聚合物改性第三章 填充聚合物及纤维增强材料
- 格式:ppt
- 大小:1.47 MB
- 文档页数:92
零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。
聚合物改性的目的:所谓的聚合物改性,突出在一个改字。
改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。
聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。
聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。
资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。
3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。
聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。
这是第一个实现了工业化生产的聚合物共混物。
1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。
二者可称为高分子合金系统研究开发的起点。
1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。
1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。
IPN已成为共混与复合领域一个独立的重要分支。
1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。
天然纤维增强聚合物基复合材料
天然纤维增强聚合物基复合材料,是一种结合了天然纤维和聚合物基质的新型
材料。
在复合材料领域,天然纤维作为增强材料的应用已经得到广泛关注,其在提高材料性能、减轻重量、降低成本等方面发挥着重要作用。
天然纤维作为增强材料具有许多优点。
首先,天然纤维来源广泛,如木质纤维、植物纤维、动物纤维等,且具有较高的强度和模量。
其次,天然纤维具有低密度、易加工、可降解的特性,符合现代工业对可持续发展和环保的要求。
另外,天然纤维在复合材料中的表现良好,能够有效增强材料的抗拉强度、耐冲击性和耐磨性。
在天然纤维增强聚合物基复合材料的制备过程中,选择合适的天然纤维材料和
聚合物基质是关键。
不同种类的天然纤维具有不同的特性,可以根据复合材料的具体应用需求选择合适的增强材料。
同时,通过调控纤维的取向、含量和界面改性等方式,可以进一步改善复合材料的性能。
对于聚合物基质的选择和制备也至关重要,需要考虑到与天然纤维的相容性、成本、加工性等因素。
天然纤维增强聚合物基复合材料在诸多领域有着广阔的应用前景。
在汽车工业中,天然纤维复合材料可以替代部分金属材料,降低车身重量,提高燃油经济性;在建筑领域,天然纤维复合材料具有良好的吸声、隔热性能,可以应用于建筑材料制备;在航空航天领域,天然纤维复合材料因其优越的比强度和比刚度,被广泛应用于飞机结构件制备。
总的来说,天然纤维增强聚合物基复合材料作为一种新型的绿色材料,具有广
阔的应用前景和经济效益。
随着技术的不断进步和研究的深入,相信这种材料将在未来得到更广泛的应用,为推动可持续发展和环保产业做出贡献。
聚合物改性聚合物定义:聚合物即高分子化合物,所谓的高分子化合物,就是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。
聚合物改性通过物理与机械的方法在聚合物中加入无机或有机物质,或将不同种类聚合物共混,或用化学方法实现聚合物的共聚、接枝、交联,或将上述方法联用、并用,以达到使材料的成本下降、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面被赋予独特功能等效果,统称为聚合物改性。
聚合物改性的方法总体上分为: 物理方法化学方法表面细分:共混改性、填充改性、纤维增强复合材料化学改性、表面改性、共混改性:两种或者两种以上聚合物经混合制备宏观均匀材料的过程。
可分为物理、化学共混。
填充改性:向聚合物中加入适量的填充材料(如无机粉体或者纤维),以使制品的某些性能得到改善,或降低原材料成本的改性技术。
纤维增强复合材料又称聚合物基复合材料,就就是以有机聚合物为基体,纤维类增强材料为增强剂的复合材料。
化学改性:在改性过程中聚合物大分子链的主链、支链、侧链以及大分子链之间发生化学反应的一种改性方法。
原理:主要靠大分子主链或支链或侧基的变化实现改性。
改性手段有:嵌段、接枝、交联、互穿网络等特点:改性效果耐久,但难度大,成本高,可操作性小,其一般在树脂合成厂完成,在高分子材料加工工厂应用不多。
表面改性:就是指其改性只发生在聚合物材料制品的表层而未深入到内部的一类改性。
特点:性能变化不均匀种类:表面化学氧化处理,表面电晕处理,表面热处理,表面接枝聚合,等离子体表面改性等适应于只要求外观性能而内部性能不重要或不需要的应用场合,常见的有:表面光泽,硬度,耐磨、防静电等的改性。
接枝反应:以含极性基团的取代基,按自由基反应的规律与聚合物作用,生成接枝链,从而改变高聚物的极性,或引入可反应的官能团。
官能团反应:可以发生在聚合物与低分子化合物之间,也可发生在聚合物与聚合物之间。
可以就是聚合物侧基官能团的反应,也可以就是聚合物端基的反应接枝共聚改性对聚合物进行接枝,在大分子链上引入适当的支链或功能性侧基,所形成的产物称作接枝共聚物。
聚合物改性练习题一、名词解释1.聚合物共混2.乳液共混3.相容性4.聚合物填充剂5.纳米塑料6.高分子合金7.共混物形态的三种基本类型8.共混物的相界面9.“软包硬”规律10.两阶共混11.共混改性12. “均一性”和“分散度”13. 共混工艺因素14. 熔融共混设备15.塑炼16.相界面效应17.共混物形态18. “等粘点”作用19.聚合物等离子体改性11.简单混合12.亚微观结构二、判断正误并简单说明理由1.“海—岛结构”是一种两相体系,且一相为连续相,一相为分散相。
2.聚合物共混物的均相体系形态结构最好,因为均相体系共混物的性能往往超过各单组分单独存在时的性能。
3.塑料的增韧原理之一,是尽量不让塑料在受到应力作用时产生银纹,因为银纹会导致材料被破坏。
4.只能用柔性的橡胶颗粒对塑料基体进行增韧改性,刚性的粒子不能对塑料基体进行增韧。
5.共混时间、共混温度、加料顺序、混合方式等工艺因素都可能对共混性能产生重要的影响。
6.在两相共混组分中体积比多的一定是连续相,少的一定是分散相。
7.材料样品只有在受到剪切力作用时,才会产生剪切形变。
8.分散混合就是用高速搅拌机对聚合物粉末进行混合。
9.高分子薄膜都是不透气的。
10.硅橡胶是指主链以Si-O单元为主,以单价有机基团为侧基的线性聚合物弹性体。
硅橡胶耐寒性极好,耐热性则仅次于氟橡胶。
11.“海-岛结构”由于是两相体系,所以共混物的力学性能比均一体系的要差。
12.纳米粒子不但可以使聚合物基体的力学性能增强,而且可以改善粒子在基体中分散性能。
13.在纤维增强聚合物基复合材料的过程中,纤维的表面活性越高,与基体的结合能力越强,其增强效果越好。
14.分散相总是比基体的强度和硬度高、刚度大。
15.两阶共混分散历程可以降低分散相粒径同时也能使分散相粒径分布较窄。
16.纳米塑料是由纳米塑料粉末作为原料制成的。
17.在两组分熔体粘度接近相等的区域内,容易得到具有“海—海结构”的共混物。
聚合物复合材料纤维增强聚合物复合材料结构与性能概述班级 1120741学号 25姓名王彦辉纤维增强聚合物复合材料结构与性能概述一前言纤维增强复合材料简称(FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。
根据增强材料的不同,常见的纤维增强复合材料分为:玻璃纤维增强复合材料(GFRP),碳纤维增强复合材料(CFRP)以及芳纶纤维增强复合材料(AFRP)。
由于纤维增强复合材料具有如下特点:(1)比强度高,比模量大;(2)材料性能具有可设计性:(3)抗腐蚀性和耐久性能好;(4)热膨胀系数与混凝土的相近。
这些特点使得FRP材料能满足现代结构向大跨、高耸、重载、轻质高强以及在恶劣条件下工作发展的需要,同时也能满足现代建筑施工工业化发展的要求,因此被越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。
纤维增强聚合物基复合材料也存在着一些缺点和问题,纤维的加入虽然提高了复合材料的力学性能,但同时由于其组分的多样性和制造工艺过程中稳定性问题,都会导致材料中出现缺陷 ( 比如空隙、分层、夹杂、纤维分布不均等 )。
由于这些缺陷的存在,降低了纤维增强聚合物基复合材料料的延展性、断裂韧性、疲劳寿命、抗蠕变损伤的能力。
二、纤维增强聚合物基复合材料的特性1.比强度、比模量大碳纤维、硼纤维等有机纤维增强的聚合物基复合材料的比强度比钛合金高3-5倍,比模量比金属高4倍。
这种性能因增强的纤维排列不同会在一定的范围内浮动。
2.耐疲劳性能好金属材料的疲劳破坏常常是没有明显预兆的突发性破坏,二聚合物基复合材料中纤维与集体的界面能阻止材料的受力所致裂纹的扩展。
因此,其疲劳破坏总能从纤维的薄弱环节开始,逐渐扩展到结合面上,破坏前有明显的预兆。
大多数金属材料的疲劳强度极限是其拉伸强度的30-50%,而碳纤维聚酯复合材料的疲劳强度极限可为其拉伸强度的70-80%。