合成氨转化工段 2
- 格式:ppt
- 大小:297.50 KB
- 文档页数:21
合成氨生产作业变换岗位操作规程一、本岗位任务1、变换:压缩三段来半水煤气,在一定温度、压力催化剂的条件下使CO 与水蒸汽反应,将CO 转换为CO 2脱除至规定的指标(≤0.5%)范围内,同时生成合成氨生产所需的原料气H 2,并在中变触媒的作用下将90%以上的有机硫转变为无机硫。
负责向合成、岗位输送合格的除氧水、脱盐水。
二、反应原理:1、变换工段反应原理:CO 在一定条件下,半水煤气中的CO 与水蒸汽反应,转变为CO2、H 2 的工艺过程,其反应的化学方程式如下:CO+H 2O =CO 2+H 2+41KJ/MOL反应特点:这是一个可逆放热反应,从化学平衡来看,降低反应温度,增加水蒸汽的用量,有利于上述反应生成CO 2、H 2的方向移动,从而提高平衡转换率。
另外提高变换压力,可加快变换反应速度,提高催化剂的催化能力。
2、中变触媒还原反应原理:中变触媒装炉时状态为Fe 2O 3,其本身并不具有活性,必须将其进行还原后,才具有活性,具体反应为:3Fe 2O 3+CO =2Fe 3O 4+CO 2 3Fe 2O 3+H 2=2Fe 3O 4+H 2O还原态的触媒极易与氧发生氧化反应,放出大量的氧化热,所以还原过程中要严格控制氧含量,严防因氧超标,烧坏触媒。
氧化反应为:4Fe 3O 4+O 2=6Fe 2O 3低变触媒硫化反应原理:低变触媒使用前为氧化钴,氧化钼它本身不具有催化活性,必须将其硫化后才具有活性,硫化反应为:C O O+H 2S=C O S+H 2O M O O 3+2H 2S+H 2=M O S 2+3H 2O三、工艺流程 1、工艺流程简图⑴变换工序气相流程简图 水煤气 dffhhjj变换气 变换气⑵软水流程除油器压缩三出来气 饱和塔 分离器热交管内中变电加 中变一二 段中变三段热交段中间二段第二增湿器分离器 冷却器软水加热器热水塔电厂来脱盐水 机械除油器除氧器除氧泵热水塔一、二增湿器 恩德中压蒸汽 热交管间下 第二增湿器 低变一段调温水加低变二三段一水加去脱碳循环冷却水焦炭过滤器软水加热器合成废锅 低压蒸汽2、工艺流程叙述⑴变换工序:变换工艺采用中低变换工艺。
合成氨一段转化和二段转化的原理合成氨是通过一段转化和二段转化的过程来合成的。
一段转化又称为前驱物转化,它是将天然气中的甲烷(CH4)和氨气(NH3)通过一系列的反应转化为一氧化碳(CO)和氢气(H2),用以制备合成氨的原料。
一段转化的过程如下:1. 脱碳反应:首先,通过催化剂将甲烷脱碳为一氧化碳和氢气。
甲烷和氧气在高温和催化剂的作用下,发生部分氧化反应,生成一氧化碳和水蒸气。
CH4 + O2 →CO + 2H22. 变换反应:接下来,将一氧化碳和氨气通过铁催化剂的作用下进行反应,生成一种叫做合成气(合成氨的前体)的混合物。
CO + 2NH3 →CO2 + N2 + 3H2在这个反应中,氨气作为还原剂,反应生成一氧化碳和氮气。
一氧化碳作为氢气的来源之一,与氨气反应生成合成气。
二段转化又称为合成步骤,主要是将合成气进一步转化为合成氨。
二段转化的过程如下:1. 合成气净化:由于合成气中可能含有杂质,如水、一氧化碳、二氧化碳等,需要通过净化过程将其去除。
一般通过压缩、冷凝、吸附等方法来实现。
2. 吸附分离:净化后的合成气通过吸附剂,如活性炭、分子筛等进行处理,以去除其中的一氧化碳和二氧化碳等杂质。
3. 合成反应:净化后的合成气进入合成器,在催化剂的作用下进行合成反应。
合成反应一般分为低温合成和高温合成两种方法。
- 低温合成:使用铁催化剂,反应在低温(400-500C)下进行。
催化剂的作用是加速反应速率,使反应更容易发生。
在低温下,催化剂能使氮气和氢气进行反应生成氨气。
同时,一氧化碳和二氧化碳也可以被氢气还原为可再利用的一氧化碳。
N2 + 3H2 →2NH32CO + 2H2 →CH3OH- 高温合成:使用铁镍催化剂,反应在高温(600-700C)下进行。
高温条件下,反应速率更快,但会产生较多的副产物。
催化剂的作用是降低反应的活化能,促进反应的进行。
4. 分离和回收:合成氨经过反应后,需要经过分离和回收的步骤。
30kt/a合成氨变换工段工艺初步设计摘要变换工段是指一氧化碳与水蒸气反应生成二氧化碳和氢气的过程。
一氧化碳变换既是原料气的净化过程,又是原料气制备的继续。
目前,变换工段主要采用中变串低变的工艺流程。
本设计针对中低温串联变换流程进行设计,对流程中各个设备进行物料、能料衡算、以及设备选型,并绘制了带控制点的流程图。
关键词:合成氨,变换,工艺设计,设备选型30kt/a Retention Of Ammonia SynthesisProcess Preliminary DesignAbstactTransform section refers to the reactions that produce carbon dioxide carbon monoxide and hydrogen and water vapor in the process. Carbon monoxide transformation is the gas material purification process, and the preparation of gas material to continue. At present, the transformation mainly by grow string sections of variable process low. This design of low-temperature series transformation process of process design, materials, each device can material calculation, and the equipment selection, and plotted take control in the flow chart and variable furnace equipment assembly drawing.Keywords:ammonia, transformation, process design,equipment choice目录摘要 (Ⅰ)ABSTRACT (Ⅱ)1绪论 ............................................................................................................. 错误!未定义书签。
年产三万吨合成氨厂变换工段工艺设计一、工艺流程概述1.原料准备:将天然气(主要是甲烷)与空气作为主要原料,通过气体净化系统去除其中的杂质、硫化物和水分。
2.原料配送:将净化后的天然气和空气分别输送至气体净化系统进行进一步的处理和分析。
3.变换反应槽:将净化后的天然气和空气通过压缩机压缩至一定压力后,经过暖气交换器加热至高温(约500-600℃),再进入变换反应槽。
4.变换催化剂:在变换反应槽中,使用催化剂(通常是高温高压下的铁-钴催化剂)促进N2和H2的反应。
反应生成的合成氨会随气流从反应槽中流出。
5.除气系统:将反应槽中的气体通过除尘器,冷却器和吸附剂等设备进行处理,去除其中的固体颗粒、水分和其他杂质。
6.合成氨回收:经过除气系统处理后的气体中仍含有未反应的氮气和氢气,通过压缩机再次压缩进入蒸馏塔。
在蒸馏塔中,根据不同的沸点,将氨气和氮气分离开来,再通过冷凝器冷凝为液态氨。
7.废水处理:在工艺过程中产生的废水会经过处理系统去除其中的有机物和杂质,以保证排放的废水符合环保要求。
二、设备布置和操作要点1.变换反应槽的设计要考虑到温度、压力和气体流动速度的控制。
同时,需要定期更换催化剂,以维持优良的反应性能。
2.除气系统中的设备要进行定期维护和清洁,确保其正常工作和去除气体中的杂质、固体颗粒和水分。
3.合成氨回收装置要根据产品质量要求设置合适的操作参数,例如蒸馏塔的温度和压力。
此外,冷凝器的冷却水流需要保持稳定,以确保气体顺利冷凝为液态氨。
4.废水处理系统应配置适当的物理和化学处理单元,如过滤器、沉淀池和生物处理等,以达到废水排放标准。
5.需要建立相应的安全措施,如设立监测系统,确保气体和液体在整个工艺中的安全运输和使用。
三、工艺控制和性能优化1.在变换反应槽中,可以通过调节供气比例、压力和温度等参数来控制合成氨的产率和选择性。
同时,也可以根据反馈控制系统监测和调整催化剂的性能。
2.除气系统中的设备可以通过监测气体的组成和温度、压力等参数,来调整操作参数,以达到满足产品质量要求的除气效果。
合成氨二段炉反应
合成氨是一种重要的化工原料,广泛用于制造化肥、塑料、炸药等。
合成氨的生产通常采用哈柏过程,其中二段炉反应是合成氨的关键步骤之一。
合成氨二段炉反应是指在哈柏过程中的第二个催化反应阶段,也称为二段反应器。
在二段炉中,气体混合物经过一系列的反应,转化为合成氨。
二段炉反应的主要化学反应是氢气与氮气的催化反应,生成氨气。
反应的化学方程式如下:
N2 + 3H2 ↔ 2NH3
这个反应通常在高温(400-500摄氏度)和高压(20-30兆帕)的条件下进行。
为了提高反应速率和氨气的产量,通常使用铁作为催化剂。
铁催化剂有助于降低反应活化能,促进氢气和氮气的反应。
二段炉反应是一个可逆反应,根据勒夏特列原理(Le Chatelier's principle),提高温度和降低压力可以促进反应向生成氨气的方向进行。
因此,二段炉通常采用高温高压的条件,以提高氨气的产量。
在实际的生产过程中,合成氨的二段炉通常是多个反应器的串联,以提高反应的转化率。
炉内的气体混合物通过多个催化床层,每个床层都有一定的催化剂负荷。
这种多段反应的设计可以提高反应的效率和氨气的产量。
总而言之,合成氨的二段炉反应是哈柏过程中的关键步骤之一,通过高温高压条件下的铁催化剂催化氢气和氮气的反应,生成合成氨。
这个反应对于合成氨的生产至关重要,为相关工业领域提供了重要的化工原料。
合成氨是一种重要的工业化学品,广泛用于农业肥料、化肥、塑料、炸药等领域。
为了满足市场需求,设计一个年产2万吨合成氨变换工段的工艺。
合成氨工艺通常包括三个主要步骤:气体净化、合成反应和分离纯化。
以下是一个基本的工艺设计方案。
1.气体净化从天然气中提取氢气(H2)和氮气(N2),一种常用的方法是通过蒸汽重整和高温转热反应。
天然气先经过脱硫除硫化氢(H2S)处理,然后进入蒸汽重整器,与水一起反应生成H2和CO。
再通过转热反应,将CO转化为CO2和H22.合成反应合成反应通常采用哈贝-博斯曼工艺(Haber-Bosch Process),即在高温(400-500摄氏度)和高压(200-300巴)下,将氢气与氮气催化反应生成氨。
反应器通常采用固定床催化剂,催化剂常用的是铁(Fe)或铁钼(Fe-Mo)催化剂。
反应器主要分为顶座和底座两部分,用以升温和降温,以保持恒定的反应温度。
3.分离纯化合成氨的产物中除了氨外还含有一些杂质,如副产物氮氧化物(NOx)和未反应的氢气。
因此,需要对产物进行分离纯化,以获得高纯度的合成氨。
分离纯化一般采用蒸馏、吸附和压缩等方法。
首先,通过蒸馏将氨与轻杂质分离。
然后,使用吸附剂去除重杂质,如CO、CO2和H2O。
最后,利用压缩机将氨气压缩,得到最终产品。
此外,为了实现连续生产,工艺中还需要一些辅助设备,如冷却器、加热器、循环泵和控制阀等。
以上是一个简单的年产2万吨合成氨变换工段的工艺设计方案。
实际设计中还需要考虑各种因素,如安全性、能源消耗、成本等。
同时,工艺设计还应根据具体情况进行优化和改进,以提高产量和效率。
换热器是将热流体的部分热量传递给冷流体,实现化工生产过程中热量交换和传递不可缺少的设备。
本次设计主要以合成氨变换工段第二热交换器为研究对象,在查阅国内外众多文献的基础上,对换热器的用途和结构进行研究,从而对换热器进行完整的设计。
本文主要以湿混合煤气和湿变换气为介质,按实际设计步骤依次进行工艺计算、结构设计和强度校核,并画出CAD结构图。
工艺设计主要是通过介质的物性参数以及它们所处的工作状态进行热负荷和换热面积的计算,在完成任务的基础暂定换热器的一些尺寸。
结构设计主要是进行换热管、筒体、封头、管板、法兰、接管、支座的选型与设计,其思路是在设计条件的规范下,从材料的选择和结构设计入手,辅以合理的强度计算与校核得到设备所用结构。
关键词换热器工艺计算结构设计合成氨毕业设计外文摘要Title The Design of the Second Heat Exchanger in 20,000 Tons ofSynthetic Ammonia Factory Alternates SystemAbstractThe heat exchanger is the process of heat to the cold fluid, chemical production process of heat exchange and transmission of essential equipment. The design is mainly to the second heat exchanger of the ammonia conversion section as the research object, based on access to many domestic and foreign literatures, study the purpose and structure of the heat exchanger, complete the design of heat exchanger. This paper mainly in the wet mixed gas and wet shift gas as the dielectric, according to the actual design steps of process calculation, structure design an strength check, and draw the heat exchanger CAD structure. Process design is mainly through the medium of the physical parameter and working condition to calculate the thermal load and heat-exchange area,in task is the basis of some of the heat exchanger size. Structure design is the main heat exchange tube, barrel, sealing head, tube plate, flange, takeover, type selection and design of the bearings. the idea is under design conditions and based on the choice of materials and structure of the design, with reasonable strength calculation and checking to get equipment used structure.Key Words Heat exchanger process design structure design ammonia1 引言1.1 合成氨工业合成氨主要用于制造氮肥和复合肥的制造工业中,氨作为工业原料和氨化饲料,用量约占世界产量的12%。
合成氨变换工段工艺过程设计
合成氨是一种氮肥的主要原材料,广泛应用于农业生产中。
合成氨的生产工艺比较复杂,需要经过多个过程的变换才能得到最终的产品。
以下是合成氨变换工段工艺过程的设计。
第一步:氨气合成
氨气合成是合成氨工艺的核心环节,是通过一系列反应将纯净的氢气和氮气合成氨气。
氮气主要来自于空分装置,而氢气主要来自于蒸汽重整装置。
氮气和氢气混合进入催化转化器,经过高温高压催化剂的作用,在催化剂的表面上发生一系列反应,生成氨气。
第二步:氨气变换
氨气变换是将氨气和过量的氮气通过低温催化转化器进行反应,生成高纯度的合成气体。
合成气体主要由氨气、氢气和少量的氮气组成。
合成气体进入变换反应器,在催化剂的作用下,发生一系列反应,将多余的氮气转化为氨气,提高合成气体的纯度。
为了提高合成氨的产率和纯度,还需要进行一系列辅助工艺,如排水处理、冷凝除尘等。
排水处理是为了去除合成氨中的水分,保证合成氨的纯度。
在排水处理过程中,合成氨中的水分会通过分离器分离出来,再经过干燥塔吸附去除水分,最后得到干燥的合成氨。
冷凝除尘是为了去除合成氨中的杂质,保证合成氨的纯度。
在冷凝除尘过程中,合成氨通过冷凝器冷却,使其中的杂质凝结成固体颗粒,然后经过除尘器除去颗粒物,最后得到纯净的合成氨。
综上所述,合成氨变换工段工艺过程的设计包括氨气合成和氨气变换两个主要步骤,同时还需要进行排水处理和冷凝除尘等辅助工艺。
这些步骤的设计要考虑反应温度、反应压力、催化剂的选择和管理,以及对产物的分离、干燥和净化等。
通过合理的工艺设计和操作管理,可以提高合成氨的生产效率和产品质量。
合成氨变换工段简介合成氨是一种重要的化学原料,广泛应用于农业、化工、医药等领域。
合成氨变换工段是合成氨生产过程中的一个关键环节。
本文将介绍合成氨变换工段的工艺流程、设备及操作要点。
工艺流程合成氨变换工段是将合成气体中的氮气(N2)和氢气(H2)转化为氨气(NH3)的过程。
其工艺流程一般包括以下几个步骤:压缩经过合成气压缩工段后的合成气体进入合成氨变换工段前,需要进行进一步的压缩处理,以适应变换反应的要求。
压缩一般采用多级压缩方式,以提高压缩效率和能量利用率。
变换反应压缩后的合成气体进入变换反应器,其中装填有合适的催化剂。
变换反应是一个放热的反应,因此需要进行冷却,以控制反应温度在合适范围内。
反应器一般采用多床反应器并联运行,以确保反应的高转化率和低副反应产物含量。
分离变换反应生成的气体中含有未反应的氮气、氢气和产生的氨气,并伴有少量惰性气体。
为了获得纯度高的氨气,需要对气体进行分离。
常用的分离方法有吸收、膜分离和压力摩擦等。
吸收法是最常用的方法,一般采用水溶液吸收来分离氨气。
设备合成氨变换工段所需设备主要包括压缩机、反应器和分离塔等。
压缩机压缩机是将合成气体压缩到变换反应的所需压力的主要设备。
常用的压缩机有离心式压缩机和轴流式压缩机。
压缩机的选型应根据合成气体流量、压力和压缩比等参数来确定。
反应器反应器是合成氨变换工段的核心设备,其设计应考虑反应热平衡、传热效果和催化剂的使用寿命等因素。
常见的反应器类型有管状反应器、固定床反应器和流化床反应器等。
分离塔分离塔用于对变换反应生成的气体进行分离,以获取高纯度的氨气。
常见的分离塔类型有吸收塔和膜分离塔。
分离塔的选型应考虑气体流量、分离效率和运行成本等因素。
操作要点合成氨变换工段的操作要点包括以下几个方面:温度控制变换反应是一个高温反应,需要保持适宜的反应温度。
过高的温度会导致催化剂失活,过低的温度会降低反应速率。
因此,在操作过程中需要严格控制反应器的温度,并根据催化剂的性质和寿命进行调整。