋅+=+-++=-+由检验可知,均为其通解5.有一直圆锥,另外有一与它同底同高的直圆柱,假设a 是圆锥的全面积,a '是圆柱的全面积,试求圆锥的高与母线的比值解:设直圆锥的高为h ,底面半径为R ,母线长为L ,则,)(2)(2)(h R L R h R R L R R a a ++=++='ππ.2)2(),()(2,).()(222222222ah L a hL a a L hL a h h L a h L R L R a h R a -'=-'-+-'=+--=+'=+∴代入可得由,.21)2(,2等式两边平方可得两边同除以Lh aa L h a a L -'=⎪⎭⎫⎝⎛-'-.)2(4)2()2(22])2(4[2)2()2(44)48(2)2(164:,,0)2(16)4)(48(4)4(.0)4(4)48(,441)44(2222223322222222222222a a a a a a a a a a a a a a a a a a a a a a a a a a a a a L h a a a a a a a a a a a a Lh a a a L h a a L h a a a a L h a L h a a a L h a a a a '-+'-'-±'='-+'-'-±'='+'-'-±'=∴>'-='+''+'--'-=∆='+'+'-⎪⎭⎫ ⎝⎛'+'-⎪⎭⎫ ⎝⎛+⋅'-'=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-'+'-母线的比此二实根即圆锥的高与实根该一元二次方程有二个式的一元二次方程的判别这个关于1955年普通高等学校招生全国统一考试数学1.甲、以二次方程x 2-3x-1=0的两根的平方为两根,作一个二次方程解:设原方程的两根为α,β,则由根与系数关系可得:α+β=3,αβ=-1, 又,α 2 +β2=(α+β)2-2αβ=11,α2β 2 =1,故所求的二次方程为 x 2-11x +1=0乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦解:设AB=AC=4BC ,而AD 为底边上的高, 于是ACBC BC BC BC ACAB BCACABA ⋅⋅-+=⋅-+=4216162cos 222222.81cos ,81421cos ,3231323122======C AC BCAB BDB BCBC 同理AB D C丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高解:设S-ABCD 为正四棱锥,SO 为它的高,底边长为a ,∠SAO=450AO=a22∴由△SOA 为等腰直角三角形, 故棱锥S-ABCD 的高SO=a22丁、写出二面角的平面角的定义 略2.求b ,c ,d 的值,使多项式x 3+bx 2+cx+d 适合于下列三条件:(1)被x-1整除,(2)被x-3除时余2, (3)被x+2除时与被x-2除时的余数相等解:根据余数定理及题设条件可得f(1)=1+b+c+d =0…………………………………① f(3)=27+9b+3c+d=2………………………………② -8+4b-2c+d=8+4b+2c+d …………………………③ 化简③式可得 c=-4b+d=39b+d=-13 解得b=-2,d=5. 综上,b=-2,c=-4,d=5S C3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项证:连接GA 、GB ,则△AGB 也是一个直角三角形因为EG 为直角△AGB 的斜边EG 为EA 和EB 的比例中项,即EG 2=EA ·EB ∵∠AFE=∠ABC ,∴直角△AEF ∽直角△DEB ,.EF ED EB EA EBED EFEA ⋅=⋅=即但是∵EG 2=EA ·EB ,∴EG 2=ED ·EF (等量代换). 故 EG 也是ED 和EF 的比例中项4.解方程xx x sin cos2cos +=,求x 的通值解:x x x x sin cos sin cos 22+=-,)(.22,2,424,22)4cos(,22sin 22cos 22,1sin cos 01sin cos )(.4,1,010sin cos .0)1sin )(cos sin (cos ,0)sin (cos )sin )(cos sin (cos 为整数则得如果为整数则得如果k k k x k x x x x x x x x k k x tgx tgx x x x x x x x x x x x x ⎪⎩⎪⎨⎧π-ππ=∴π±π=π+∴=π+∴=-∴=-=-+π-π=∴-==+=+=--+=+--+5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形证:可设其长分别为x-d,x,x+d.F CB因为三角形的周长为12尺, ∴(x-d)+x+(x+d)=12,∴x=4(尺) 于是该三角形的三边又可表示为4-d,4,4+d.由该三角形的面积为6,三边长为4-d,4,4+d ,代入求面积的计算公式,得.1,1),2)(2(1236)]4(6)[46)](4(6[662±==-+=+----=d d d d d d由此可知,该三角形三边的长为3、4、5(或5、4、3)(尺),故它是一个直角三角形。
普通高等学校招生全国统一考试数学1.甲、解.3101111=+-+-+x x x x 解:两边同乘3(x 2-1),得:3(x 2+1)+3(x 2-1)=10(x 2-1),即 6x 2 +6=10x 2 –10,2±=∴x 经检验,均为解乙、3x 2 +kx +12=0的两根相等,求k 值解:两根相等,Δ=k 2 –4·3·12=0,∴.12±=k).(6,322:.,21cos2x . .33)30()301805(:?tg870 . .410lg 137007300lg :.1lg 3700lg 7300lg. 012225)8(5810160580101611357642113:?507642113. 4为整数解之值求若己原式解求戊原式解求丁解求丙k k x k x x tg tg π±π=∴π±π==-=︒-=︒-︒⨯==︒==⋅⋅=++=⋅-=--=---=-=-庚、三角形相似的条件为何?(把你知道的都写出来) 答:略辛、长方体之长、宽、高各为12寸、3寸、4寸,求对角线的长解:长方体对角线的长为:).(131694312222寸==++壬、垂直三棱柱之高为6寸,底面三边之长为3寸、4寸、5寸,求体积解:由于底面为直角三角形,所以S 底=21·3·4=6(平方寸),故该三棱柱的体积为:V=S 底×h=6×6=36(立方寸)2.解 x 2-2xy+3y 2 = 9 ………………………………① 4x 2-5xy+6y 2=30 ………………………………② 解:原方程组消去常数项,得2x 2+5xy-12y 2=0(x+4y )(2x-3y )=0x+ 4y=0…………………………………………③ 2x-3y=0…………………………………………④ 解①,③方程组,得.33,334 ±==y x解①,④方程组,得 2.y 3, x ±=±=⎩⎨⎧-=-=⎩⎨⎧==⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧-==.2,3;2,3;331,334;331,334:,44332211y x y x y x y x 有如下四组解于是方程组经检验,以上四组解均为原方程组的解3.甲、化简.276490000251264++ .315166332310352:=++=原式解 乙、求123)12(xx +之展开式中的常数项解:由二项展开式的一般项公式.9,0436.21)2(4361212125121=∴=-=⎪⎭⎫ ⎝⎛=---+r r xC x x C T rr r rrr r 令 .1760223312912912==-C C 常数项为4.锐角△ABC 的三高线为AD 、BE 、CF ,垂心为H ,求证HD 平分∠EDF证:由于AD ⊥BC ,BE ⊥CA ,所以点A ,B ,D ,E 四点共圆,故 ∠ADE=∠ABE又因点F ,B ,C ,E 共圆,故 ∠FBE=∠FCE 又因点C ,A ,F ,D 共圆,故 ∠FCA=∠FDA 综上可得∠ADE=∠FDA ,即AD 平分∠EDF 5.已知△ABC 的两个角为450,600,而其夹边之长为1尺,求最小边的长及三角形的面积解:已知∠B=450,∠C=600,于是∠A=750由正弦定理得))(33(4160sin )13(121)(132123222275sin 45sin 1平方尺的面积尺-=︒⋅-⋅⋅=∆-=⎪⎪⎭⎫ ⎝⎛+=︒︒⋅=ABC ACA B D C。