SPSS for logistic回归模型
- 格式:ppt
- 大小:343.00 KB
- 文档页数:29
Logistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小,因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数。
SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型一、变量差值拟合只适用于1:1配对,通过求出同一对中案例组与对照组多有变量的差值,对差值进行不含常数项的无序多分类Logistic回归模型拟合来达到目的例:收集了一组数据,希望分析服用雌激素与子宫内膜癌之间的关系,除了研究因素之外,还额外收集了两个变量,数据为配对数据,1为病例,0为对照,case为是否患病,也就是因变量采用变量差值进行拟合,首先求出所有变量之间的差值,可以使用计算变量过程,但是该过程每次只能处理一个变量,比较麻烦,我们使用语法编辑器进行程序编写,如下全部选中之后运行,在原数据中就会依次出现新生成的差值变量,接下来,我们对这些差值变量进行无序多分类Logistic回归分析—回归—多项Logistic==================================================二、分层Cox模型该方法最常用来进行生存函数估计,但是由于在拟合方法上和配对Logistic模型一致,因此也可以用来拟合配对Logistic回归模型,它不仅可以拟合1:1配对,还可以拟合1:r,n:m配对,应用范围比较广。
在数据组成上,和变量差值拟合有所不同,需要给每个个案一个虚拟生存时间,默认案例组比对照组生存时间段,具体值不限,两个时间差距大小也不限。
案例发生算为失效事件,对照组为删失,并且对子号作为分层因素,我们还是通过变量差值拟合的案例来进行说明我们将原数据调整如下我们将原来并排排列的案例组和对照组合并为竖列,并且增加虚拟生存时间变量time,案例组为1,对照组为2,接下来按照Cox回归模型进行拟合分析—生存函数—Cox回归。
SPSS 二分类的Logistic 回归的操作和分析方法二分类指的是因变量的数据只有两个值,代表事物的两种类别, 典型的二分类变量如性别、是否患病等。
因变量为二分变量原则上是 无法做回归的,在回归方程中的因变量实质上是概率,而不是变量本 身。
在理解二分类变量以后,我们看看如何做二分类变量的logistic 回归。
1 .打开数据以后,菜单栏上依次点击: analyse --regression --binary logistic ,打开二分回归对话框2 .将因变量和自变量放入格子的列表里,如图所示,上面的是因变 量,下面的是自变量,我们看到这里有三个自变量pre 1courtpre卜 卜EJ Pa ri 即 u sei.P1自中叫5口同”“LvaisTic好 Io ■网 □N W□imsnstcri RfrdddiMNonparaTTietrtc Tests Foi ■白MuH0lalfflpul3&on Deiscriplrve SI 挑助聪LfiOli ncaf - Neuf-31 nuHlpEa ResponseMissing value AnaJisis. EH 必占律蛉的国q 商本 Ublik^s 时小如M Wflftdaw HOI LFl[« Edi! View工陷 nW"" ATiilyrtCam pl«i £aEpl 骷与Opsin al Scaling (CALREGJp..R 蜜GertEralized LinearMatfcIs 卜 Mbosti ModelsRlNafllin&af .曲:AT.r+ci HC] 2^^161;! Sfiiisrcs.tosnpareGeneral LinearMMml 48?B6Ci3强理 G"一四忙—一 3 La,43W8口 AutoioaticUn^r ModjeliFig..M 二1 Linear...国 guive EslirnatiCin...C>ep«n (lferit3 .设置回归方法,这里选择最简单的方法:enter ,它指的是将所有的 变量一次纳入到方程。
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析。
使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型。
此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求。
根据变换的方法不同也就衍生出不同的回归模型,例如采用Logit变换的Logistic回归模型,采用Probit变换的Probit回归模型等,相比之下,Logistic是使用最为广泛的针对分类数据的回归模型。
Logistic回归模型的适用条件1.因变量为二分类变量或是某事件的发生率2.自变量与Logit变换后的因变量呈线性关系3.残差合计为0,且服从二项分布4.各观测值之间独立由于Logistic回归模型的残差项服从二项分布而不是正态分布,因此不能使用最小二乘法进行参数估计,而是要使用最大似然法。
和其他回归分析一样,Logistic回归也放在分析—回归过程下面,下面我们通过一个例子来说明具体操作收集了一组数据,希望通过这些数据分析出低出生体重儿的影响因素,数据如下可见,数据集中变量比较多,且数据类型丰富,因变量为二分类变量Low,有两个水平:0-正常体重,1-低出生体重,我们先做一个最简单的单变量Logistic 回归,只考虑smoke这个因素分析—回归—二元Logistic回归前面我们只引入了一个自变量,可以看到模型的效果并不理想,而且Logistic 回归和传统回归模型一样,也可以引入多个自变量并且可以对自变量进行筛选,尽量引入对因变量存在强影响的自变量,下面我们继续加入自变量并进行筛选。
第8 章利用SPSS 进行Logistic 回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类。
首先用实例讲述二值logistic 回归,然后进一步说明多值logistic 回归。
在阅读这部分内容之前,最好先看看有关SPSS 软件操作技术的教科书。
§8.1 二值logistic 回归8.1.1 数据准备和选项设置我们研究2005 年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel 中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005 年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes 表示,否则用No 表示(图8-1-1)图8-1-1 原始数据(Excel 中,局部)将数据拷贝或者导入SPSS 的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31 个地区的数据(SPSS 中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic K”的路径(图8-1-3)打开二值Logistic 回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic 回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
Logistic 回归Logistic 回归是多元回归分析的拓展,其因变量不是连续的变量;在logistic 分析中,因变量是分类的变量;logistic 和probit 回归皆为定性回归方程的一种;他们的特点就在于回归因变量的离散型而非连续型。
Logistic 回归又分为binary 和multinominal 两类;1、Logistic 回归原理Logistic 回归Logistic 回归模型描述的是概率P 与协变量12,.......k x x x 之间的关系,考虑到P 的取值在0----1之间,为此要首先把Plogistic 变换为()ln()1pf p p=-,使得它的取值在+∞-∞到之间,然后建立logistic 回归模型P=p(Y=1)()ln()1pf p p=-=011+......k k x x βββ++011011+......+......1k kk kx x x x e p eββββββ++++⇒=+Logistic 回归模型的数据结构观察值个数 取1的观察值个数 取0的观察值个数 协变量12,.......k x x x 的值 N1 r1 n1-ri ……………………… N2 r2 n2-r2 ………………………. . . . . . . . .Nt rt nt-rt ………………………. 根据数据,得到参数0 1....k βββ的似然函数011011011+ (1)+......+......1()()11k ki i ik k k kx x r n r t i x x x x e e eβββββββββ++-=++++∏++使用迭代算法可以求得0 1....k βββ的极大似然估计。
2、含名义数据的logistic 模型婚姻状况是名义数据,分为四种情形:未婚、有配偶、丧偶、离婚;在建立logistic 模型时,定义变量M1、M2、M3,使得(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=-1,M2=-1,M3=-1)表示离婚 也可以将三变量定义为(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=0,M2=0,M3=0)表示离婚 一般来说,只要矩阵[]1111122213331444a b c a b c a b c a b c非奇异,可以定义(M1=a1,M2=b1,M3=c1)表示未婚; (M1=a2,M2=b2,M3=c2)表示有配偶 (M1=a3,M2=b3,M3=c3)表示丧偶 (M1=a4,M2=b4,M3=c4)表示离婚3、含有有序数据的logistic 回归文化程度是有序的定性变量,他有一个顺序,由低到高为文盲、小学、中学、高中、中专;大学。
手把手教你SPSS二分类Logistic回归分析本教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、SPSS做Logistic回归分析操作步骤3.1 线性关系检验假设3.2 多重共线检验假设3.3 离群值、杠杆点和强影响点的识别3.4 Logistic回归分析四、SPSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)。
部分数据如图1。
二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。
假设1:因变量(结局)是二分类变量。
假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。
假设3:每条观测间相互独立。
分类变量(包括因变量和自变量)的分类必须全面且每一个分类间互斥。
假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样本量应达到自变量数目的50倍。
假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
假设6:自变量之间无多重共线性。
假设7:没有明显的离群点、杠杆点和强影响点。
假设1-4取决于研究设计和数据类型,本研究数据满足假设1-4。
那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3.1 检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。
这里主要介绍Box-Tidwell方法,即将连续自变量与其自然对数值的交互项纳入回归方程。
本研究中,连续的自变量包括age、BMI、TC。
使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age、ln_BMI、ln_TC。
应用SPSS软件进行多分类Logistic回归分析应用SPSS软件进行多分类Logistic回归分析一、简介Logistic回归是一种常用的统计分析方法,在很多领域中都有广泛的应用。
它主要用于预测一个分类变量的可能性或概率,例如判断一个疾病的患病风险、判断学生成绩的优劣、预测金融市场的涨跌等。
本文将介绍如何使用SPSS软件进行多分类Logistic回归分析,并以一个具体案例来说明其应用。
二、SPSS软件介绍SPSS软件是统计分析的常用工具之一,它具有友好的用户界面和丰富的分析功能。
在进行Logistic回归分析时,SPSS可以帮助我们进行数据处理、模型建立、模型拟合、模型评估等步骤,并输出详细的分析结果。
三、案例描述我们假设有一份数据集,包含了500个样本和5个自变量,要根据这些自变量对样本进行多分类。
自变量包括性别、年龄、教育水平、收入和职业。
而多分类的目标变量是购买冰淇淋的偏好,包括三个分类:喜欢巧克力口味、喜欢草莓口味和喜欢香草口味。
四、数据处理首先,我们需要对数据进行处理。
SPSS可以读取各种文件格式,如Excel、CSV等。
我们将数据导入SPSS后,可以进行缺失值处理、异常值处理等预处理步骤。
这些步骤是为了保证后续的分析结果的准确性和可靠性。
五、模型建立在SPSS中,我们可以使用多分类Logistic回归模型进行建模。
它采用最大似然估计方法来估计模型参数,以便进行分类预测。
我们需要将自变量和目标变量进行指定,SPSS会自动计算出各个自变量对目标变量的系数和统计学意义。
六、模型拟合在模型拟合阶段,SPSS会对模型进行拟合优度的检验,包括卡方拟合优度检验、Hosmer-Lemeshow检验等。
这些检验可以帮助我们评估模型的拟合程度和可靠性。
如果模型的拟合程度不好,我们可以对模型进行进一步调整和改进。
七、模型评估在模型评估阶段,SPSS提供了一系列的统计指标和图表,用于评估多分类Logistic回归模型的性能。
如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
Logistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小,因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数。
SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型一、变量差值拟合只适用于1:1配对,通过求出同一对中案例组与对照组多有变量的差值,对差值进行不含常数项的无序多分类Logistic回归模型拟合来达到目的例:收集了一组数据,希望分析服用雌激素与子宫内膜癌之间的关系,除了研究因素之外,还额外收集了两个变量,数据为配对数据,1为病例,0为对照,case为是否患病,也就是因变量采用变量差值进行拟合,首先求出所有变量之间的差值,可以使用计算变量过程,但是该过程每次只能处理一个变量,比较麻烦,我们使用语法编辑器进行程序编写,如下全部选中之后运行,在原数据中就会依次出现新生成的差值变量,接下来,我们对这些差值变量进行无序多分类Logistic回归分析—回归—多项Logistic==================================================二、分层Cox模型该方法最常用来进行生存函数估计,但是由于在拟合方法上和配对Logistic模型一致,因此也可以用来拟合配对Logistic回归模型,它不仅可以拟合1:1配对,还可以拟合1:r,n:m配对,应用范围比较广。
在数据组成上,和变量差值拟合有所不同,需要给每个个案一个虚拟生存时间,默认案例组比对照组生存时间段,具体值不限,两个时间差距大小也不限。
案例发生算为失效事件,对照组为删失,并且对子号作为分层因素,我们还是通过变量差值拟合的案例来进行说明我们将原数据调整如下我们将原来并排排列的案例组和对照组合并为竖列,并且增加虚拟生存时间变量time,案例组为1,对照组为2,接下来按照Cox回归模型进行拟合分析—生存函数—Cox回归。
利用SPSS进行Logistic回归分析第8章利用SPSS进行Logistic回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1表示。
如果我们采用多个因素对0-1表示的某种现象进行因果关系解释,就可能应用到logistic回归。
Logistic回归分为二值logistic回归和多值logistic回归两类。
首先用实例讲述二值logistic回归,然后进一步说明多值logistic回归。
在阅读这部分内容之前,最好先看看有关SPSS软件操作技术的教科书。
§8.1 二值logistic回归8.1.1 数据准备和选项设置我们研究2005年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes表示,否则用No表示(图8-1-1)。
图8-1-1 原始数据(Excel中,局部)将数据拷贝或者导入SPSS的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31个地区的数据(SPSS中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary LogisticK”的路径(图8-1-3)打开二值Logistic回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型。
多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型一、有序多分类Logistic回归模型有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic回归模型,无论模型的分割点在什么位置,所拟合的这n-1个回归模型的自变量系数均保持不变,改变的只有常数项,这也是累积多分类Logit模型的前提条件,也称为平行线检验。
累积多分类Logit模型的常数项是负数,和二分类Logistic回归模型的常数项符号相反下面看一个例子现在想分析人们的工作满意度,选取了一些相关变量,数据如下从数据中,可见因变量满意度satis有三个水平,因此考虑拟合有序多分类Logistic回归模型分析—回归—有序二、无序多分类Logistic回归模型前面讲的有序分类Logistic回归模型,前提为因变量为有序多分类,但是当因变量为无序多分类或者不满足平行线假定时,就需要使用无序多分类Logistic 回归模型。
无序多分类Logistic回归模型也是拟合因变量水平数-1个广义Logit模型,不同的是它需要先定义某一个水平为参照水平,其余水平和其进行对比,SPSS默认取水平最大者为参照水平。
例,通过一组数据,希望分析出不同背景人的投票倾向图中可见因变量pres92为无序多分类变量,有三个水平,考虑使用无序多分类Logistic回归模型分析—回归—多项Logistic。