Matlab基础教程
- 格式:pdf
- 大小:314.28 KB
- 文档页数:25
MATLAB基础教程与实例解析第一章:MATLAB介绍与安装1.1 MATLAB的定义与特点1.2 MATLAB的应用领域1.3 MATLAB的安装与配置第二章:MATLAB语法与数据类型2.1 MATLAB的基本语法2.2 MATLAB的变量与赋值2.3 MATLAB的数据类型与操作第三章:向量与矩阵操作3.1 定义向量与矩阵3.2 向量与矩阵的运算3.3 向量与矩阵的索引与切片第四章:函数与脚本文件4.1 函数的定义与调用4.2 函数的输入与输出4.3 脚本文件的编写与执行第五章:图形绘制与可视化5.1 MATLAB的绘图函数与参数5.2 绘制二维图形5.3 绘制三维图形第六章:数据分析与处理6.1 数据导入与导出6.2 统计分析与拟合6.3 信号处理与滤波第七章:优化与线性方程求解7.1 优化理论与最优化问题7.2 MATLAB中的优化函数与工具箱7.3 线性方程组的求解第八章:数值计算与数值求解8.1 数值计算的原理与方法8.2 MATLAB中的数值计算函数与工具箱8.3 数值求解与数值积分第九章:图像处理与计算机视觉9.1 图像的读入与显示9.2 图像的灰度转换与增强9.3 图像的滤波与特征提取第十章:机器学习与深度学习10.1 机器学习与深度学习的基本概念10.2 MATLAB中的机器学习工具箱10.3 使用MATLAB进行数据建模与预测在MATLAB基础教程与实例解析中,我们将逐个章节的介绍MATLAB的各个方面,帮助读者建立起扎实的基础并掌握实际应用技能。
第一章中,我们将首先介绍MATLAB的定义与特点,帮助读者了解其在科学计算、数据分析和工程设计中的重要性。
然后,我们将详细介绍MATLAB的安装与配置过程,确保读者能够成功地将MATLAB部署在自己的计算机上。
在第二章中,我们将深入探讨MATLAB的语法与数据类型。
我们将从MATLAB的基本语法开始,包括语句的结束、注释的添加和变量的使用。
MATLAB科学计算软件入门教程第一章:MATLAB基础知识MATLAB是一种专业的科学计算软件,具有强大的数学计算和数据分析能力。
在使用MATLAB进行科学计算前,我们需要先了解一些基本知识。
1.1 MATLAB界面打开MATLAB后,我们会看到一个主界面。
主界面中有命令窗口、当前文件夹窗口、工作空间窗口和编辑器窗口等基本功能区域。
1.2 MATLAB变量和数据类型MATLAB中的变量可以用来存储各种类型的数据,如数字、字符串、矩阵等。
常见的数据类型包括:double(双精度浮点数)、char(字符)、logical(逻辑值)等。
1.3 MATLAB基本操作在MATLAB中,可以使用基本的数学运算符进行加、减、乘、除等计算操作。
另外,还可以通过内置函数实现更复杂的数学运算。
例如,sin函数可以计算正弦值,sum函数可以计算矩阵元素的和等。
第二章:MATLAB矩阵和向量操作2.1 创建矩阵和向量在MATLAB中,可以使用方括号来创建矩阵和向量。
例如,使用[1,2;3,4]可以创建一个2x2的矩阵。
2.2 矩阵和向量的加减乘除运算MATLAB提供了丰富的矩阵和向量运算函数,可以进行加法、减法、乘法、除法等运算操作。
例如,可以使用矩阵相乘函数*来计算矩阵的乘法。
2.3 矩阵和向量的索引和切片在MATLAB中,可以使用索引和切片操作来获取矩阵和向量中的特定元素或子集。
例如,使用矩阵名加上行和列的索引可以获取矩阵中指定位置的元素。
第三章:MATLAB数据可视化3.1 绘制二维图形MATLAB提供了丰富的绘图函数,可以绘制二维曲线、散点图、柱状图、等高线图等。
例如,可以使用plot函数来绘制二维曲线。
3.2 绘制三维图形MATLAB还可以绘制三维图形,如三维曲线、三维散点图、三维曲面等。
例如,可以使用plot3函数来绘制三维曲线。
3.3 图像处理与显示MATLAB提供了图像处理和显示的函数,可以加载、编辑和保存图像。
MATLAB的基本使用教程MATLAB是一种强大的数学计算软件,广泛应用于科学、工程和技术领域。
它提供了丰富的功能和工具,能够快速、有效地处理和分析各种数学问题。
本文将介绍MATLAB的基本使用方法,帮助初学者快速入门。
一、MATLAB的安装与启动1、下载和安装MATLAB软件:在MathWorks官方网站上下载适合自己操作系统的MATLAB软件,并根据安装提示进行安装。
安装完成后,会生成一个MATLAB的启动图标。
2、启动MATLAB:双击MATLAB的启动图标,或者在命令行中输入"matlab"命令,即可启动MATLAB。
二、MATLAB的基本操作1、工作环境:MATLAB提供了一个强大的集成开发环境(IDE),可以在其中编写和运行代码。
在MATLAB的界面中,包括主窗口、命令窗口、变量窗口、编辑器等。
2、命令窗口:在命令窗口中可以输入和执行MATLAB命令。
可以直接在命令窗口中输入简单的计算,例如输入"2+3"并按下回车键,即可输出计算结果。
3、脚本文件:MATLAB可以编写和运行脚本文件,将一系列命令组织起来,并按顺序执行。
在编辑器中编写MATLAB代码,并将文件保存为.m扩展名的脚本文件。
然后在命令窗口中输入脚本文件的文件名(不带扩展名),按下回车键即可执行脚本文件中的代码。
4、变量和赋值:在MATLAB中,可以创建和操作各种类型的变量。
例如,可以使用"="符号将一个值赋给一个变量,例如"A=5"。
在后续的计算和分析中,可以使用这个变量,例如输入"B=A+3",结果B 将被赋值为8。
5、矩阵和向量:MATLAB中的基本数据结构是矩阵和向量。
可以使用方括号[]来创建矩阵和向量,并使用逗号或空格来分隔不同的元素。
例如,"[1,2,3]"表示一个包含3个元素的行向量。
6、矩阵运算:MATLAB提供了丰富的矩阵运算符和函数,可以对矩阵进行各种运算。
第1章MATLAB操作基础1.1 MATLAB概述1.1.2 MATLAB的主要功能1.数值计算MATLAB以矩阵作为数据操作的基本单位,还提供了十分丰富的数值计算函数。
2.绘图功能可以绘制二维、三维图形,还可以绘制特殊图形(与统计有关的图,例如:区域图、直方图、饼图、柱状图等)。
3.编程语言MATLAB具有程序结构控制、函数调用、数据结构、输入输出、面向对象等程序语言特征,而且简单易学、编程效率高。
4.MATLAB工具箱MATLAB包含两部分内容:基本部分和各种可选的工具箱。
MATLAB工具箱分为两大类:功能性工具箱和学科性工具箱。
1.1.3MATLAB语言的特点❖语言简洁紧凑,使用方便灵活,易学易用。
例如:A=[1 2 3;4 5 6;7 8 9]一条语句实现了对3x3矩阵的输入。
❖语句功能强大,一条语句相当于其它语言的一个子程序,例如fft。
❖语句简单,内涵丰富。
同一个函数有不同的输入变量和输出变量,分别代表不同的含义。
❖Matlab既具有结构化的控制语句(if、for、while)又支持面向对象的程序设计。
❖方便的绘图功能。
❖包含功能强劲的工具箱。
❖易于扩展。
1.1.4 初识MATLAB例1-1 绘制正弦曲线和余弦曲线。
x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x));例1-2 求方程3x4+7x3+9x2-23=0的全部根。
p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根例1-3 求积分quad('x.*log(1+x)',0,1)例1-4 求解线性方程组。
a=[2,-3,1;8,3,2;45,1,-9];b=[4;2;17];x=inv(a)*b1.2 MATLAB的运行环境与安装1.2.1 MATLAB的运行环境硬件环境:(1) CPU(2) 内存(3) 硬盘(4) CD-ROM驱动器和鼠标软件环境:(1) Windows 98/NT/2000 或Windows XP(2) 其他软件根据需要选用1.2.2 MATLAB的安装运行系统的安装程序setup.exe,可以按照安装提示依次操作。
MATLAB基础使用教程一、什么是MATLAB?MATLAB是一款强大的数学计算软件,广泛应用于科学研究、工程设计和数据分析等领域。
它以其简单易用的编程语言和丰富的功能,成为了许多科研工作者和工程师的首选工具。
在本篇文章中,将介绍MATLAB的基础使用方法,帮助初学者快速入门。
二、MATLAB的安装与入门1. 下载和安装MATLAB软件在MathWorks官方网站上下载适用于您的操作系统版本的MATLAB,然后按照安装向导的提示进行安装。
2. MATLAB的界面介绍在打开MATLAB后,您将看到一个包含命令窗口、编辑器和变量编辑器等组件的界面。
命令窗口是最常用的组件,您可以在其中输入MATLAB的命令并执行。
3. 基本操作在命令窗口中,可以输入简单的算术运算,如加减乘除,以及一些内置函数。
例如,输入"2+3"并按下Enter,MATLAB将返回结果5。
三、MATLAB的变量与数据类型1. 变量的定义与赋值在MATLAB中,可以使用一个变量来存储一个数值或一个数据矩阵。
要定义一个变量并赋值,只需输入变量名和等号,然后再输入数值或矩阵。
例如,输入"A=5",即可定义一个名为A的变量,并将其赋值为5。
2. 数据类型MATLAB支持多种数据类型,包括整数、浮点数、字符串和逻辑类型。
您可以使用"whos"命令查看当前可用的变量及其数据类型。
3. 矩阵与数组操作在MATLAB中,矩阵和数组是最常用的数据结构之一。
您可以使用方括号来创建矩阵或数组,并使用索引来访问其中的元素。
例如,输入"A=[1 2 3; 4 5 6]",即可创建一个2行3列的矩阵。
四、MATLAB的数学运算与函数1. 基本数学运算MATLAB支持各种基本的数学运算,包括加、减、乘、除、幂运算等。
您可以直接在命令窗口中输入相应的表达式,并按下Enter键进行计算。
用MATLAB进行科学计算入门教程使用MATLAB进行科学计算入门教程第一章:MATLAB简介及安装MATLAB(Matrix Laboratory)是一种广泛应用于工程和科学计算领域的高级数学计算软件。
它提供了强大的数据处理、可视化和数值计算功能,被广泛应用于信号处理、控制系统设计、图像处理等领域。
在开始学习MATLAB之前,首先需要进行安装。
用户可以从MathWorks官方网站上下载适用于自己操作系统的MATLAB版本。
安装完成后,用户可以按照向导进行配置和激活。
第二章:MATLAB基础知识2.1 MATLAB工作环境启动MATLAB后,主界面将出现在用户面前。
MATLAB主界面由命令窗口、编辑器窗口、工作区、当前文件夹、历史命令、命令历史和菜单等组成。
用户可以通过命令窗口输入MATLAB命令进行运算和操作,也可以通过编辑器编写脚本文件。
2.2 MATLAB变量和数据类型在MATLAB中,变量可以用于存储各种类型的数据,包括数值、字符串、矩阵等。
MATLAB支持常见的数据类型,如整数、浮点数、字符和逻辑等。
用户可以使用命令进行变量的赋值和操作。
2.3 MATLAB运算符和算术运算MATLAB提供了丰富的运算符用于实现各种数学运算和逻辑运算。
包括算术运算符(+、-、*、/、\)、关系运算符(>、<、==、~=等)、逻辑运算符(&&、||、~)等。
用户可以根据需要使用这些运算符进行计算。
2.4 MATLAB控制流程MATLAB支持一系列的控制流程语句,用于实现条件执行、循环和函数调用。
其中,条件语句如if语句和switch语句可以根据条件执行不同的代码块;循环语句如for循环和while循环可以反复执行一段代码;函数调用可以实现对已有的函数进行调用。
第三章:MATLAB向量和矩阵操作3.1 向量和矩阵的创建与访问MATLAB中的向量和矩阵可以通过手动输入、使用内置函数或读取外部文件来创建。
MATLAB程序设计基础教程MATLAB程序设计是一门广泛应用于科学和工程领域的高级编程语言。
它具有强大的数值计算和数据可视化功能,被广泛用于数据分析、模拟建模、信号处理等领域。
本文将介绍MATLAB程序设计的基础知识和常用技巧,帮助读者快速上手并掌握该编程语言。
一、MATLAB环境搭建在开始MATLAB编程之前,首先需要正确搭建MATLAB运行环境。
你可以从MathWorks官网下载和安装最新版本的MATLAB软件,根据安装向导进行配置。
安装完成后,你就可以打开MATLAB并开始编写代码了。
二、MATLAB基本语法1. 变量和数据类型在MATLAB中,可以使用变量来存储数据。
变量的命名需要满足一定规则,比如变量名只能包含字母、数字和下划线,不能以数字开头等。
MATLAB支持不同的数据类型,包括数字、字符串、逻辑值等。
2. 数组和矩阵MATLAB中的核心数据结构是数组和矩阵。
你可以使用一维或多维数组来存储和处理数据。
MATLAB提供了丰富的数组操作函数和运算符,可以进行元素访问、切片、矩阵运算等。
3. 控制流程MATLAB支持常用的控制流程语句,如条件语句(if-else)、循环语句(for、while)等。
这些语句可以帮助你根据不同的条件执行不同的代码块,或者重复执行一段代码。
三、MATLAB函数和脚本1. 函数MATLAB中可以编写自定义函数,以方便地实现特定功能。
函数是由输入参数和输出参数组成的可重复使用的代码块。
你可以在函数中进行各种操作,如计算、输出、图形绘制等。
2. 脚本除了函数,你还可以编写脚本文件来执行一系列MATLAB命令。
脚本文件通常用于较短的代码片段,不需要提供输入和输出参数。
你可以通过运行脚本文件一次性执行其中的命令。
四、MATLAB图形界面MATLAB提供了强大的图形界面(GUI)工具,用于可视化数据和交互式操作。
你可以通过GUI工具箱创建和定制各种图形,如散点图、曲线图、柱状图等。
1-1、基本运算与函数在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。
例如:>> (5*2+1.3-0.8)*10/25ans =4.2000MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:x = (5*2+1.3-0.8)*10^2/25x = 42此时MATLAB会直接显示x的值。
由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。
MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:y = sin(10)*exp(-0.3*4^2);若要显示变数y的值,直接键入y即可:>>yy =-0.0045在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:小整理:MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数 (Signum function)。
当x<0时,sign(x)=-1;当x=0时,sign(x)=0;当x>0时,sign(x)=1。
> 小整理:MATLAB常用的三角函数sin(x):正弦函数cos(x):馀弦函数tan(x):正切函数asin(x):反正弦函数acos(x):反馀弦函数atan(x):反正切函数atan2(x,y):四象限的反正切函数sinh(x):超越正弦函数cosh(x):超越馀弦函数tanh(x):超越正切函数asinh(x):反超越正弦函数acosh(x):反超越馀弦函数atanh(x):反超越正切函数变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:x = [1 3 5 2];y = 2*x+1y = 3 7 11 5小提示:变数命名的规则1.第一个字母必须是英文字母2.字母间不可留空格3.最多只能有19个字母,MATLAB会忽略多馀字母我们可以随意更改、增加或删除向量的元素:y(3) = 2 % 更改第三个元素y =3 7 2 5y(6) = 10 % 加入第六个元素y = 3 7 2 5 0 10y(4) = [] % 删除第四个元素,y = 3 7 2 0 10在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。
MATLAB亦可取出向量的一个元素或一部份来做运算:x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算ans = 9y(2:4)-1 % 取出y的第二至第四个元素来做运算ans = 6 1 -1在上例中,2:4代表一个由2、3、4组成的向量若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace小整理:MATLAB的查询命令help:用来查询已知命令的用法。
例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。
(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。
例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。
找到所需的命令後,即可用help进一步找出其用法。
(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。
)将列向量转置(Transpose)後,即可得到行向量(Column vector):z = x'z = 4.00005.20006.40007.60008.800010.0000不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:length(z) % z的元素个数ans = 6max(z) % z的最大值ans = 10min(z) % z的最小值ans = 4小整理:适用於向量的常用函数有:min(x): 向量x的元素的最小值max(x): 向量x的元素的最大值mean(x): 向量x的元素的平均值median(x): 向量x的元素的中位数std(x): 向量x的元素的标准差diff(x): 向量x的相邻元素的差sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和prod(x): 向量x的元素总乘积cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积dot(x, y): 向量x和y的内积cross(x, y): 向量x和y的外积(大部份的向量函数也可适用於矩阵,详见下述。
)若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:A = [1 2 3 4; 5 6 7 8; 9 10 11 12];A =1 2 3 45 6 7 89 10 11 12同样地,我们可以对矩阵进行各种处理:A(2,3) = 5 % 改变位於第二列,第三行的元素值A =1 2 3 45 6 5 89 10 11 12B = A(2,1:3) % 取出部份矩阵BB = 5 6 5A = [A B'] % 将B转置後以行向量并入AA =1 2 3 4 55 6 5 8 69 10 11 12 5A(:, 2) = [] % 删除第二行(:代表所有列)A =1 3 4 55 5 8 69 11 12 5A = [A; 4 3 2 1] % 加入第四列A =1 3 4 55 5 8 69 11 12 54 3 2 1A([1 4], :) = [] % 删除第一和第四列(:代表所有行)A =5 5 8 69 11 12 5这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。
举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数B =5 89 125 611 5小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。
以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。
MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:x = sin(pi/3); y = x^2; z = y*10,z =7.5000若一个数学运算是太长,可用三个句点将其延伸到下一行:z = 10*sin(pi/3)* ...sin(pi/3);若要检视现存於工作空间(Workspace)的变数,可键入who:whoYour variables are:testfile x这些是由使用者定义的变数。
若要知道这些变数的详细资料,可键入:whosName Size Bytes ClassA 2x4 64 double arrayB 4x2 64 double arrayans 1x1 8 double arrayx 1x1 8 double arrayy 1x1 8 double arrayz 1x1 8 double arrayGrand total is 20 elements using 160 bytes使用clear可以删除工作空间的变数:clear AA??? Undefined function or variable 'A'.另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不到,但使用者可直接取用,例如:pians = 3.1416下表即为MATLAB常用到的永久常数。
小整理:MATLAB的永久常数 i或j:基本虚数单位eps:系统的浮点(Floating-point)精确度inf:无限大,例如1/0 nan或NaN:非数值(Not a number),例如0/0pi:圆周率 p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargin: 函数的输出引数个数1-2、重复命令最简单的重复命令是for 圈(for-loop),其基本形式为:for 变数 = 矩阵;运算式;end其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。
因此,若无意外情况,运算式执行的次数会等於矩阵的行数。
举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):x = zeros(1,6); % x是一个16的零矩阵for i = 1:6,x(i) = 1/i;end在上例中,矩阵x最初是一个16的零矩阵,在for 圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。