2015—2016上 24中学 八年级数学 第一次月考
- 格式:doc
- 大小:63.50 KB
- 文档页数:3
2015~2016学年度第一学期第一次月考八年级数学一、选择题(每小题3分,共36分)1、下列所给的各组线段,能组成三角形的是:( ) A 、10cm 、20cm 、30cm B 、20cm 、30cm 、40cm C 、10cm 、20cm 、40cm D 、10cm 、40cm 、50cm2、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A 、带①去,B 、带②去C 、带③去D 、①②③都带去 3、如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是:( )A 、2012边形,B 、2013边形,C 、2014边形D 、2015边形4、一个正多边形的一个内角等于144°,则该多边形的边数为:( ) A .8 B .9 C .10 D .115、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )A.150°B.80°C.50°或80°D.70° 6、下列说法正确的是 ( )A 、全等三角形是指形状相同大小相等的三角形;B 、全等三角形是指面积相等的三角形C 、周长相等的三角形是全等三角形D 、所有的等边三角形都是全等三角形7、.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是 ( )班级 姓名 座号A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC8、如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是 ( )A.AB=DEB. DF ∥ACC. ∠E=∠ABCD. AB ∥DE9.如图,已知△ACE ≌△DBF ,下列结论中正确的个数是( ) ①AC=DB ;②AB=DC ;③∠1=∠2;④AE ∥DF ;⑤S △ACE =S △DFB ;⑥BC=AE ;⑦BF ∥EC .A 4B 5C 6D 710.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A . (S 、S 、S )B . (S 、A 、S )C . (A 、S 、A )D . (A 、A 、S ) 11,.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是( )A . 16B . 17C . 11D . 16或1712、△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是 ( )A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19 二、填空题(每小题5分,共30分)13、如图,∠1=_____.140801第13题图第16题图第9题图14、小亮截了四根长分别为5cm ,6cm ,10cm ,13cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有( )个 15、如图8,已知∠1=∠2,要说明△ABC ≌△BAD , 需再添加一个条件,可能的条件有: 16,工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _________ 17,一个多边形的内角和是1980°,则它的边数是 ,它的外角和是 .18,△ABC 中,O 是三条角平分线的交点,∠A=m 度 ,则∠BOC= .三、解答题(共54分)19尺规作图:已知∠AOB ,直线MN (8分) 求作:在MN 上作一点P 使它到∠AOB 的距离相等( 不写作法,保留痕迹 )20、(10分)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.21、(10分)如图所示,点B 、F 、C 、E 在同一条直线上,AMOBNF DCB E AAB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.22 (12分)如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,请你帮助他说明这个道理.23.(本题满分14分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。
2016八年级上学期数学第一次月考试题精
选
2016八年级上学期数学第一次月考试题精选
》》》2016八年级上学期数学第一次月考试卷
》》》2016年八年级上学期第一次月考数学试卷(含答案)
》》》2016八年级数学上册第一次月考试卷(含答案)
》》》2016年秋八年级上学期第一次月考数学试卷(含答案)
》》》八年级数学上册第一次月考试卷(含答案)
》》》2016年八年级月考数学试题(含答案)
》》》2016年八年级数学上册月考试卷(含答案和解释)
》》》2016年八年级数学上册第一次月考试卷
》》》八年级数学上册第一次月考试题(北师大版)
》》》2016年八年级数学上学期第一次月考试题(附答案)
精品小编为大家提供的八年级上学期数学第一次月考
试题,大家仔细阅读了吗?最后祝同学们学习进步。
官方公众平台--精品初中生正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“zk51edu”或者直接输
入“精品初中生”进行关注!!我们每天会为大家推送最新的内容哦~。
2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。
2015-2016学年八年级数学(上)第一次月考试卷一、选择题(每小题3分,共36分)1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A. 60° B. 70° C. 80° D. 90°2.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是()A. 150° B. 135° C. 120° D. 100°3.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A. 59° B. 60° C. 56° D. 22°4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A. 90°B. 120° C. 160° D. 180°5.已知,如图,AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=()A. 150° B. 30° C. 120° D. 60°6.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是()A. 16 B. 17 C. 11 D. 16或177.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC8.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,则∠DBC=()A. 90° B. 80° C. 60° D. 50°9.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)10.下列说法中不正确的是()A.全等三角形一定能重合 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等11.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去 C.带③去 D.①②③都带去12.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是()A. 35° B. 45° C. 55° D. 65°二、真空题10小题(每小题4分,共40分)13.在△ABC中,如果∠B﹣∠A﹣∠C=50°,∠B= .14.一个多边形的内角和是1980°,则它的边数是,它的外角和是.15.如图,如果∠1=∠2=∠3,则AM为△的角平分线,AN为△的角平分线.16.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.17.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是度.18.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为,对应边分别为.19.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.20.△ABC中,∠B=60°,∠C=80°,O是三条角平分线的交点,则∠OAC= ,∠BOC= .21.将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为.22.如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC≌△DEB.三、解答题(13、14题各6分,15至19题各8分,共44分,)23.求出下列图中x的值.24.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .25.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)26.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.27.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.30.如图,在六边形ABCDEF中,AF∥CD,AB∥ED,∠A=140°,∠B=100°,∠E=90°.求∠C、∠D、∠F的度数.参考答案与试题解析一、精心选一选12小题(每小题3分,共36分)1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A. 60° B. 70° C. 80° D. 90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.2.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是()A. 150° B. 135° C. 120° D. 100°考点:对顶角、邻补角.分析:设这个内角为α,则与其相邻的外角为3α,根据邻补角的和等于180°列式进行计算即可得解.解答:解:设这个内角为α,则与其相邻的外角为3α,所以,α+3α=180°,解得α=45°,3α=3×45°=135°.故选B.点评:本题考查了邻补角的和等于180°的性质,列出方程是解题的关键.3.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A. 59° B. 60° C. 56° D. 22°考点:三角形内角和定理.分析:根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解.解答:解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EFA=180°﹣31°﹣90°=59°.∴∠3=∠EFA=59°,故选:A.点评:本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A. 90° B. 120° C. 160° D.180°考点:角的计算.分析:因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.解答:解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选D.点评:本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.5.已知,如图,AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=()A. 150° B. 30° C. 120°D. 60°考点:等腰三角形的判定与性质;平行线的性质.专题:计算题.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选C.点评:本题考查的是平行线、平角的定义以及角平分线的性质,比较简单.6.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是() A. 16 B. 17 C. 11 D. 16或17考点:等腰三角形的性质.专题:计算题.分析:根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为6时,解答出即可;解答:解:根据题意,①当腰长为5时,周长=5+5+6=16;②当腰长为6时,周长=6+6+5=17;故选D.点评:本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.7.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.8.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,则∠DBC=()A. 90° B. 80° C. 60° D. 50°考点:全等三角形的判定与性质.分析:利用“边边边”证明△ABD和△CDB全等,根据全等三角形对应角相等可得∠DBC=∠ADB.解答:解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠DBC=∠ADB=60°.故选C.点评:本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.9.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)考点:全等三角形的判定.分析:根据已知及全等三角形的判定方法进行分析,从而得到答案,而具备SSA的不能作为判定三角形全等的依据.解答:解:A、正确,符合判定方法SAS;B、正确,符合判定方法SSS;C、正确,符合判定方法AAS;D、不正确,不符合全等三角形的判定方法.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.下列说法中不正确的是()A.全等三角形一定能重合 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等考点:全等图形.分析:根据能够完全重合的两个三角形叫做全等三角形进行分析即可.解答:解:根据全等三角形的定义可得A、B、C正确,但是周长相等的两个三角形不一定全等,故选:D.点评:此题主要考查了全等三角形的定义,题目比较简单.11.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去 C.带③去 D.①②③都带去考点:全等三角形的应用.分析:本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.解答:解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.点评:此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.12.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是()A. 35° B. 45° C. 55° D. 65°考点:角平分线的性质.分析:过点M作MN⊥AD于N,根据角平分线上的点到角的两边的距离相等可得MC=MN,然后求出MB=MN,再根据到角的两边距离相等的点在角的平分线上判断出AM是∠BAD的平分线,然后求出∠AMB,再根据直角三角形两锐角互余求解即可.解答:解:如图,过点M作MN⊥AD于N,∵∠C=90°,DM平分∠ADC,∴MC=MN,∴∠CMD=∠NMD,∵M是BC的中点,∴MB=MC,∴MB=MN,又∵∠B=90°,∴AM是∠BAD的平分线,∠AMB=∠AMN,∵∠CMD=35°,∴∠AMB=(180°﹣35°×2)=55°,∴∠MAB=90°﹣∠AMB=90°﹣55°=35°.故选A.点评:本题考查了角平分线上的点到角的两边的距离相等的性质以及到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质,熟记性质并作出辅助线是解题的关键.二、细心填一填10小题(每小题4分,共40分)13.在△ABC中,如果∠B﹣∠A﹣∠C=50°,∠B= 115°.考点:三角形内角和定理.分析:证明∠A+∠C=180°﹣∠B,运用∠B﹣∠A﹣∠C=50°,得到2∠B﹣180°=50°,即可解决问题.解答:解:∵∠A+∠B+∠C=180°,∴∠A+∠C=180°﹣∠B;∵∠B﹣∠A﹣∠C=50°,∴2∠B﹣180°=50°,∴∠B=115°,故答案为115°.点评:该题主要考查了三角形的内角和定理及其应用问题;灵活运用三角形的内角和定理是解题的关键.14.一个多边形的内角和是1980°,则它的边数是13 ,它的外角和是360°.考点:多边形内角与外角.分析:根据多边形内角和定理:(n﹣2)×180°,列方程解答出即可求得边数,然后根据多边形的外角和定理求得外角和.解答:解:根据多边形内角和定理得,(n﹣2)×180°=1980°,解得,n=13.外角和是360°.故答案是:13,360°.点评:本题考查了多边形的内角和定理和外角和定理,熟记公式是正确解答的基础.15.如图,如果∠1=∠2=∠3,则AM为△ABN 的角平分线,AN为△AMC 的角平分线.考点:三角形的角平分线、中线和高.分析:根据三角形角平分线的定义判断即可.解答:解:∵∠1=∠2,∴AM为△ABN的角平分线,∵∠2=∠3,∴AN为△AMC的角平分线.故答案为:ABN;AMC.点评:此题考查了三角形的角平分线,注意:三角形的角平分线是一条线段.16.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是 6 .考点:三角形的面积.专题:计算题.分析:根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.解答:解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是24,∴S△ABE=×24=6.故答案为:6.点评:本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.17.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是18 度.考点:三角形内角和定理.专题:计算题.分析:根据三角形内角和定理求得∠BAC的度数,再根据角平分线的定义可求得∠BAE的度数,由三角形内角和定理可求得∠BAD的度数,从而不难求得∠DAE的度数.解答:解:∵△ABC中,∠B=70°,∠C=34°.∴∠BAC=180°﹣(70°+34°)=76°.∵AE平分∠BAC,∴∠BAE=38°.∵Rt△ABD中,∠B=70°,∴∠BAD=20°.∴∠DAE=∠BAE﹣∠BAD=38°﹣20°=18°点评:此题主要考查学生对三角形内角和定理的理解及运用能力.18.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为∠B 和∠D,∠AOB和∠COD ,对应边分别为OA和OC,OB和OD,AB和CD .考点:全等三角形的性质.分析:由全等且点A和点C对应,可得出答案.解答:解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.点评:本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.19.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.△ABC中,∠B=60°,∠C=80°,O是三条角平分线的交点,则∠OAC= 20°,∠BOC= 110°.考点:三角形内角和定理.专题:计算题.分析:根据角平分线的性质可得∠OAC=∠A,∠BOC=180°﹣(∠B+∠C),从而可得出答案.解答:解:根据图形及角平分线的性质可得:∠OAC=∠A=(180°﹣∠B﹣∠C)=20°,∠BOC=180°﹣(∠B+∠C)=110°.故答案为:20°,110°点评:本题考查三角形的内角和定理及角平分线的性质,难度不大,关键是画出草图,便于观察.21.将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为90°.考点:角的计算;翻折变换(折叠问题).分析:根据折叠的性质得到∠1=∠2,∠3=∠4,再由平角的定义得∠1+∠2+∠3+∠4=180°,即可得到∠BCD的度数.解答:解:∵由折叠的性质得到∠1=∠2,∠3=∠4,由平角的定义得∠1+∠2+∠3+∠4=180°,∴∠BCD=∠2+∠3=90°.故答案为:90°.点评:本题考查了折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了平角的定义.22.如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE ,使△AFC≌△DEB.考点:全等三角形的判定.分析:证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.解答:解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、用心做一做7小题(13、14题各6分,15至19题各8分,共44分,)23.求出下列图中x的值.考点:多边形内角与外角.分析:根据四边形的内角和是360°,即可列方程求解.解答:解:根据题意得:3x+3x+4x+2x=360,解得:x=30.点评:本题考查了多边形的内角和,根据多边形的内角和的关系来寻求等量关系,构建方程求解.24.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD =∠CAD (角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS .考点:全等三角形的判定;等腰三角形的性质.专题:推理填空题.分析:根据角平分线的定义及全等三角形的判定定理,填空即可.解答:解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).点评:本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.25.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)考点:作图—复杂作图;角平分线的性质.分析:利用角平分线的作法作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,这一点就是P点.解答:解:作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,如图所示:点P即为所求.点评:此题主要考查了作角平分线,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.26.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.考点:全等三角形的判定与性质.分析:(1)求出AC=BD,根据SSS推出△AEC≌△BFD,根据全等三角形的性质得出∠A=∠FBD即可;(2)因为∠A=∠FBD,根据平行线的判定推出即可.解答:解:(1)∵AB=CD,∴AB+BC=CD+BC,∴AC=BD,在△AEC和△BFD中∵△AEC≌△BFD,∴∠A=∠FBD,∴∠A=∠FBD,∵∠A=60°,∴∠FBD=60°;(2)证明:∵∠A=∠FBD,∴AE∥BF.点评:本题考查了全等三角形的性质和判定,平行线的判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.27.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.考点:全等三角形的判定与性质.专题:证明题.分析:先根据BD⊥AC,CE⊥AB可得出△ACE与△ABD是直角三角形,再由∠A=∠A,可得出∠C=∠B,由AB=AC可知△ACE≌△ABD,由全等三角形的性质可知,AE=AD,结合AB=AC即可得出结论.解答:证明:∵BD⊥AC,CE⊥AB,∴△ACE与△ABD是直角三角形,∵∠A=∠A,∴∠C=∠B,在△ACE与△ABD中,∵,∴△ACE≌△ABD,∴AD=AE,∵AB=AC,∴BE=CD.点评:本题考查的是全等三角形的判定与性质,根据题意判断出△ACE≌△ABD,再根据全等三角形的对应相等进行解答是解答此题的关键.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形外角与内角的关系及三角形内角和定理解答.解答:解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.点评:三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.考点:角平分线的性质.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.解答:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).点评:此题考查了角平分线的性质与三角形面积的求解方法.此题难度不大,解题的关键是注意数形结合思想的应用.30.如图,在六边形ABCDEF中,AF∥CD,AB∥ED,∠A=140°,∠B=100°,∠E=90°.求∠C、∠D、∠F的度数.考点:平行线的性质.分析:过点B作BG∥AF∥CD,过点C作CH作CH∥AB∥DE,根据平行线的性质可得∠A+∠B+∠C=360°,然后根据已知可求出∠B的度数,同理也可求出∠D和∠F的度数.解答:解:过点BG∥AF,作过点C作CH作CH∥AB,∵AF∥CD,AB∥ED,∴BG∥AF∥CD,CH∥AB∥DE,∴∠A+∠ABG=180°,∠BCD+∠CBG=180°,即∠A+∠ABC+∠BCD=360°,∵∠A=140°,∠ABC=100°,∴∠BCD=120°,同理可得,∠ABC+∠BCD+∠D=360°,则∠D=140°,∠A+∠F+∠E=360°,则∠F=360°﹣140°﹣90°=130°.点评:本题考查了平行线的性质,关键是作出辅助线,注意掌握平行线的性质:两直线平行,同旁内角互补.。
A B C D 第3题ABCD 2015—2016第一学期第一次月考试卷八年级数学1.下列图形中,是正多边形的是( )A.直角三角形B.等腰三角形C.长方形D.正方形 2.九边形的对角线有( )A.25条B.31条C.27条D.30条3. 如图,下面四边形的表示方法:①四边形ABCD ;②四边形ACBD ;③四边形ABDC ;④四边形ADCB .其中正确的有( )A .1种B .2种C .3种 D.4种4. 四边形没有稳定性,当四边形形状改变时,发生变化的是( )A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和 5.下列图中不是凸多边形的是( )6.如图,已知AB ∥CD ,∠EBA=45°,∠E+∠D 的度数为( ) .C8.在△ABC 中,∠A=∠C ,若与△ABC 全等的三角形有一个角等于96°,那么这个角在△ABC 中对应的角是( )A .∠AB .∠BC .∠CD .∠A 或∠C9.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△D .以上答案都不对10. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°二、将正确答案填写在横线上:(每空4分,共40分)11. 如图,AB=AC ,BD=CD ,∠B=20°,则∠C= °.12.如图,若D 为BC 中点,那么用“SSS ”判定△ABD ≌△ACD 需添加的一个条件是 ___________.13.在平面内,由一些线段______________相接组成的_____________叫做多边形。
14.四边形ABCD 中,如果∠A +∠C+∠D=280°,则∠B 的度数是15.六边形的内角和等于_______度,正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.16.若n 边形的每个内角都是150°,则n=____ 。
八年级(上)第一次月考数学试卷一、选择题(每题3分,共30分)1.小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()A. 1个 B. 2个 C. 3个 D. 4个2.若一个正n边形的一个外角为36°,则n等于()A. 4 B. 6 C. 8 D. 103.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α4.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N不可能是()A. 360° B. 540° C. 720° D. 630°5.已知Rt△ABC中,∠C=90°,将∠C沿DE向三角形内折叠,使点C落在△ABC的内部,如图,则∠1+∠2=()A. 90° B. 135° C. 180° D. 270°6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°7.如图,在等边△ABC中,D,E分别AC,AB是上的点,且AD=BE,CE与BD交于点P,则∠BPE的度数为()A. 75° B. 60° C. 55° D. 45°8.如图为八个全等正六边形紧密排列在同一平面上.根据图中标示的各点位置,与△ACD 全等的是()A.△ACF B.△ABC C.△AED D.△BCF9.已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A. 1<a<6 B. 5<a<7 C. 2<a<12 D. 10<a<1410.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A. PQ>5 B. PQ≥5 C. PQ<5 D. PQ≤5二、填空题(每题3分,共30分)11.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE= 度.12.有一个多边形的内角和是它外角和的5倍,则这个多边形是边形.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.如图,计算∠A+∠B+∠C+∠D+∠E+∠F+∠AGF= °.15.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E= °.16.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)17.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,只需增加一个条件是(只需添加一个你认为适合的)18.如所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF∥EB;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有.19.如图,已知坐标平面内有两点A(1,0),B(﹣2,4),现将AB绕着点A顺时针旋转90°至AC位置,则点C的坐标为.20.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为s.三、解答题(共60分)21.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.22.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.23.如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.24.小明把两个大小不相等的等腰直角三角形如图放置(阴影部分),点D在AC上,连接AE、BD.经分析思考后,小明得出如下结论:(1)AE=BD;(2)AE⊥BD.聪明的你,请判断小明的结论是否正确,并说明理由.25.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.26.【问题】:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC= .【探究】:(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n°,则∠BEC= ;(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n°,则∠BEC= ;(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n°,则∠BEC= .参考答案与试题解析一、选择题(每题3分,共30分)1.小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()A. 1个 B. 2个 C. 3个 D. 4个考点:三角形三边关系.分析:根据任意两边之和大于第三边判断能否构成三角形.解答:解:选其中3根组成一个三角形,不同的选法有5cm,6cm,10cm;5cm,10cm,13cm;6cm,10cm,13cm;共3种.故选C.点评:本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.若一个正n边形的一个外角为36°,则n等于()A. 4 B. 6 C. 8 D. 10考点:多边形内角与外角.分析:利用多边形的外角和即可解决问题.解答:解:n=360°÷36°=10.故选D.点评:本题主要考查了正n边形的外角特点.因为外角和是360度,所以当多边形是正多边形时,每个外角都相等.直接利用外角求多边形的边数是常用的方法.3.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α考点:多边形内角与外角;三角形内角和定理.专题:几何图形问题.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.4.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N不可能是()A. 360° B. 540° C. 720° D. 630°考点:多边形内角与外角;矩形的性质.分析:根据多边形内角和定理:(n﹣2)•180°,无论分成两个几边形,其内角和都能被180整除,所以不可能的是,不能被180整除的.解答:解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以M+N不可能是630°.故选D.点评:此题主要考查了多边形内角和定理,题目比较简单.5.已知Rt△ABC中,∠C=90°,将∠C沿DE向三角形内折叠,使点C落在△ABC的内部,如图,则∠1+∠2=()A. 90° B. 135° C. 180° D. 270°考点:三角形内角和定理;翻折变换(折叠问题).分析:根据折叠的性质∠C′ED=∠CED,∠C′DE=∠CDE,根据三角形内角和定理和邻补角的定义即可表示出∠C、∠1、∠2之间的关系,进一步求得答案即可.解答:解:根据题意得∠C′ED=∠CED,∠C′DE=∠CDE,由三角形内角和定理可得,∠CED+∠CDE=180°﹣∠C=90°,∴∠C′EC+∠C′DC=2(180°﹣∠C),∴∠1+∠2=360°﹣(∠C′EC+∠C′DC)=360°﹣2(180°﹣∠C)=2∠C=180°.故选:C.点评:本题主要考查了三角形的内角和定理和邻补角的定义,需要熟练掌握.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在等边△ABC中,D,E分别AC,AB是上的点,且AD=BE,CE与BD交于点P,则∠BPE的度数为()A. 75° B. 60° C. 55° D. 45°考点:全等三角形的判定与性质;等边三角形的性质.分析:根据题干条件:AC=BC,BD=CE,∠A=∠CBE,可以判定△ABD≌△BCE,即可得到∠DBA=∠BCE,又知∠BPE=∠BCE+∠CBP,可得答案.解答:解:∵△ABC是等边三角形,∴AC=BC,∠A=∠CBE=60°,又知BD=CE,在△ABD和△CBE中,,∴△ABD≌△BCE(SAS),∴∠DBA=∠BCE,∵∠BPE=∠BCE+∠CBP,∴∠BPE=∠ABD+∠CBP=∠ABC=60°,故选B.点评:本题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能看出∠APE=∠ABP+∠BAP,还要熟练掌握三角形全等的判定与性质定理.8.如图为八个全等正六边形紧密排列在同一平面上.根据图中标示的各点位置,与△ACD 全等的是()A.△ACF B.△ABC C.△AED D.△BCF考点:全等三角形的判定.分析:根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.解答:解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,在△ACD和△AED中,,∴△ACD≌△AED(SSS),故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A. 1<a<6 B. 5<a<7 C. 2<a<12 D. 10<a<14考点:全等三角形的判定与性质;三角形三边关系.分析:延长AE到D,使AE=DE,通过证明△AEC≌△DEB△,可得BD=AC,根据三角形的三边关系,得出即可.解答:解:延长AE到D,使AE=DE,连接BD.∵AE是中线,∴BE=CE,∠AEC=∠DEB,∴△AEC≌△DEB△(SAS),∴BD=AC=7,又AE=a,∴2<2a<12,∴1<a<6.故选A.点评:本题主要考查了全等三角形的判定与性质和三角形的三边关系,三角形中任意两边之和大于第三边,任意两边之差小于第三边.10.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A. PQ>5 B. PQ≥5 C. PQ<5 D. PQ≤5考点:角平分线的性质.分析:直线外一点与直线上各点连接的所有线段中,垂线段最短,和角平分线的性质计算.解答:解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选B.点评:本题主要考查平分线的性质,还利用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”.二、填空题(每题3分,共30分)11.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE= 15 度.考点:三角形的外角性质;角平分线的定义;平行线的性质.专题:计算题.分析:利用三角形的外角性质先求∠ABD,再根据角平分线的定义,可得∠DBC=∠ABD,运用平行线的性质得∠BDE的度数.解答:解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°.点评:本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.12.有一个多边形的内角和是它外角和的5倍,则这个多边形是12 边形.考点:多边形内角与外角.分析:一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得(n﹣2)•180=5×360,解得:n=12.所以此多边形的边数为12.点评:已知多边形的内角和求边数,可以转化为解方程的问题解决.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是13 边形.考点:多边形的对角线.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.解答:解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.点评:多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.14.如图,计算∠A+∠B+∠C+∠D+∠E+∠F+∠AGF= 540 °.考点:多边形内角与外角;三角形的外角性质.分析:根据四边形的内角和是360°,可求∠C+∠B+∠D+∠2=360°,∠1+∠3+∠E+∠F=360°.又由三角形的一个外角等于与它不相邻的两个内角的和,得∠1=∠A+∠G,而∠2+∠3=180°,从而求出所求的角的和.解答:解:在四边形BCDM中:∠C+∠B+∠D+∠2=360°,在四边形MEFN中:∠1+∠3+∠E+∠F=360°.∵∠1=∠A+∠G,∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+360°﹣180°=540°,故答案为:540.点评:本题考查了多边形的内角与外角,利用了多边形的内角和公式,三角形外角的性质,等式的性质.15.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E= 27 °.考点:全等三角形的判定与性质.专题:计算题.分析:由BE垂直于AC,且AD=CD,利用线段垂直平分线定理得到AB=CB,即三角形ABC为等腰三角形,利用三线合一得到BE为角平分线,求出∠ABE度数,利用SAS得到三角形ABD 与三角形CED全等,利用全等三角形对应角相等即可求出∠E的度数.解答:解:∵BE⊥AC,AD=CD,∴AB=CB,即△ABC为等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°,故答案为:27点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.16.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)考点:全等三角形的判定与性质;作图—基本作图.分析:利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.解答:解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.点评:考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.17.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,只需增加一个条件是AC=AE (只需添加一个你认为适合的)考点:全等三角形的判定.专题:开放型.分析:根据三角形全等的条件可得出AC=AE,∠C=∠E,∠B=∠D都可以.解答:解:∵∠BAE=∠DAC,∴∠BAE+∠CAE=∠DAC+∠CAE,即∠BAC=∠DAE,∵AB=AD,∴添加AC=AE,根据SAS即可得证;或添加∠C=∠E,根据AAS即可得证;或添加∠B=∠D,根据ASA即可得证.故答案为AC=AE或∠C=∠E或∠B=∠D.点评:本题考查了全等三角形的判定,本题是个简单的开放型题目,要熟练掌握.18.如所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF∥EB;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有①③④.考点:全等三角形的判定与性质.专题:综合题.分析:由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC 相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.解答:解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB﹣∠MAN=∠FAC﹣∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN≌△ABM,故选项④正确;若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,则正确的选项有:①③④.故答案为:①③④点评:此题考查了全等三角形的性质与判别,考查了学生根据图形分析问题,解决问题的能力.其中全等三角形的判别方法有:SSS,SAS,ASA,AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.19.如图,已知坐标平面内有两点A(1,0),B(﹣2,4),现将AB绕着点A顺时针旋转90°至AC位置,则点C的坐标为(5,3).考点:坐标与图形变化-旋转.专题:几何变换.分析:作BD⊥x轴于D,CE⊥x轴于E,由A(1,0),B(﹣2,4)得到AD=3,BD=4,根据旋转的性质得∠BAC=90°,AB=AC,再利用等角的余角相等得∠B=∠CAE,则可证明△ABD≌△CAE,所以AE=BD=4,CE=AD=3,OE=OA+AE=5,然后根据第一象限点的坐标特征写出C点坐标.解答:解:作BD⊥x轴于D,CE⊥x轴于E,如图,∵A(1,0),B(﹣2,4),∴AD=3,BD=4,∵AB绕着点A顺时针旋转90°至AC位置,∴∠BAC=90°,AB=AC,∴∠BAD+∠CAE=90°,而∠BAD+∠B=90°,∴∠B=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AE=BD=4,CE=AD=3,∴OE=OA+AE=5,∴C点坐标为(5,3).故答案为:(5,3).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为160 s.考点:多边形内角与外角.专题:图表型.分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.解答:解:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.故答案是:160.点评:本题考查了正多边形的外角和定理,理解经过的路线是正多边形是关键.三、解答题(共60分)21.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.考点:三角形内角和定理.分析:先根据垂直的定义得出∠ADB=90°,再根据直角三角形的性质求出∠DBE的度数,由角平分线的性质求出∠ABC的度数,根据三角形内角和定理求出∠BAC的度数即可.解答:解:∵AD是BC的高,∴∠ADB=90°,∴∠DBE+∠BED=90°.∵∠BED=70°,∴∠DBE=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.∵∠BAC+∠ABC+∠C=180°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣60°=80°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.22.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.考点:作图—复杂作图.分析:(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.解答:解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.点评:此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.23.如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.考点:三角形内角和定理;方向角;平行线.专题:计算题.分析:根据方位角的概念,图中给出的信息,再根据已知结合三角形的内角和求解.解答:解:∵∠DBA=40°,∠DBC=85°,DB∥CE,∴∠ECB=180°﹣85°=95°,∠ABC=85°﹣40°=45°,∵∠ECA=45°,∴∠BCA=95°﹣45°=50°,∴∠BAC=180°﹣50°﹣45°=85°.点评:解答此类题需要正确理解方位角,再结合三角形的内角和以及平行线的性质求解.24.小明把两个大小不相等的等腰直角三角形如图放置(阴影部分),点D在AC上,连接AE、BD.经分析思考后,小明得出如下结论:(1)AE=BD;(2)AE⊥BD.聪明的你,请判断小明的结论是否正确,并说明理由.考点:全等三角形的判定与性质.专题:计算题.分析:小明的结论是正确的,理由为:(1)由三角形EDC与三角形ABC都为等腰直角三角形,利用等腰直角三角形的性质得到两边及夹角相等,利用SAS得到三角形ACE与三角形BCD全等,利用全等三角形的性质即可得证;(2)延长BD交AE于点F,由三角形ACE与三角形BCD全等,利用全等三角形的对应角相等得到∠CAE=∠CBD,利用等式的性质及直角三角形两锐角互余,即可得证.解答:解:小明的结论是正确的,理由为:(1)在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD;(2)延长BD交AE于点F,∵△ACE≌△BCD,∴∠CAE=∠CBD,∴∠ABF+∠BAF=∠ABF+∠CAE+∠BAC=∠ABD+∠CBD+∠BAC=∠ABC+∠BAC=90°,∴∠BFA=90°,则AE⊥BD.点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.25.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.解答:解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBA,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.26.【问题】:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=80°,则∠BEC= 130°;若∠A=n°,则∠BEC= 90°+n°.【探究】:(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n°,则∠BEC= 60°+n°;(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n°,则∠BEC= n°;(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n°,则∠BEC= 90°﹣n°.考点:三角形内角和定理;三角形的外角性质.分析:(1)根据角平分线的意义和三角形的内角和解答即可;(2)根据三角形的内角和定理得,∠ABC+∠ACB=180°﹣n°,再由线段BD、BE把∠ABC三等分,线段CD、CE把∠ACB三等分,得到∠EBC=∠ABC,∠ECB=∠ACB,于是∠EBC+∠ECB=(∠ABC+∠ACB)再根据三角形的内角和定理得到∠BPE的大小;(3)根据三角形的一个外角等于与它不相邻的两个内角的和,结合三角形的内角和,然后整理即可得到∠BEC与∠A的关系;(4)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:问题:如图1,:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A;若∠A=80°,则∠BEC=130°;若∠A=n°,则∠BEC=.探究:(1)如图2,∵线段BP、BE把∠ABC三等分,∴∠EBC=∠ABC,并且BE平分∠PBC;又∵线段CD、CE把∠ACB三等分,∴∠ECB=∠ACB,并且EC平分∠PCB;∴∠EBC+∠ECB=(∠ABC+∠ACB)=(180°﹣∠A)∴∠BEC=180°﹣(180°﹣∠A)=60°+∠A,若∠A=n°,则∠BEC=;(2)如图3,∵BE和CE分别是∠ABC和∠ACM的角平分线,∴∠EBC=∠ABC,∠ACE=∠ACM,又∵∠ACM是△ABC的一外角,∴∠ACM=∠A+∠ABC,∴∠ACE=(∠A+∠ABC)=∠A+∠EBC,∵∠ACM是△BEC的一外角,∴∠BEC=∠ACE﹣∠EBC=∠A+∠EBC﹣∠EBC=∠A;若∠A=n°,则∠BEC=;(3)如图4,∠EBC=(∠A+∠ACB),∠ECB=(∠A+∠ABC),∠BEC=180°﹣∠EBC﹣∠ECB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),∠BEC=90°﹣∠A.若∠A=n°,则∠BEC=.故答案为:130°,90°+n°;60°+n°;n°;90°﹣n°.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.。
第7题图 C B A 21 A B C FEDD BA1崇信三中八年级数学第一次月考试卷班级_______姓名_________学号 成绩________一、选择题(每个小题3分,共24分)1.在△ABC 中,∠A ,∠B 都是锐角,则∠C 是 ( )A .锐角 B.直角 C.钝角 D.以上都有可能 2.下列各组线段,不能组成三角形的是 ( )A . 1,2,3B .2,3,4C .3,4,5D .5,12,13. 3.若一个多边形的外角和与它的内角和相等,则这个多边形是( ) A .三角形 B .四边形 C .五边形 D .六边形 4.已知;在△ABC 中,∠A=600,∠C=800,则∠B=( )A.600B.300C.200D.400 5.下面四个图形中,能判断12∠>∠的是( )6.已知,如图,AB ∥CD ,∠A =70°,则∠ACD =( ) A .55° B .70° C .40° D .110°7.如图,已知△ABC 为直角三角形,∠B =90°,若沿图中虚线剪去∠B ,则∠1+∠2=( )A .90°B .135°C .270°D .315°8.如图,点O 是△ABC 内一点,∠A =80°,∠1=15°,∠2=40°, 则∠BOC 等于( )A .95°B .120°C .135°D .无法确定二.填空题(每空3分,共18分)9.三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为_______; 10.如图,AB CD ∥,40A ∠=,45D ∠=,则1∠=_________.(第10题) (第11题) 11.如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A = 度.第8题图2 _ _ A_ O 112.如图 ,∠1+∠2+∠3+∠ 4 = ;13.如图 ,CD 平分∠ACB ,AE ∥DC 交BC 的延长线于E ,若∠ACE = 80°, 则∠CAE = ;14.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,再向左转30°……照这样走下去,他第一次回到出发点A 点时,一共走了 米.三.解答题:(58分)15.按要求画图,并描述所作线段(6分)(1)过点A 画三角形的高线(1分) (2)过点B 画画三角形的中线(1分) (3)过点C 画画三角形的角平分线(1分)(4)做∠D=∠C(尺规作图,不写做法保留作图痕迹)(3分)16如图,在△ABC 中,AC=6,BC=8,AD ⊥BC 于D ,AD=5, BE ⊥AC 于E , 求BE 的长.(6分)17. (6分)一个多边形的内角和等于它的外角和的3 倍,它是几边形?AB C DE1 2第12题第13题3430° 第14题ADE CB18(8分)如图所示,已知△ABC ≌△FED ,且BC =ED , FD=5cm, AD=2cm (1)那么AB 与EF 平行吗?为什么? (2)CD 的长度。
八年级(上)第一次月考数学试卷一.选择题(每个小题3分,共30分)1.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形2.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.3.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90° B.135° C.270° D.315°4.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于()A.140° B.120° C.130° D.无法确定5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3 B. 4 C. 5 D.3或4或57.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或158.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两个角和其中一角的对边对应相等的两个三角形全等9.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线10.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9二.填空题(每空3分,共24分)11.在△ABC中,若∠A=∠C=∠B,则∠A=,∠B=,这个三角形是.12.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.15.如图,B处在A处的南偏西56°的方向,C处在A处的南偏东16°方向,C处在B处的北偏东82°方向.∠C的度数为.16.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE ≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).17.内角和为外角和的3倍的多边形是边形.18.用火柴棒按如图15的方式搭三角形,照这样的规律搭下去,搭第n个图形需要根火柴棒.三.解答题:19.如图,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠D.20.如图,AB=AD,DC=BC,∠A+∠C=180°.试猜想BC与AB的位置关系,并证明你的结论.21.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?22.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.23.如图,已知AE=AC,AD=AB,∠EAC=∠DAB.求证:△EAD≌△CAB.参考答案与试题解析一.选择题(每个小题3分,共30分)1.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形考点:多边形内角与外角.专题:应用题.分析:根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.解答:解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.所以这个多边形是四边形.故选D.点评:本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.2.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.考点:三角形的外角性质.分析:根据图象,利用排除法求解.解答:解:A、∠1与∠2是对顶角,相等,故本选项错误;B、根据图象,∠1<∠2,故本选项错误;C、∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D、∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.点评:本题主要考查学生识图能力和三角形的外角性质.3.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90° B.135° C.270° D.315°考点:多边形内角与外角;三角形内角和定理.分析:先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.解答:解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.点评:本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.4.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于()A.140° B.120° C.130° D.无法确定考点:三角形内角和定理.分析:根据三角形内角和定理求出∠ABC+∠ACB=100°,根据角平分线求出∠OBC=∠ABC,∠OCB=∠ACB求出∠OBC+∠OCB=50°,根据三角形的内角和定理求出即可.解答:解:∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵BO、CO分别是∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=130°,故选C.点评:本题考查了三角形的内角和定理和角平分线定义的应用,注意:三角形的内角和等于180°.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块考点:全等三角形的应用.分析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3 B. 4 C. 5 D.3或4或5考点:全等三角形的性质;三角形三边关系.分析:因为两个全等的三角形对应边相等,所以求EF的长就是求BC的长.解答:解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.所以EF的长也是4.故选B.点评:本题考查全等三角形的性质,全等三角形的对应边相等,以及三角形的三边关系.7.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或15考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.解答:解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;故选C.点评:本题考查了等腰三角形的性质以及三角形的三边关系定理,是基础知识要熟练掌握.注意分类讨论思想的应用.8.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两个角和其中一角的对边对应相等的两个三角形全等考点:全等三角形的判定.分析:利用三角形全等的判定方法逐项判断即可.解答:解:A、周长相等的两个三角形,三组边不一定对应相等,则这两个三角形不一定全等,故A不正确;B、由条件可知这两个三角形满足的是SSA,可知不能判定其全等,故B不正确;C、只要等底等高的两个三角形面积都是相等的,但是不一定全等,故C不正确;D、由条件可知这两个三角形满足AAS,可判定其全等,故D正确;故选D.点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法SSS、SAS、ASA、AAS和HL是解题关键,注意AAA和SSA不能判定两个三角形全等.9.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线考点:三角形的面积.分析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.解答:解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.点评:注意:三角形的中线能将三角形的面积分成相等的两部分.10.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9考点:多边形内角与外角.分析:首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.解答:解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.点评:此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.二.填空题(每空3分,共24分)11.在△ABC中,若∠A=∠C=∠B,则∠A=45°,∠B=90°,这个三角形是直角三角形.考点:三角形内角和定理.分析:根据已知和三角形内角和定理求出∠B+∠B+∠B=180°,求出∠B=90°,即可得出答案.解答:解:∵在△ABC中,若∠A=∠C=∠B,∠A+∠B+∠C=180°,∴∠B+∠B+∠B=180°,∴∠B=90°,∴∠A=45°,故答案为:45°,90°,直角三角形.点评:本题考查了三角形的内角和定理的应用,注意:三角形的内角和等于180°.12.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是三角形具有稳定性.考点:三角形的稳定性.分析:用木条固定矩形门框,即组成三角形,故可用三角形的稳定性解释.解答:解:加上木条后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.故答案为:三角形具有稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.考点:多边形内角与外角;多边形的对角线.分析:首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.解答:解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.点评:此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).15.如图,B处在A处的南偏西56°的方向,C处在A处的南偏东16°方向,C处在B处的北偏东82°方向.∠C的度数为82°.考点:方向角.分析:根据已知条件得出∠BAD=56°,∠CAD=16°,∠CBE=82°,再求出∠BAC,∠ABC 的度数,最后根据三角形的内角和定理即可求出∠C的度数.解答:解:∵B处在A处的南偏西56°的方向,C处在A处的南偏东16°方向,C处在B处的北偏东82°方向,∴∠BAD=56°,∠CAD=16°,∠CBE=82°,∴∠BAC=56°+16°=72°,∵AD∥BE,∴∠ABE=∠BAD=56°,∴∠ABC=82°﹣56°=26°,∴∠C=180°﹣26°﹣72°=82°;故答案为:82°.点评:此题考查了方向角,用到的知识点是方向角、平行线的性质、三角形的内角和定理,关键是根据方向角求出有关角的度数.16.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE ≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).考点:全等三角形的判定.专题:开放型.分析:要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.解答:解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.17.内角和为外角和的3倍的多边形是8边形.考点:多边形内角与外角.分析:设多边形的边数是n,然后根据多边形的内角和为(n﹣2)•180°和多边形的外角和定理列出方程求解即可.解答:解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8.故答案为:8.点评:本题考查了多边形的内角和公式和外角和定理,解题的关键是要熟记任何多边形的外角和都是360°.18.用火柴棒按如图15的方式搭三角形,照这样的规律搭下去,搭第n个图形需要2n+1根火柴棒.考点:规律型:图形的变化类.分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个图形,则多用2根火柴.解答:解:结合图形,发现:搭第n个图形,需要3+2(n﹣1)=2n+1(根).故答案为:2n+1.点评:此题主要考查了数字变化规律,根据已知得出火柴棒的变化是解题关键.三.解答题:19.如图,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠D.考点:平行线的性质;三角形的外角性质.分析:利用平行线的性质得出∠A=∠D,∠B=∠C,再利用三角形外角的性质得出∠C+∠D=95°,即可得出答案.解答:解:∵AB∥CD,∴∠A=∠D,∠B=∠C,∵∠AOC=95°,∠B=50°,∴∠C+∠D=95°,即50°+∠D=95°,∴∠D=45°.点评:此题主要考查了平行线的性质与外角的性质,得出∠C+∠D=95°是解题关键.20.如图,AB=AD,DC=BC,∠A+∠C=180°.试猜想BC与AB的位置关系,并证明你的结论.考点:全等三角形的判定与性质.分析:连接AC证明△ABC≌△ADC,就可以得出∠B=∠D,根据四边形的内角和可以求出∠D+∠B=180°,从而得出∠B=90°,就得出BC⊥AB.解答:解:BC⊥AB理由:连接AC,在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠B=∠D.∵∠DAB+∠B+∠BCD+∠D=360°,且∠DAB+∠BCD=180°∴∠B+∠D=180°,∴∠B=90°.∴BC⊥AB.点评:本题是一道结论猜想试题,考查了四边形内角和定理的运用,全等三角形的判定与性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.21.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?考点:全等三角形的判定.专题:作图题.分析:证角相等,常常通过把角放到两个三角形中,寻找这两个三角形全等的条件,利用全等三角形的性质,对应角相等.解答:解:由题意可知OM=ON,OC=OC,CM=CN,∴,∴△OMC≌△ONC.(SSS)∴∠COM=∠CON,即OC平分∠AOB.点评:本题考查了三角形全等的判定方法;解答本题的关键是把要证明相等的两个角放到两个三角形中,怎么这两个三角形全等,借助两个三角形全等的性质.22.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.考点:三角形内角和定理.专题:计算题.分析:根据三角形内角和定理得到∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,可求得∠BAC=180°﹣30°﹣50°=100°,根据△ABC的角平分线的定义得到∠EAC=∠BAC=50°,而AD为高线,则∠ADC=90°,而∠C=50°,于是∠DAC=180°﹣90°﹣50°=40°,然后利用∠DAE=∠EAC﹣∠DAC计算即可.解答:解:∵∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AE是△ABC的角平分线,∴∠EAC=∠BAC=50°又∵AD为高线,∴∠ADC=90°,而∠C=50°,∴∠DAC=180°﹣90°﹣50°=40°,∴∠DAE=∠EAC﹣∠DAC=50°﹣40°=10°.点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了角平分线的定义.23.如图,已知AE=AC,AD=AB,∠EAC=∠DAB.求证:△EAD≌△CAB.考点:全等三角形的判定.专题:证明题.分析:三角形全等条件中必须是三个元素,我们只要能证明∠EAD=∠CAB这一条件可用SAS判定两个三角形全等.解答:证明:∵∠EAC=∠DAB,∴∠EAC+∠CAD=∠DAB+∠CAD,∴∠EAD=∠CAB,又∵AE=AC,AD=AB,∴△EAD≌△CAB.点评:本题考查了全等三角形的判定;由∠EAC=∠DAB得出∠EAD=∠CAB是正确解决问题的关键,这种方法在三角形全等的证明中经常用到.。
F E M N C B A 2015~2016学年度第一学期八年级数学阶段测试卷真情提示:亲爱的同学,细心、耐心、信心是答题成功必备的心理素质! 一、选择题(3分×8=24分) 1.以下五家银行行标中,轴对称图形的有………… ( ) A .1个 B .2个 C .3个 D .4个 2.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的……( ) A B C D 3. 关于等边三角形的说法:(1)等边三角形有三条对称轴;(2)有一个角等于60°的等腰三角形是等边三角形;(3)有两个角等于60°的三角形是等边三角形;(4)等边三角形两边中线上的交点到三边的距离相等.其中正确的说法有………… ( ) A.1个 B.2个 C.3个 D.4个 4.如图,∠BAC=1000,MN 、EF 分别垂直平分AB 、AC ,则∠MAE 的大小为 ( )A. 800 B. 200 C. 500 D. 100 5. 在梯形ABCD 中,AD∥BC.现给出条件:①∠A=∠B;②∠A+∠C=180°;③∠A=∠D.其中能用来说明这个梯形是等腰梯形的是:…………… … ( ) A .①或②或③ B .①或② C .①或③ D .②或③ 6..已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O,P 2三点构成的三角形是 ( ) A.直角三角形 B.钝角三角形 C,等腰三角形 D.等边三角形 7. 以下列数组为三角形的边长,其中能构成直角三角形的是…………………( )A .1,1,2B .23,24 ,25 C .0.2,0.3,0.5 D.1.5,2,2.58. 如图的方格纸中,每一个小方格都是边长为1的正方形,找出格点C ,使△ABC 的等腰三角形,这样的格点C 的个数有……………… ………… ( )A. 8个B. 9个C. 10个D. 11个二、填空题(每空2分,共22分) 学校 班级 姓名 考号 -------------------------------------------密-------------------------------------封--------------------------------线----------------------------------------------- (第4题) (第8题)F B C E D A 9.(1)若等腰三角形的周长为10,底边长为4,则腰长为 ▲ ;(2)若等腰三角形的两边长为6和4,则等腰三角形的周长为 ▲ .10.(1)若等腰三角形的一个角为100°,则底角为 ▲ °.(2)若△ABC 为等腰三角形,∠A=40°,∠B= ▲ ______ °.11. 如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE= ▲ °.12 如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于__▲_____cm.13.(1)一个三角形三边为3,4,5,此三角形的面积为____▲________.(2)一个直角三角形的两条直角边长为5cm 、12cm,则斜边上的中线为 ▲ ;14.如图,△ABC 中,DE ∥AB,,BF 平分∠ABC ,交DE 于点F ,若BC =6,则DF 的长是▲_。
2015-2016学年度第一学期第一次月考试题
八年级数学
一、选择题
1.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°
2.若三条线段中a =3,b =5,c 为奇数, 那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个
C. 无数多个
D. 无法确定
3.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm ,
从中选三条构成三角形,其中正确的选法有( )
A. 1种
B. 2种
C. 3种
D. 4种 4.能把一个三角形分成两个面积相等的三角形是三角形的( )
A. 中线
B. 高线
C. 角平分线
D. 以上都不对 5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定 6.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )
7.下列图形中具有稳定性的是( )
A. 直角三角形
B. 正方形
C. 长方形
D. 平行四边形 8.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点, 且DE ∥BC ,则∠AED 的度数是( )A.40° B.60° C.80° D.120
9.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( ) A. 130° B. 60° C. 130°或50° D. 60°或120° 10.已知等腰三角形的一个角为75°,则其顶角为 ( ) A .30° B .75° C .105°
D .30°或75°
二、填空题
11、已知△ABC ≌△DEF ,∠A =52°,∠B =57°,则∠F =________。
12.一个三角形的周长为81cm ,三边长的比为2︰3︰4,则最长边比最短边长 . 13.在△ABC 中,若三个内角的度数比是2︰3︰4,则对应的三个外角的度数比为 .
D
D
D
D
C
B A
C
C
C
C B
B
B
B
A
A
A
A
A
第8题图
C
A
14、如图,求∠1+∠2+∠3+∠4+∠5+∠6= .
15.从n (n >3)边形的一个顶点出发可引 条对角线,它们将n 边形分为 个三 角形.
16、三角形的三边分别为3,1+2a ,8,则a 的取值范围是( )
A 、﹣6<a <﹣3
B 、﹣5<a <﹣2
C 、2<a <5
D 、a <﹣5或a >﹣2 17、三角形的最大角与最小角之比是4:1,则最小内角的取值范围是_____________. 18.若一个等腰三角形的两边长分别是4cm 和9cm,则其周长是________.
19.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|=_____________. 20. n 边形每个外角都是24°,则这个多边形的边数是_____________.
三、解答题:
21.如图所示,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分 别为D 、E ,已知AB =6,AD =5,BC =4,求CE 的长.
22.如图,已知P 是△ABC 内一点,连结AP ,PB,PC, 求证: PA+PB+PC >
2
1
(AB+AC+BC)
23、如图△ABC 中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE 的大小。
24、等腰三角形一腰上的中线将其周长分成12和15的两部分,求该等腰三角形的三边长各是多少?
22题4()
6
5
4
3
2
1
25.已知,△ABC 和△CDE 都是等边三角形,且点B ,C ,D 在同一条直线上。
求证:BE=AD 。
(8分)
26、如图:AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD 。
求证:BE ⊥AC 。
27、如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。
(1)求证:MN=AM+BN 。
28、如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥CD 于E ,BF ⊥CD 交CD
的延长线于F 。
求证:AE=EF+BF 。
E
A
D B 24
C
F E B D
A
N
M
C
B
A
F
(图18)
E
D C B
A。