2014-2015学年线性代数试题及答案
- 格式:ppt
- 大小:340.50 KB
- 文档页数:18
内蒙古大学 2014-2015 学年第 1 学期线性代数 期末考试(A 卷)姓名 学号 专业 年级重修标记 □ (闭卷 120分钟)一、填空题(本题满分 30 分,每小题 3 分)1.n 阶行列式0100002000100n n =- 。
2. 设123234A ⎛⎫= ⎪⎝⎭,使得PA 为行最简的可逆矩阵P = 。
3. A 是3阶方阵,12||A =,则1|(2)7|A A -*-= 。
4. 1400021053-⎛⎫ ⎪= ⎪⎪⎝⎭________________________。
5.二次型21213233246+2f x x x x x x x =-++的矩阵A = 。
6.设向量(1,2,3,4)(0,,2,1)T Tx αβ=-=-和正交,那么x =____________。
7. 设3阶矩阵A 的特征值为1,2,-1,则行列式2|2|A A E -+=_____________。
8. 5元齐次线性方程组123450x x x x x ++++=,则它的基础解系包含______个向量。
9.n 元非齐次线性代数方程组Ax b =有无穷解的充分必要条件是 。
10. n 阶方阵A 可对角化的充分必要条件是 。
二、计算下列各题(本题满分20分,每小题10 分)(1) 设3112513421111233D---=---,求D的代数余子式的和11213141A A A A+++(2) 求非齐次线性方程组12341234123421363251054x x x xx x x xx x x x++-=⎧⎪+--=⎨⎪++-=⎩的通解,并求所对应的齐次线性方程组的基础解系。
三、计算题(本题满分20分,每小题 10 分)(1) 求解矩阵方程AX B =,其中21311122,2013225A B --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭。
(2) 求向量组1234(2,1,4,3),(1,1,6,6),(1,1,2,7),(2,4,4,9)T T T Tαααα==--=-=的秩和一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示。
2014-2015-1线性代数参考答案及评分标准一(每小题3分,共15分)1、32 2 、3 3 、1 4、2 5、0二(每小题3分,共15分)1 B2 B3 C4 A5 D三(5分)0321103221036666=D ……………………………………………………(2分) 40000400121011116---=…………………………………………… (2分)96-=……………………………………………………………(1分)四(10分)1-=A ,A 可逆…………………………………………………(1分) 121)(---=-=A A E A A B ……………………………………………………(4分)()⎪⎪⎪⎭⎫ ⎝⎛---→100100110010211001,E A⎪⎪⎪⎭⎫ ⎝⎛---=-1001102111A ……………………………………………………………(4分) ⎪⎪⎪⎭⎫ ⎝⎛=000000120B …………………………………………………………………(1分) 五(15分)()211111211112-=-----λλλλλλλ………………………………………………(5分) 0≠λ且2≠λ时,有唯一解…………………………………………………(2分)2=λ时()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-----=100051103111111111133111,b A3),(2)(=<=b A R A R ,方程组无解…………………………………………(3分)0=λ时,()⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000000001111111111111111,b A3),(1)(<==b A R A R 方程组有无穷多解,1321+--=x x x 取2312,c x c x ==得方程组通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=00110101121321c c x x x x ………………………(5分)六(12分)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=0000010000712100230102301085235703273812,,,,54321a a a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→00000100000121002301……………………………………(4分) 向量组秩为3,……………………………………………………………(2分) 一个最大无关组为:521,,a a a ……………………………………………(2分) 21323a a a +=………………………………………………………………(2分) 2152a a a -=…………………………………………………………………(2分) 七(10分)证明:设存在数1k ,2k ,3k ,使0332211=++βββk k k ………………(2分) 将1β,2β,3β带入并整理得0)32()()2(33212321131=+-+-+-++αααk k k k k k k k …………………(2分)由1α,2α,3α线性无关知⎪⎩⎪⎨⎧=+-=-+-=+03200232132131k k k k k k k k , 因0312111201=---,故齐次线性方程组有非零解,…………………(4分)从而存在1k ,2k ,3k 不全为零,使0332211=++βββk k k ,从而1β,2β,3β是线性相关的。
考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------第1页(共1页)3、设⎪⎪⎪⎭⎫ ⎝⎛=100152321A ,⎪⎪⎪⎭⎫ ⎝⎛=141B ,利用初等变换求1-A ,并求解求矩阵方程B AX =。
4、设有向量组TTTT---=--=-==)1,1,3,4(,)3,1,0,3(,)7,1,3,2(,)0,0,1,1(4321αααα,(1)求此向量组的秩和一个极大无关组;(2)将其余向量用极大无关组线性表示。
5、设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知4321,,,ηηηη是它的四个解向量,且T )2,2,0,1(1=η,T )8,2,5,1(432=++ηηη,求其通解。
6、λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解?无解?有无穷多组解?7、设⎪⎪⎪⎭⎫ ⎝⎛=1010111a a A 与⎪⎪⎪⎭⎫⎝⎛=b B 10相似,求b a ,的值。
8、求一个正交变换,将二次型2123222132142),,(x x x x x x x x f -+-=化为标准形。
9、设⎪⎪⎪⎭⎫ ⎝⎛=30201t t t t A ,且A 为正定矩阵,求t 的取值范围。
三、证明题(每小题6分,共12分)1、设向量组321,,ααα线性无关,321αααβ++=,证明:1αβ-、2αβ-、3αβ-线性无关。
2、设A 是正交矩阵,证明:A 的特征值为1或1-。
考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------满分8分得分4、满分8分得分5、满分8分得分满分8分得分7、满分8分得分8、满分8分得分满分8分得分三、证明题1、满分6分得分2、满分6分得分。
2014-20152 线性代数 (A 卷)数理学院 全校相关专业一、填空题(每小题3分,共15分)1. 已知10312122D -=-,则11121322M M M ++=_______________; 2. 设A 为3阶矩阵,且2A =,则1*1(3)3A A --=___________; 3. 向量组(1,1,0),(1,3,1),(5,3,)TTTt αβγ==-=线性相关,则t =____________;4. 设矩阵13333664A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征值分别为2-、2-和4,则a =___________; 5. 设二次型2221231231223(, , )322f x x x tx x x x x x x =++-+是正定二次型,则实数t 的取值范围是______________。
二、选择题(每小题3分,共15分) 1.下列等式正确的是________;)A a x b y a b x y c z d w c d z w ++=+++ )B 2123434a a a a a = )C0x y x y x y z z a z a =+- )D 22123434a a a a a = 2.设A ,B 都是n 阶矩阵,且AB O =,则下列成立的是________;)A A O B O =或= )B A ,B 都不可逆 )C A ,B 中至少有一个不可逆 )D A B O +=3.设Ax b =有无穷多组解,则0Ax = ;)A 必有唯一解 )B 必定没有解 )C 必有无穷多组解 )D A 、B 、C 都不对课程考试试题 学期 学年 拟题学院(系): 适 用 专 业:4.A 是n 阶可逆矩阵,则与A 必有相同特征值的矩阵是 ;)A 1A - )B T A )C *A )D 2A5.n 阶矩阵A 的n 个特征值互异是A 与对角阵相似的 。
)A 充分条件 )B 必要条件 )C 充分必要条件 )D 既非充分又非必要条件 三、计算题(每小题10分,共20分)1. 计算行列式100110011001a b c d---;2.已知111011001A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,且满足2A AB E -=,其中E 为单位矩阵,求矩阵B 。
广州大学2014-2015学年第一学期考试卷课 程:《线性代数Ⅱ》 考 试 形 式:闭卷考试学院:____________ 专业班级:__________ 学号:____________ 姓名:___________一、填空题(每空3分,本大题满分18分)1.设A ,B 都为3阶方阵,且5||1=-A ,54|3|=B ,则=-||1AB .2.若对三阶阵A 先交换第一,三行,然后第二行乘2后再加到第三行,则相当于在A 的 边乘三阶阵 .3.若阵A 为3阶方阵,且秩1)(=A R ,则=)(*AA R .4.设向量组),1,1(1a =α,)1,,1(2a =α,)1,1,(1a =α所生成的向量空间为2维的,则=a .5.已知⎪⎪⎪⎭⎫ ⎝⎛=333231*********a a a a a a A ,其特征值为3,2,1-,⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a B ,则B 的行列式中元素的代数余子式=++232221A A A .二、选择题(每小题3分,本大题满分15分)1.若AB 为n 阶单位阵,则必有( ).(A )BA 也n 阶为单位阵;(B )BA 可能无意义;(C )n BA R =)(;(D )以上都不对.2.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵记为A 。
若存在三阶阵O B ≠,使得O AB =,则( ).(A )2-=λ,且0||=B ; (B )2-=λ,且0||≠B ;(C )1=λ,且0||=B ; (D )1=λ,且0||≠B .3.对含n 个未知数, 1+n 个方程的线性方程组b Ax =,行列式0|),(|=b A 是它有解的( ).(A )充分条件; (B )必要条件; (C )充要条件; (D )非充分非必要条件.4.设⎪⎪⎪⎭⎫ ⎝⎛=1100c ζ,⎪⎪⎪⎭⎫ ⎝⎛=2210c ζ,⎪⎪⎪⎭⎫ ⎝⎛-=3311c ζ,⎪⎪⎪⎭⎫ ⎝⎛-=4411c ζ,其中4321,,,c c c c 为任意常数,则下列向量组线性相关的为( ).(A) 321,,ζζζ; (B) 421,,ζζζ; (C) 431,,ζζζ; (D) 432,,ζζζ.5.设},,{321ααα分别为同维无关向量组,而},,,{1321βαααα+为相关向量组,则有( )成立.(A) },,,{2321βαααα+为相关向量组; (B) },,{132βααα+为无关向量组;(C) 1}),,({}),,,({321321+=αααβαααR R ;(D)1}),,({}),,,({321321-=αααβαααR R三、(本题满分12分)设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,且A 满足矩阵方程X A AX 2+=,求X .四、(本题满分8分) 计算行列式6741212060311512-----.五、(本题满分6分)设PB AP =,其中⎪⎪⎭⎫ ⎝⎛=1121P ,⎪⎪⎭⎫ ⎝⎛-=1002B ,求10A .六、(本题满分10分)求齐次线性方程组⎪⎩⎪⎨⎧=++-=+-+=-+-0830********43214321x x x x x x x x x x x x 的所有解.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==43333320126624220121),,,,(54321αααααA . 1) 求矩阵A 的行最简形和秩; 2) 求向量组4321,,,αααα的一个最大无关组, 再把其余向量用该最大无关组线性表示.八、(本题满分9分) 设A 为2阶方阵,且存在正整数)2(≥l l ,使得O A l =,证明: 1) A 的秩1≤. 2) O A =2.求矩阵⎪⎪⎪⎭⎫ ⎝⎛=122212221A 的特征值和特征向量.。
5.5.已知3阶方阵A 的特征值分别为1,-2,3则|A|=( ) A . 2 B .6 C .-6D . 06.若方程组 02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩有非零解,则k =( D )A. -2B. -1C. 0D. 2二、填空题(本大题共6小题,每小题3分,共18分)1.设A =[1,2,4],B =[-2,-1,1],则AB T = 0 .2.设矩阵A =⎪⎭⎫ ⎝⎛--4321,则矩阵A 的伴随矩阵A *= ⎪⎪⎭⎫⎝⎛1324 3.设向量α=(-1,2,-2,4),则其单位向量的是______________. 4. 设方阵A 满足A 3-2A+E=0,则21(A 2E)-- = -A . 5.已知向量)2,1,1(-=α与向量),2,2(x -=β正交,则=x -2.6.设线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211111111321x x x a a a 有无穷多个解,则a = 1 . 三、计算题(1,2,3,4每小题8分;5,6每题12分。
共56分)1.求行列式11213513241211111----。
解:11213513241211111----=1122051504111111----- (2)=145008130032101111--- ……4=342002030032101111---- (6)=14203410032101111---=-142 (8)2.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=432122102101a a A 且R(A)<3,求R(A)及数a 。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=432122102101a a A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-→a a a 4622202102101 ……2 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→a a a 6622002102101 (4)由于R(A)<3,所以066022=-=-a a ,, (6)故21==)(,A R a (8)3.设向量组)7,3,1,2(1=α )0,1,0.1(2-=α,)7,1,1,4(3=α)3,0.1,3(4---=α)3,1,3,4(5--=α求其一个最大无关组,并将其他向量用此最大无关组线性表示。