线性代数练习进步册附规范标准答案
- 格式:doc
- 大小:783.66 KB
- 文档页数:60
线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。
当0D ≠时,非齐次线性方程组只有唯一解;B 。
当0D ≠时,非齐次线性方程组有无穷多解;C 。
若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。
2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。
第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b1221122112211221a a a b b a b b (4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a 1122332332a a a a a(3)a c bba cc b a3333a b c abc3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t 112217t(3)()()()12322524212n n n n ---当n 为偶数时,2nk ,排列为143425212221223412k k k k k kk k --+++-1122(1)(1)t k k k (1)(2)21k k 22(1)1313142n kkkkk kn其中11(1)(1)k k 为1434252122k k k k --+的逆序数;k 为21k与它前面数构成的逆序数;(1)(2)21k k为23,25,,2(21)k k kk 与它们前面数构成的逆序数的和;113131k k k k 为2k ,22,24,,2k k与它们前面数构成的逆序数的和. 当n 为奇数时,21nk ,排列为142345212223225412k k k k k kk k ++++++1122t k k(1)21k k 2213323432n kkkkk kn其中1122k k 为1423452122k k k k +++的逆序数;(1)21k k 为23,25,,2(21)k kkk 与它们前面数构成的逆序数的和;3323k k k k 为2,22,,2k k与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5ij,()()23162431655t i j t ==为奇排列.5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424(2)00000000000a c db (1342)(1)abcd abcd7. 求1230312()123122x x f x x xx-=的展开式中4x 和3x 的系数.4x 的系数为6;含3x 的项只有(4231)(1)(3)3t x x x ,所以3x 的系数为(4231)(1)3(3)119t行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a 各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a 123(1)a a a(3)41232013201116011601110111031023500r r D213314116116(1)111027350818r r r 20(4)21120111011161126111211221110100c c D3141101100(1)26126116221223c c .(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ 32212D D D D D 4322342.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c Dabcd c d a b c d dabcda 1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy ++++++=++++. 证明:左式12axayazbybzbxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz=+++++++=+++++++311r br xy zx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bbb a bb b b a ...........................; 各行加到第一行后提取公因式有:111...1...(1).....................nba b bD an b b b a bb b b a211111 (10)0 0(1)00...0 000...n r br r br a b an b ab a b1(1)n a n b ab(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000nn nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==--1112221211n n n n i i a na ia a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax abcx bx bc abc cx ax ;解:002350ba D cb abc ca,212023500ab a D bc c ba bc a22200350b ab D bc b ab c c a ,220250ba ab Dc bc abc c123,,x a x b x c(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D,(1)1且3时0D ,该齐次线性方程组只有零解。
.\2第1章矩阵1.写出下列从变量X, y 到变量x i , y i 的线性变换的系数矩阵:X 1 X ⑴ y 1 0 ;2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况22 4,求 3AB-2A 和 A T B.54. 计算2(1)3 0X 1 xcos ⑵y 1 xsi nysi n3.设A.\a ii⑵(X, y, i)a i2b i a12a22b2b ib2X i5.已知两个线性变换X2X3 2y i2y i4y iy33y2 2y3 ,y2 5y3y iy2y3示式,并求从z-, ,z2, z3到x1,x2, x3的线性变换.3z i2z iZ2Z2z3,写出它们的矩阵表3Z36.设 f (x)=a o x m+ a i x m-1+ …+ a m, A 是 n 阶方阵,定义 f (A)=a o A m+ a i A m'1+ …+ a m E. 当 f (X)=X2-5X+3 , A 2 1时,求 f (A).3 37.举出反例说明下列命题是错误的(1)若 A2= 0,则A= O.(2)若A2= A,贝U A= O 或 A= E.7.设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:1(1) A 22 3 112 3 19.对下列初等变换,写出相应的初等方阵以及B和A之间的关系式.10 0 20 3 3 2 =B.112 1 「22r1C3 C11 12 1110.设P APA,其中11.设A 00,求 A9. ,矩阵B满足AB=A+2B,求 B.12.设A 2 2 ,利用初等行变换求A-1.复习题一3.设A 为4阶可逆矩阵,将 A 的第1列与第4列交换得 换得C,设4.设n 阶矩阵A 满足A 2-3A+2E=O ,则下列结论中一定正确的是((A) A-E 不可逆;(B) A-2E 不可逆;(C) A- 3E 可逆;(D) A-E 和A-2E 都可逆. 5. 设 A=(i,2,3) , B=(i,i/2,i ⑶,令 C=A TB ,求C n.(A) ACB = E ;( B) CBA=E ;(C) )BAC=E ; (D) BCA=E.311 312 313321 3222.设 A 321 322 323 , B3ii3I 2a313323333313113323123330 1 01 0 0P1 0 0 ,P2 0 1 0 ,则必有 (). 0 0 1 1 0 11.设A, B, C 均为n 阶矩阵,且 ABC=E,则必有( ). 323 a i3(A) AP i P 2=B ; (B) AP 2Pi =B ;(C) P i P 2A=B ;(ai3D) P 2P i A=B.B ,再把B 的第2列与第3列交0 P i 0 1,P21 0 0 0 0 0 1 0 0 1 0 0 00,则 C -1=( 0 1(A) A -1P i P 2; (B) P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P i .6.证明:如果 A k=O,则(E-Ay^E+A+AJ…+A k"1, k为正整数.7.设A, B为三阶矩阵,A 0.\ 0,且 A-1BA=6A+BA,求 B.8.设n 阶矩阵A 及s 阶矩阵 B 都可逆,求a i0 a 29.设X(a®a n 0 ), 求 X -1.a na n 1 0第2章行列式习题1.利用三阶行列式解下列三元线性方程组x i 2X2 X3 22x1 x2 3x3 1X i X2 X3 00..\ 2.当x取何值时, 4x01 0 x0.3.求下列排列的逆序数:(1) 315624 ;(2)13 …(2n-1)24 …(2n).4.证明: a3.2a b 3a 2b c5.已知四阶行列式Al中第2列元素依次为12-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A|.6.计算下列行列式:(1)0 11110 11110 11110x x3X2 x2 x3a1(5) D n a2,其中a 132 a* 01 an7 .设n阶矩阵A的伴随矩阵为 A*,证明:|A*|=|A|n-1, (n列.8.设A, B都是三阶矩阵,A*为A的伴随矩阵,且|A=2, |B|=1,计算|-2A*B-1|.110 ,利用公式求A -1.2 9.设 A 2 111复习题二1.设A, B都是n阶可逆矩阵,其伴随矩阵分别为A*、B*,证明:(AB)*=B*A*.42.设A3.已知 A i, A2, B i, B2都是 3 1 矩阵,设 A=( A i, A2, B i,), B=( A i, A2, B2), |A|=2, |B|=3,求|A+2B|.4 •设A,B都是n阶方阵,试证: E AB .第3章向量空间习题1.设 a1=(1,-1,1)T, a=(0,1,2)T, a=(2,1,3)T,计算 3 a-2 a+ a.2.设 a=(2,5,1,3)T, a=(10,1,5,10)T, a=(4,1,-1,1)丁,且 3( a- x)+2( a+x)=5( a+x),求向量x.3.判别下列向量组的线性相关性:(1)a i=(-1,3,1)T, a=(2,-6,-2)T, a=(5,4,1)T⑵ B I=(2,3,0)T, M-1,4,0)T,33=(O,O,2)T .4.设01= a i, 3=01+ a, 03= a i+ a+a3,且向量组 a, a, a线性无关,证明向量组 0, 3, 0线性无关.5.设有两个向量组a i, a, a和0= a i- a+a3, 32=01+ a- a,俊=-a i+a+ a,证明这两个向量组等价.6.求向量组 a=(1,2,-1)T, a=(0,1,3)T, a=(-2,-4,2)T, a=(0,3,9)T 的一个极大无关组,并将其余向量用此极大无关组线性表示.7.设a l, a,…,a n是一组n维向量,已知n维单位坐标向量£1,龟…,31能由它们线性表示, 证明:a1, a,…,a n线性无关.8.设有向量组 a , 02, 03, a4, a, 其中a1, a, a线性无关,a4=a a1+b a, a5=C a+d a3(a, b, c, d均为不为零的实数),求向量组a, a, a, a的秩.9.设矩阵 A= (1,2,…,n), B=(n,n-1,…,1),求秩 R(A T B).4,求A 的秩,并写出A 的一个最高阶非零子式.42,若A 的秩R(A)=2,求参数t 的值.41 10.设矩阵A4 11.已知矩阵A412.设A 0,求A的列向量组的秩,并写出它的一个极大无关组313.设A为n阶矩阵, 阶单位矩阵,证明:如果 A2=A,则E为R(A)+R(A-E)= n.14.已知向量空间 3R的两组基为-1 求由基a1, 02, a到基复习题三1,已知A 的秩为3,求k 的值.12. 设向量组A: a,…,a 与B:仏…,9,若A 组线性无关且 B 组能由A 组线性表示为(9,…,9) = ( a,…,a s )K,其中K 为S r 矩阵,试证:B 组线性无关的充分必要条件是矩阵 K的秩 R(K)= r.1.设矩阵A 113 .设有三个 n 维向量组 A : a, a, a; B: a, a, a, a; C: a, a, a, a .若 A 组禾口 C 组都线性无关,而B组线性相关,证明向量组a, a, a, a a线性无关.4.设向量组 A: a i=(1,1,0)T, a=(1,0,1)T, a=(0,1,1)T 和 B: 3=(-1,1,0)T,色=(1,1,1)T,色=(0,1,-1)丁3证明:A组和B组都是三维向量空间 R的基;求由A组基到B组基的过渡矩阵;已知向量a在B组基下的坐标为(1,2,-1)T,求a在A组基下的坐标.第4章线性方程组习题x1 x2 51.写出方程组2x1 x2 x3 2x4 1 的矩阵表示形式及向量表示形式5x1 3x2 2x3 2x4 32.用克朗姆法则解下列线性方程组bx ay 2ab2cy 3bz be,其中abc 0ex az 0X i X2 X33.问,取何值时,齐次线性方程组X iX i X22 X2X3X34.设有线性方程组多解?⑶无解?X i-X iX2kX2k X3X i X2X32x34k2,讨论当0有非零解?k为何值时,(1)有唯一解?(2)有无穷x1 8X2 10X3 2X4的一个基础解系.5.求齐次线性方程组2x14X25X3 X43x i 8x2 6x3 2x46.设四元非齐次线性方程组的系数矩阵的秩为3, 已知n i, n, n是它的三个解向量,且n i=(2,3,4,5)T, n+n=(1,2,3,4)T,求此方程组的的通解..\7 .求下列非齐次线性方程组的通解:x 1 X 2 52x 1 x 2 x 3 2X 4 15x 1 3x 2 2x 3 2x 4问向量3能否由向量组 A 线性表示?8.设有向量组A: a 20(31及向量.\n*是非齐次线性方程组 AX = b 的一个解,&, …,知是它的导出组的一个基础解系,n*, E i ,②…,印-r 线性无关;n*, n*+ &, n*+ 匕,…,n*+ Hr 线性无关.9.设 证明: (1)复习题四a ,且方程组 AX=0的解空间的维数为 2,贝U a=12. 设齐次线性方程组 量个数为 .3. 设有向量组 n a 1=(a,2,10)T , a=(-2,1,5)T , %3=(-1,1,4)丁及向量 3=(1,b,-1)T,问 a, b 为何值时, (1) 向量B 不能由向量组(2) 向量(3) 向量11.设 A 0 a i x i +a 2X 2+…+a n X n =O,且a i ,a 2,…,a n 不全为零,则它的基础解系所含向 n 线性表示; B 能由向量组n 线性表示,且表示式唯一; B 能由向量组n 线性表示,且表示式不唯一,并求一般表示式.4. 设四元齐次线性方程组x1x20 x2x40x1x2x30 (n)1 2 3X2 X3 X4 0方程组(I)与(n)的基础解系;(2)方程组(I)与(n)的公共解.5.求非齐次线性方程组 Ax= B的通解.设矩阵A=( a i, a, 03, a), 其中a, a, a线性无关, a i=2 a- a, 向量护 a i+ a2+ as+ a,相交于一点的充分必要条件是向量组,线性无关,且向量组,,线性相关..\第5章矩阵的特征值和特征向量习题1.已知向量a i=(1,-1,1)T,试求两个向量a, a,使a i, a, a为R 3的一组正交基.2.设A, B都是n阶正交矩阵,证明 AB也是正交矩阵.3.设A是n阶正交矩阵,且 AF-1,证明:-1是A的一个特征值..\2 1 24.求矩阵5 3 3 的特征值和特征向量..\的特征值为1,2,3,计算行列式|A 3-5A 2+7E|.0 相似,求x, y ;并求一个正交矩阵 P , 45.已知三阶矩阵6.设矩阵A.\使 p -1AP = A.7.将下列对称矩阵相似对角化: (1) 2(2) 08.设入是可逆矩阵A的特征值,证明:(1)—是A*的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A*的特征值.9.设三阶实对称矩阵A的特征值为入1=6,炉启=3,属于特征值入1=6的特征向量为p i=(1,1,1)T,求矩阵 A.复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是2. 已知3阶矩阵A, A-E, E+2A 都不可逆,6. 设矩阵A 满足A 2-3A+2E=O,证明A 的特征值只能是1或2.1 3.设 A a ,已知A 与B 相似,则a, b 满足4.设A 为2阶矩阵, 征值为 . a, a 为线性无关的 2维列向量,A 01=0, Aa=2 a+, a,贝U A 的非零特25.已知矩阵A 3x 可相似对角化,求x . 5则行列式|A + E|=27.已知P 1=(1,1,-1)T 是对应矩阵 A 58•设 A3 22 3,求(^(A)=A 10-5A 9.(1)求参数a, b 及特征值;(2)问A 能否相似对角化?说明理由.3 的特征值 的一个特征向量.2.\1.写出下列二次型的矩阵表示形式:X1X|X:X42X1X22.写出对称矩阵A 1123.已知二次型f (X i, X2, X3)2X i第6章二次型习题4x1x3 2x1x4 6X2X3 4X2X4122所对应的二次型.3x;ax; 4x1X2 6X2X3 的秩为2,求a 的值..\2 2 24.求一个正交变换将f(X i,X2,X3) 2x i 3x2 3x3 4X2X3化成标准形.。
第一章 行列式知识点:全排列及逆序数,n 阶行列式的定义,对换 行列式的性质行列式按行(列)展开 克拉默法则及其相关理论克拉默法则解线性方程组 学习目标:1.理解行列式的定义和性质,掌握行列式的计算方法.2.掌握二、三阶行列式的计算法.3.掌握行列式的性质,会计算简单的n 阶行列式.4.掌握Gramer 法则及其相关理论.5.掌握应用Gramer 法则解线性方程组的方法.1-1 二阶、三阶行列式一、填空题1. 2537=2. 22a ab b=_____ 3. 12531002= _____ 4.000213xx x =- 1.1- 2 . ()ab b a - 3. 6 4. 22x -1-2 逆序数与n 行列式的定义一. 填空题1.排列 5371246的逆序数为 .2. 排列1,3,,(21),2,4,,2n n - 的逆序数为 .3.六阶行列式中,132536415462a a a a a a 的符号为 . 1. 10 2.(1)2-n n 3. 负 1-3 行列式的性质与计算一、利用行列式的性质计算下列各行列式:1021002041.199200397301300600 12322102100204210042141.1992003971200310012330130060013000130c c c c--=--=--13232054541000531005005313r r r r -+--=-==--0002.0000000000x y x y x x y y x 111100000000000000000002.(1)00000000000000000000000(1)n n n n n nx y x y y x y x y xy x y x x x y x y x y x y yxx x y x y +--+=+-=+-3.123423413412412312341123410234123423411034113413.101034121041214124123101231123c c c c c +++÷21323142411234123420113011310101600222004801110004r r r r r r r r r r -----=----+-----二、试将下列式化为三角形行列式求值:2512371459274612----- 4321133141322442251215221522371417340216259272957113461216420121522152215220120012001209011300330033202163603r r r r c c r r r rr r c c r r ----+-----↔------------+---↔==-+-三、用降阶法计算下列行列式:2240413531232051-----21312240200035541354355248323123348321120512211c c c c ----+--=--------1323710527102105322701051c c c c --------=-=---四、计算下列行列式:2100...01210...00121...00012 0..................0000 (2)解: 12112100...01100...01210...00210 (00)121 0121 0220012...00012...0....................................0000...20000...2n n n n n D D D ----=-=-11221321n n n n D D D D D D ---⇒-=-==-=-=111n D D n n ⇒=+-=+1-5 Cramer 法则一、利用Cramer 法则解下列方程组⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==DD x .二、问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解 系数行列式为 λλλλλλλ--+--=----=101112431111132421D =(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3.令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第一章 复习题一、选择题(选项不唯一)1. ()111213111213212223131323313132332122232220;222222a a a a a a D a a a M D a a a D a a a a a a ==≠==;那么A 2MB 2MC 8MD 8M --2. ()11121311111213212223121212223131323331313233423D=1D 423;D 423a a a a a a a a a a a a a a a a a a a a a -==-=-;那么A 8B 12C 24D 24--3. 下列n 阶行列式的值必为零的是()()A 行列式主对角线的元素全为零 ()B 三角形行列式主对角线有一个元素为零 ()C 行列式零元素的个数多于n 个 ()D 行列式非零元素的个数小于n 个4.如果()()()()()3040 50A 0B 1C 1D 3x ky z y z kx y z k k k k +-=⎧⎪+=⎨⎪--=⎩===-=-有非零解,则1. D2. B3. B,D4. C,D 二、填空题1.3421536215________2809230092=行列式2.已知4阶方阵A ,其中第三列元素分别为1,3,-2,2,它们的余子式的值分别为3,-2,1,1,则行列式A =3.若,a b 均为整数,而000,10001ab ba -=-则a=_____;b=_______ 4.ij 123456784A 23486789若阶行列式为;为其代数余子式,13233343210412_______A A A A +++=则1. 122460002. 5 3 0;0 4. 0 三.计算下列行列式1.5042112141201111- 32222142542542542542112111211.1(1)5410014120504123223211112032r r r r r r ++--=-----+ 232154(1)723r r +--=- 2. 22211 (12)2 (23)3......3.....................n n nn n n21212111......111 (12)2 (21)2......22.2333......313......3....................................1......nn n n n n n n n n n n ---=⨯⨯⨯1!()!(1)!2!1!i j nn j i n n ≤<≤=-=-∏3.123111111111111111(0,1,2,,)111111i na a a a i n a +++≠=+解:112233111111111111111110111111111101111111111011011111111110nnn a a a a a a a a ++++++=+++各行减去第一行得行列式:11121223131111111111111000010000000001110000000010000001000ni in nnna a a a c c c a a a a a a a =+--=+++--∑111(1)nni i i i a a ===+∑∏四、证明题1.证明111122110...0001...00... 000...1...n n n n nn n x x x a x a x a xa a a a x a ------=++++-+证:将行列式从最后一列开始逐渐将后一列的x 倍加到前一列上去,得到原行列式等于121112111111111010...00001...00 000...01 (100)10(1)(...) (00)1n n n nn n n n n n n n nn x a x a x a x a x a x a x a x a x a x a x a x a --+--------+++++++--=-++++=++++-第一章 自测题一、填空题1.若,n ij D a a ==则ij D a =-=2.1110110110110111= 3.设1234577733324523332246523A =,则313233A A A ++= ,3435A A += 4.00010020002007000200800000001D ==1.(1)na - 2. 3- 3. 0 ; 0 4. 2008!二、选择题1.三阶行列式3103100204199200395301300600D =的值为( ) A. 0 B. 1 C.2000 D.10002. ()02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩当时,仅有零解()()()()A 0B 1C 2D 2k k k k ≠≠-≠-≠3.设四阶行列式4a b c d cb d aD d b c a a b d c=,,,,a b c d 各不相同,则14243444A A A A +++= A.0 B.abcd C.2abc D.2abd 4.方程组12120x x x x λλ+=⎧⎨+=⎩有非零解,则λ=A. 1B.1±C.0D.-15.设1x ,2x ,3x 是方程30x px p ++=的三个根,则行列式123312231x x x x x x x x x = A. 0 B.p C.2p D.3p1.C2.D3.A4. B5. A三、计算题(每小题10分,共30分)1.5231011171018111D -=-.解: 23234352315534554011100101(1)7117101710182281118212c c D c c ++--==----+- 123274059409010382242224c c c c ++=-=-=()()()()()()11111......1......2................1 (1)1......1nnn n n n n a a a n a a a n D a a a n ---+----=--解:从最后一行开始,逐渐往前做相邻交换,然后从最后一列开始,做相同的变换,得原行列式等于:()()1111111......11.....................()!(1)!2!1!()1......()1......j i n i j n n n nnna n a n ax x n n a n a n a a n a n a -≤<≤+----+==-=---+--+∏第二章 矩阵及其运算知识点:矩阵的概念,矩阵的运算 逆矩阵,矩阵分块法 学习目标:1.理解矩阵的概念,了解单位矩阵、对角矩阵、对称矩阵及其性质.2.熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律,对矩阵的乘法应重点讲解.3.理解逆矩阵的概念,掌握逆矩阵存在的条件及求逆的方法、矩阵分块法.2-1 矩阵的运算一.设矩阵111111A -⎛⎫=⎪-⎝⎭, 123124B ⎛⎫= ⎪--⎝⎭,求2,23A B A B +-。
线性代数练习册答案第五章 相似矩阵及二次型51ξ- 内积52ξ- 方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A1A =± . 2.已知n 阶方阵A 的特征值为12,,,n λλλ⋅⋅⋅, 则E A λ-= ()()()12n λλλλλλ--⋅⋅⋅- .3.已知3阶方阵A 的特征值为1,1,2-,则232B A A =-的特征值为 1,5,8 ;A = 2- ;A 的对角元之和为 2 .4.若0是A 的特征值,则A 不可逆 (可逆,不可逆).5.A 是n 阶方阵,A d =,则AA *的特征值是 ,,,d d d ⋅⋅⋅(共n 个) . 二.用施密特法把下列向量组规范正交化123111(,,)124139ααα⎛⎫⎪= ⎪ ⎪⎝⎭解:()111,1,1Tβα==[]()()()2122121,61,2,31,1,11,0,13TT Tαββαββ=-=-=- [][]313233122212,,αβαββαββββ=--()()()1481211,4,91,1,11,0,1,,32333TTTT⎛⎫=---=- ⎪⎝⎭故)1111,1,1T b ββ==,)2221,0,1T b ββ==-,)3331,2,1Tb ββ==-.三.求下列矩阵的特征值和特征向量1. 1221A ⎛⎫= ⎪⎝⎭2. 100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:1. A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2. B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量. 当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1T x x =,求证:2T H E xx =-是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1. ()()222TTTTT TT T H E xx H E xxE xx H =-⇒=-=-=故H 为对称阵.又()()()224444T T T T T T T T H H E xx E xx E xx x x x x E xx xx E =--=-+=-+=故H 为正交阵.2. 因,A B 为同阶正交阵,故,T T A A E B B E ==. 又()()TT T T T AB AB B A AB B EB B B E ====,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个) 解:等价命题:1P :A 的列(行)向量组线性无关 2P :0A ≠3P :齐次线性方程组0Ax =只有0解 4P :A 的秩为n53ξ- 相似矩阵54ξ- 实对称矩阵的相似矩阵一.填空题:1.若ξ是A 的特征向量,则 1P ξ- 是1P AP -的特征向量.2.若A 与B 相似,则A.3.20000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20000001B y ⎛⎫ ⎪= ⎪ ⎪-⎝⎭相似,则x = 0 ,y = 1 .4.若λ是A 的k 重特征根,则必有k 个相应于λ的线性无关的特征向量, 不对 (对,不对),若A 是实对称的呢? 对 (对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个( C ) (A )互不相同的特征值; (B )互不相同的特征向量; (C )线性无关的特征向量; (D )两两正交的特征向量;2.方阵A 与B 相似,则必有( BD )(A )E A E B λλ-=-; (B )A 与B 有相同的特征值; (C )A 与B 有相同的特征向量; (D )A 与B 有相同的秩; 3.A 为n 阶实对称矩阵,则( ACD )(A )属于不同特征值的特征向量必定正交; (B )0A >;(C )A 必定有n 个两两正交的特征向量; (D )A 的特征值均为实数;三.100021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试求一个可逆矩阵P 使得1P AP -为对角阵,并求m A .解:先求A 的特征值和特征向量.2100021(1)(3)012E A λλλλλλ--=-=--- 故A 的所有特征值为1233,1λλλ===.当13λ=时,解方程()30A E x -=.2001003011011011000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:令1011P ⎛⎫⎪= ⎪ ⎪⎝⎭,则1P 即为对应于13λ=的特征向量. 当231λλ==时,解方程()0A E x -=.000000011011011000r A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:令23100,101P P ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于231λλ==的特征向量.显然,123,,P P P 线性无关.令()123010,,101101P P P P ⎛⎫⎪==- ⎪ ⎪⎝⎭,则11110031313102211313022mm m m mm P AP A P P A P P ---⎛⎫ ⎪⎛⎫ ⎪+-+ ⎪⎪Λ==⇒=Λ⇒=Λ= ⎪⎪⎪ ⎪⎝⎭-++ ⎪⎪⎝⎭四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求出相应于2的全部特征向量.解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的 特征向量两两正交.已知对应于10λ=的特征向量为1P ,设对应于232λλ==的特征向量为23,P P ,则12130,0T T P P P P ==.即23,P P 为齐次线性方程组10T P x =的两个线性无关的解.由10T P x =得1230x x x ++=.令2310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11,1x =--.取23111,001P P --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于232λλ==的特征向量.令2233k P k P ξ=+(23,k k 不全为零),则ξ为对应于232λλ==的全部特征向量. 五.设3阶方阵A 的特征值为1231,0,1λλλ===-,对应的特征向量分别依次为1231222,2,1212P P P -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求A .解:因为123λλλ≠≠,故A 可对角化,且123,,λλλ所对应的特征向量123,,P P P 线性无关.显然()()112312323,,,,A P P P P P P λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,令()123,,P PP P =, 故1112311021001231220A P P P P λλλ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.55ξ- 二次型及其标准形56ξ- 用配方法化二次型为标准形57ξ- 正定二次型一.填空题:1. 22(,)22f x y x xy y x =+++是不是二次型?答: 不是 .2. 123121323(,,)422f x x x x x x x x x =-++的秩是 3 ;秩表示标准形中 平方项 的个数.3.21101000A k k ⎛⎫⎪= ⎪ ⎪⎝⎭,A 为正定矩阵,则k 满足 大于1 .二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件( 12346 ) 1.对任意的列向量0x ≠,0x Ax '> 2.存在可逆方阵C ,使得A C C '= 3.A 的顺序主子式全部大于零 4.A 的主子式全部大于零 5.A 的行列式大于零 6.A 的特征值全部大于零三.212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换x Py =,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)343043x x f x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭22212233343x x x x x =+++ 故二次型123(,,)f x x x 所对应的矩阵100032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.2. 问题可转化为求正交矩阵P ,将A 化为对角形.21032(1)(5)023A E λλλλλλ--=-=--- 故A 的特征值为1231,5λλλ===.当121λλ==时,解方程()0A E x -=.000011022000022000r A E ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:.令1310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得20,1x =-.取12100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12,ξξ即为对应于121λλ==的特征向量.显然,12,ξξ正交.将12,ξξ单位化得121212010,0P P ξξξξ⎛⎫ ⎪ ⎪⎛⎫⎪==== ⎪ ⎪⎝⎭⎪ ⎪⎝⎭当35λ=时,解方程()50A E x -=.4001005022011022000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:.令31x =,得1201x x =⎧⎨=⎩.取3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则3ξ即为对应于35λ=的特征向量.将3ξ单位化得3330P ξξ⎛⎫⎪ ⎪==. 令()123P P P P =,则1115P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.故123(,,)f x x x 的标准形为2221235y y y ++.四.已知A 和B 都为n 阶正定矩阵,求证A B +的特征值全部大于零. 证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x ≠, 有()0,00T T T x Ax x Bx x A B x >>⇒+>.即A B +是正定矩阵. 故A B +的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E +>.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n λλλ⋅⋅⋅全大于零且存在正交矩阵P ,使得112211n n P AP A P P λλλλλλ--⎛⎫⎛⎫⎪⎪⎪ ⎪=⇒= ⎪ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭⎝⎭. 由1122111n n A E P P PP P E P λλλλλλ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪+=+=+ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111n P P λλλ-+⎛⎫⎪+⎪= ⎪⋅⋅⋅ ⎪+⎝⎭,得()()()121121111111n n A E PP λλλλλλ-+++==++⋅⋅⋅+>⋅⋅⋅+六.求22:1L x xy y ++=围成的面积.解:设二次型()22112(,),112x f x y x xy y x y y ⎛⎫ ⎪⎛⎫=++=⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 令112112A ⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,则A 是对称矩阵且正定.设12,λλ为A 的特征值,可知存在正交矩阵P ,使得11200T P AP P AP λλ-⎛⎫== ⎪⎝⎭.由0E A λ-=,得1213,22λλ==. 因为正交变换不改变向量的长度,故可用正交变换12z x P z y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,使得1221122T T T T X AX Z P APZ Z P APZ z z λλ-===+,其中12,z x X Z z y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 综上可知,经过正交变换后,221213(,)22f x y z z =+.故L 的面积即为椭圆: 221213122z z +=的面积.面积S =.第五章 复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为()11,1,1Tp =,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与()1,1,1T正交的特征向量。
线性代数练习册 详解答案(南通大学) 第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b =+++1221122112211221a a a b b a b b ----(4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b =+-- 2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a =-()1122332332a a a a a =- (3)a c bba c cb a3333a b c abc =++- 3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t =+= 112217t =++++=(3)()()()12322524212n n n n ---当n 为偶数时,2n k =,排列为143425212221223412k k k k k k k k --+++-[]1122(1)(1)t k k k =+++++-+-+L [](1)(2)21k k +-+-+++L()()()()()22(1)1313142n k k k k k k n ⎡⎤+++++++++-=-=-⎣⎦ 其中11(1)(1)k k +++-+-L 为1434252122k k k k --+的逆序数;k 为21k +与它前面数构成的逆序数;(1)(2)21k k -+-+++L 为23,25,,2(21)k k k k +++-L 与它们前面数构成的逆序数的和;()()()()()()113131k k k k ++++++++-L 为2k ,22,24,,2k k --L与它们前面数构成的逆序数的和. 当n 为奇数时,21n k =+,排列为142345212223225412k k k k k k k k ++++++()1122t k k =+++++++L [](1)21k k ++-+++L ()()()2213323432n k k k k k k n +++++⨯++=+=-⎡⎤⎣⎦其中1122k k ++++++L 为1423452122k k k k +++的逆序数;(1)21k k +-+++L 为23,25,,2(21)k k k k ++++L 与它们前面数构成的逆序数的和;()()()3323k k k k +++?+L 为2,22,,2k k -L 与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列.解:4,5i j ==,()()23162431655t i j t ==为奇排列. 5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a - 6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424t =-=(2)000000000000a c db (1342)(1)abcd abcd t =-=7. 求1230312()123122xx f x xxx-=的展开式中4x 和3x 的系数.4x 的系数为6-;含3x 的项只有(4231)(1)(3)3t x x x -?创,所以3x 的系数为(4231)(1)3(3)119t -?创= 行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D --==(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a =+++++各列加到第一列后提取公因式21312312331(1)01001r r r r a a a a a a --=+++123(1)a a a =+++ (3)4123201320111601160111111031023500r r D +--==--213314116116(1)1110273500818r r r +++--=-=-20=- (4)21120111011161126111211221110100c c D ---==----3141101100(1)26126116221223c c -+=-=--=--.(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ ()()()22212D D D D D αβαβαβαβαβαβ=+-=++--⎡⎤⎣⎦432234a a b a b a b b =++++2.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c D a b c d c d a b c d dab cda ++==++++=++1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++.证明:左式12axay az by bz bxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz =+++++++=+++++++311r br xyzx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bb b a bb b b a ...........................; 各行加到第一行后提取公因式有:[]111...1...(1).....................n ba b b D a n b bba bb b b a =+-[]211111 (100)...0(1)00... (000)...n r br r br a b a n b a ba b---=+---L[]()1(1)n a n b a b -=+--(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000n n nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==-- 1112221211n n n n i i a na i a a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax ab cx bx bc abc cx ax -=-⎧⎪-+=≠⎨⎪+=⎩;解:002350b a D cb abc ca-=-=-,212023500ab a D bc c b a bc a--=-=22200350b ab D bc b ab c ca -==-,220250b a ab D cbc abc c --=-=- 123,,x a x b x c =-==(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,132125338534846162D --==--- 12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 0433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D l l l l l=-=--,(1)1l ¹且3l ¹时0D ¹,该齐次线性方程组只有零解。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
.\第1章 矩阵 习 题1. 写出下列从变量x , y 到变量x 1, y 1的线性变换的系数矩阵: (1)⎩⎨⎧==011y xx ; (2) ⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A T B .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛.\(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换 32133212311542322y y y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323zz y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E . 当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的. (1) 若A 2= O ,则A = O .(2) 若A 2= A ,则A = O 或A = E . .7. 设方阵A 满足A 2-3A -2E =O ,证明A 及A -2E 都可逆,并用A 分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A--⎛⎫⎪=-⎪⎪-⎝⎭, 利用初等行变换求A-1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A ) ACB =E ; (B ) CBA =E ; (C ) BAC =E ; (D ) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有 ( ) .(A ) AP 1P 2=B ; (B )AP 2P 1=B ; (C ) P 1P 2A =B ; (D ) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B) P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆.5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A T B ,求C n .6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-0000000000000000121ΛΛΛΛΛΛΛΛnn a a a a X (021≠n a a a Λ),求X -1.第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4. 证明: 3232a cb a b a ac b a b a a c b a=++++++.5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------ (2) y x yx x y x yy x y x+++(3) 011110111101111(4) 1222123312111x x x x x x(5)n n a a a D +++=11111111121ΛΛΛΛΛΛΛ,其中021≠n a a a Λ.7.设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n-1,(n ≥2).8. 设A,B都是三阶矩阵,A*为A的伴随矩阵,且|A|=2,|B|=1,计算|-2A*B-1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1.复习题二1.设A , B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*= B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |.4.设A , B 都是n 阶方阵,试证:AB E E A BE -=.第3章向量空间习题1. 设α1=(1,-1,1)T, α2=(0,1,2)T, α3=(2,1,3)T,计算3α1-2α2+α3.2. 设α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,-1,1)T,且3(α1- x)+2(α2+x)=5(α3+x) ,求向量x.3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T, α2=(2,-6,-2)T, α3=(5,4,1)T;(2) β1=(2,3,0)T, β2=(-1,4,0)T,β3=(0,0,2)T .4. 设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5. 设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6. 求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示.7. 设α1, α2,…,αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8. 设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d 均为不为零的实数),求向量组α1, α3,α4, α5的秩.9. 设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11. 已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值.12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14. 已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β,求由基α1, α2, α3到基β1, β2, β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B : β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r .3.设有三个n维向量组A:α1, α2, α3;B:α1, α2, α3,α4;C:α1, α2, α3,α5.若A组和C组都线性无关,而B组线性相关,证明向量组α1, α2, α3,α4-α5线性无关.4.设向量组A: α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T和B: β1=(-1,1,0)T,β2=(1,1,1)T,β3=(0,1,-1)TR的基;(1) 证明:A组和B组都是三维向量空间3(2) 求由A组基到B组基的过渡矩阵;(3) 已知向量α在B组基下的坐标为(1,2,-1)T,求α在A组基下的坐标.第4章 线性方程组习 题1. 写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 4 3212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-026 83054202108432143214321x x x x x x x x x x x x 的一个基础解系.6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8. 设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?9. 设η*是非齐次线性方程组AX=b的一个解,ξ1, ξ2,…, ξn-r是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn-r线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn-r线性无关.复习题四1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a = .2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为 .3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a , b 为何值时, (1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组 (Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax= β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章矩阵的特征值和特征向量习题1.已知向量α1=(1,-1,1)T,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A, B都是n阶正交矩阵,证明AB也是正交矩阵.3.设A是n阶正交矩阵,且|A|=-1,证明:-1是A的一个特征值.4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)A是A *的特征值.(2)当1,-2,3是3阶矩阵A的特征值时,求A *的特征值.9.设三阶实对称矩阵A的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p1=(1,1,1)T,求矩阵A.复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 .2.已知3阶矩阵A , A -E , E +2A 都不可逆,则行列式|A +E |= .3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足 .4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为 .5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9.第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3. 已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值范围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A T A ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n ΛΛΛΛΛΛΛ. 2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3.3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式 *2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式 E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题:6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1.三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵.。